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Abstract In this work we study the influence of the New-
tonian noise on atom interferometers applied to the detec-
tion of gravitational waves, and we compute the resulting
limits to the sensitivity in two different configurations: a
single atom interferometer, or a pair of atom interferom-
eters operated in a differential configuration. We find that
for the instrumental configurations considered, and operat-
ing in the frequency range [0.1–10] Hz, the limits would be
comparable to those affecting large scale optical interferom-
eters.

1 Introduction

The direct detection of Gravitational Waves is one of the
most exciting challenges of current scientific research. The
first generation of ground-based optical interferometric de-
tectors, including Virgo [1] and GEO600 [2] in Europe, and
the LIGO [3] interferometers in USA, achieved design sen-
sitivity and carried out several science runs, which set in-
teresting upper limits on several classes of astrophysical
sources [4–7]. The construction of a “second generation” of
optical interferometers, Advanced LIGO [8] and Virgo [9],
and the new Japanese detector KAGRA [10], is well un-
derway; thanks to the implementation of several technical
upgrades, the advanced detectors are expected to come on
line with a sensitivity about ten times better than first gen-
eration instruments. In the meanwhile, the conceptual de-
sign of third generation detectors, like the Einstein Tele-
scope [11, 12], has started.

For all these optical ground based detectors the sensitiv-
ity in the low frequency band, below 10 Hz, is ultimately
limited by the so called “gravity gradient”, or Newtonian
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Noise (NN) [13, 14], whose source is the direct coupling of
the test masses with any mass-density change in the envi-
ronment, especially of seismic or atmospheric origin.

Atom interferometers (see [15] for a review) have been
proposed recently as GW detectors [16–21], on the basis of
previous general ideas [22]. These instruments promise to
be less sensitive to some of the noise sources affecting opti-
cal instruments: for instance, being the atoms in free fall, no
direct seismic noise should be present. The effect of gravita-
tional waves is a change in the phase accumulated by atoms’
wave functions, which can be detected by observing the in-
terference of two atom beams.

However, also the non-radiative gravitational fields of ter-
restrial origin affect the phase, in a different way as we will
show: the question arises then, if the “low frequency wall”
due to NN is relevant also for these new proposed detectors.
In this paper we consider only the NN of seismic origin and
we carry out a detailed calculation of its contribution to the
sensitivity curve of an atom interferometer both in the “sin-
gle detector” configuration and in the “coupled differential”
configuration.

It is worth underlining that this study is motivated by
the different way in which gravitational fluctuations cou-
ple to atom interferometers and to optical interferometers,
related to the fact that in the first case the test masses are
atoms freely traveling across the instrument. We anticipate
our conclusions: the atom interferometers are subject to NN
in a degree similar to optical interferometers, and therefore
will require appropriate technical solutions to overcome this
noise limit in the frequency band below 10 Hz.

The paper is organized as follows: in Sect. 2 we consider
a definite atom interferometer and we compute its response
to a fluctuating gravity field; in Sect. 3 we apply the formu-
las to the case of a single detector, deriving the limits on
sensitivity; finally in Sect. 4 we consider two atom interfer-
ometers operated in differential configurations.
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2 Newtonian noise of seismic origin
in atom interferometers

In optical interferometric GW detectors the test masses are
suspended mirrors: a pendular suspension is indeed the best
approximation on Earth for a freely falling test mass. In
atom interferometers instead the role of test masses is played
by atoms in free fall, hence our intent is to determine the
influence of the Newtonian coupling to an external, time-
varying mass distribution, on freely falling masses.

Some general considerations are possible: if the effect
originates from seismic noise, it is driven by an external
masses displacement field, whose linear power spectral den-
sity will generally have the form W̃ (ω) ∼ ω−2, mediated by
a transfer function from the seism to the test masses motion
behaving also as ω−2 [14, 23, 24], where ω is the angular
frequency. Therefore the effect on test masses is expected
to be of the form θ(ω)Γ ω−4, hence more relevant at low
frequencies, where θ(ω) is a kind of reduced transfer func-
tion, depending on the detection device, and Γ is a scale
factor depending on the model of seismic waves (it is recog-
nized that the role of main source is played by Rayleigh sur-
face waves, especially the fundamental mode and few over-
tones [23, 24]).

To derive the actual expression of θ(ω) for NN in an
atom interferometer, we use the ABCD formalism for matter
waves, described elsewhere in detail [20, 25].

Assume that the Hamiltonian of the motion for the atoms
is at most quadratic in momentum and position operators

H =
3∑

n,r=1

[
1

2M
pnβnr(t)pr + 1

2
pnαnr(t)qr − 1

2
qnδnr (t)pr

− M

2
qnγnr(t)qr + fn(t)pn − Mgn(t)qn

]
, (1)

where pn(r) and qn(r) are vectors of momentum and posi-
tion, respectively, whereas α,β, γ, δ are suitable square ma-
trices (note that δ = −αT , with T indicates the transposed
matrix), and M is the atom rest mass.

The last term in the Hamiltonian represents the response
to the local, fluctuating gravitational field g(t): in the fol-
lowing, we will consider only the component along the di-
rection of motion of the atoms, as in the paraxial approxima-
tion all transverse effects are neglected. The γ term allows
to model the response to gravitational waves: in the Fermi
gauge, and considering Fourier components, one can show

that γ̂ = ω2

2 ĥ(ω), where ĥ(ω) is the gravitational wave strain
tensor (see for instance [20]).

Consider an atoms’ beam (a Gaussian packet under
paraxial approximation [20, 25–28]) which is divided and
recombined through a sequence of R light-field beam split-
ters, supplied by the same laser: from the first beam splitter

to the last one (the output port) we may identify two paths,
conventionally labeled s and i. By exploiting the ttt the-
orem [25] for the atoms/beam splitter interactions, and the
mid-point property of Gaussian beams [29], the phase differ-
ence at the output port of the interferometer can be written
as:

	φ =
R∑

j=1

[
(ksj − kij )

qsj + qij

2
− (ωsj − ωij )tj

+ (θsj + θij )

]
, (2)

where ks(i)j is the momentum transferred to the atoms by
the j th beam splitter along the s(i) arm, ωs(i)j is the an-
gular frequency of the laser beam and θs(i)j is the phase of
the laser beam at the j th interaction, qs(i)j is the distance of
j th interaction point from the laser source; equal masses are
assumed for the atoms along the s and i paths. The expres-
sion in Eq. (2) is manifestly gauge-invariant [20, 25], and
the evolution of the wave packets can be obtained, by means
of the Ehrenfest theorem, from Hamilton’s equations for the
vector χ(t) [20, 25, 28]

dχ

dt
=

(
dH
dp

− 1
M

dH
dq

)
= Γ (t) · χ(t) + Φ(t), (3)

where

χ ≡
(

q
p
M

)
; Φ(t) ≡

(
f (t)

g(t)

)
;

Γ (t) ≡
(

α(t) β(t)

γ (t) δ(t)

) (4)

in the form

χ(t) =
(

A(t, t0) B(t, t0)

C(t, t0) D(t, t0)

)
·
[
χ(t0) +

(
ξ(t, t0)

ψ(t, t0)

)]
, (5)

where
(

A(t, t0) B(t, t0)

C(t, t0) D(t, t0)

)
= τ exp

[∫ t

t0

Γ
(
t ′
)
dt ′

]
, (6)

(
ξ(t, t0)

ψ(t, t0)

)
=

∫ t

t0

(
A(t0, t

′) B(t0, t
′)

C(t0, t
′) D(t0, t

′)

)
· Φ(

t ′
)
dt ′; (7)

here τ represents the time-ordering operator, and an appro-
priate perturbative expansion can be used to evaluate the
time-ordered exponential in Eq. (6) [20, 25, 28].

As a simple reference configuration let us consider
a “Ramsey–Bordé” atom interferometer, with a Mach–
Zehnder geometry, as outlined in Fig. 1 [15, 20, 25]. In
the following, we will also assume that the instrument is
crossed by a plane GW with “+” polarization and ampli-
tude h, propagating along the x3 = z axis, perpendicular to
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Fig. 1 A simple “Ramsey–Bordé atom interferometer with Mach–
Zehnder geometry. Continuous horizontal lines, and the slanted dot-
dashed lines, represent atom beams. Vertical dashed lines represent the

laser beams; the bold continuous arrows represent relevant momentum
transferred to the atoms; g and e mark the ground and excited internal
states of the atoms; k is the transverse momentum in � units

the plane of the interferometer; we adopt in the following a
description in Fermi coordinates, which represents the best
approximation to the Laboratory Cartesian system [30].

Assuming the same “stable” frequency for the laser
beams and neglecting the steady proper laser phases, the
phase shift formula in Eq. (2) becomes

	φ =
4∑

j=1

(ksj − kij )
qsj + qij

2
. (8)

Let us assume that atoms are subjected only to a fluctuating
gravitational field g(t). Considering Eqs. (1), (3), (4) and (7)
we have

α = δ = γ = 0; β = 1; f (t) = 0; g(t) �= 0;
A = 1; B = t − t0; C = 0; D = 1; (9)

and we obtain
(

ξ(t, t0)

ψ(t, t0)

)
=

∫ t

t0

(
t0 − t ′

t ′
)

g
(
t ′
)
dt ′. (10)

We are interested in the low frequency range, where the
Newtonian noise is expected to be the limiting factor on ac-
count of its ω−4 shape. We will therefore assume that the
single atom interferometer has a linear dimension smaller
than the wavelength of seismic surface waves, which we
will assume to set also the coherence length. Introducing the
Fourier transform ĝ(ω) of the fluctuating field we can also
write

ξ(t, t0) =
∫

dω

2π
ĝ(ω)

[
− (t − t0)

iω
eiωt − 1

ω2

(
eiωt − eiωt0

)]
,

ψ(t, t0) =
∫

dω

2π
ĝ(ω)

[
eiωt0

iω

(
eiω(t−t0) − 1

)]
(11)

and we assume, in the long wavelength approximation, that
ĝ(ω) is the same at any point of the interferometer. There-

fore the solution of the Hamilton equations Eq. (5) can be
written as
(

q(t)
p(t)
M

)

=
(

1 t − t0
0 1

)
·
[(

q(t0)
p(t0)
M

)

+
∫

dω

2π
ĝ(ω)

(− (t−t0)
iω

eiωt − 1
ω2 (eiωt − eiωt0)

eiωt0

iω
(eiω(t−t0) − 1)

)]
;

(12)

this expression allows to compute the values of the coordi-
nates and momenta of the atoms at the interaction points
with the laser: by iterating the relation in Eq. (5) to the
four interaction points of the interferometer in Fig. 1, setting
t3 = t2 and defining T = t4 − t3 = t2 − t1, we finally obtain
the phase shift at the output port of the interferometer:

	φ̂(ω) = kT 2eiωT

[
sin(ωT /2)

(ωT /2)

]2

ĝ(ω); (13)

this is the fundamental formula to estimate the effect of the
fluctuating field ĝ. We recall that k is the unperturbed wave
vector of the laser beam, corresponding to the impulse (in
units of the reduced Planck constant �) transferred to the
atom at each interaction point. Note also that in the limit
ω → 0 the expression in Eq. (13) corresponds to the well
known static result [29, 31].

3 Newtonian-Noise limit on sensitivity:
the single detector case

In the weak field approximation, to first order in the ampli-
tude h of an impinging gravitational wave, the phase shift
at the output of the interferometer in Fig. 1 has been already
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obtained in a fully covariant way [20]. Indicating with q1 the
unperturbed distance of the first interaction point from the
laser, and with p1 the unperturbed momentum of the atoms,
just before the first interaction with the laser beam, we recall
that the Fourier transform of the phase shift, as a function of
the Fourier transformed amplitude ĥ of the GW, can be writ-
ten as

	φ̂(ω) = ωĥ(ω)
T 2k

M

(
p1 + k�

2

)

×
[
eiωT − e2iωT

ωT
+ ieiωT

(
sin(ωT /2)

ωT /2

)2]

+ ω2ĥ(ω)

2
T 2kq1

(
sin(ωT /2)

ωT /2

)2

eiωT (14)

in which the proper laser phases have been neglected.
Comparing with the expression of the response to a fluc-

tuating local gravity field Eq. (13), we note that the sec-
ond term of Eq. (14) corresponds to it, with the substitution
g̃ → q1

2 ω2h̃: however, the overall response to GWs includes
also a dynamic term depending on the atom momentum p1

and on the momentum k transferred to the atoms: hence the
effects of the local gravitational field and of the gravitational
waves are in principle distinguishable.

For a single interferometer with the laser source close to
the device, actually the last term can be neglected and the
more relevant one is the term proportional to p1, since we
can also generally neglect the recoil term k�

2M
. This expres-

sion can be directly translated into a relation between linear
power spectral densities (LPSD), that we denote by a tilde,
defined in terms of the two-point correlation functions as

〈
ĝ(ω)ĝ

(
ω′)〉 = 2πδ

(
ω − ω′)g̃2(ω) (15)

in which the angular brackets represent the statistical aver-
age. From Eq. (13) and Eq. (14) we obtain

	φ̃(ω) = h̃(ω)kL
∣∣sin(ωT /2)

∣∣

×
√

1 − 2 sin(ωT )

ωT
+

[
sin(ωT /2)

(ωT /2)

]2

,

	φ̃(ω) = kT 2
[

sin(ωT /2)

(ωT /2)

]2

g̃(ω),

(16)

where the distance L = 2Tp1/M travelled by the atoms in
the interferometer of Fig. 1 has been introduced; combining
the two equations, we deduce the expression

h̃NN(ω) = 4

ω2

| sin(ωT /2)|√
1 − 2 sin(ωT )

ωT
+ [ sin(ωT/2)

(ωT/2)
]2

g̃(ω)

L
(17)

for the equivalent strain h̃NN induced by the fluctuating field
g̃(ω).

It is useful to discuss here the scale of the g̃(ω) LPSD,
referring to typical values measured at the site of the Virgo
interferometers; we recall indeed that we are considering
the effect of an external fluctuating gravity field on freely
falling test masses, which is the same situation experienced
by the test masses of optical interferometers [14, 23, 24];
even though the detailed shape of the NN affecting a in-
strument like Virgo depends on the model for the seismic
sources and the superficial Earth layers, similar results are
obtained in different cases, which can be summarized as fol-
lows

h̃NN(ω) =
√

4X̃(ω)

LV

� 1.2 × 10−9

ω2
x̃seism(ω) × Hz2

m
, (18)

where LV = 3000 m is the length of Virgo arms, X̃(ω) is
the displacement LPSD for a single suspended mirror, and
x̃seism(ω) is the measured LPSD of the ground seism [32];
the factor

√
4 takes into account that in Virgo the noise due

to the four end-station mirrors adds in quadrature.
Considering the relation between the mirror motion and

its acceleration, due to the fluctuating gravitational field,
g̃(ω) = ω2X̃(ω), we obtain

g̃(ω)

L
= ω2LV

2L

√
4X̃(ω)

LV

� 6 × 10−10 LV

L
x̃seism(ω) × Hz2

m
; (19)

we further assume that the seismic noise measured at the
Virgo site is well approximated by [33]

x̃seism(ω) � 10−7

[ω/(2π Hz)]2
m Hz−1/2; (20)

Following [28], let us assume very ambitious parameters
for the single Ramsey-Bordé atom interferometer: a length
L ∼ 200 m, which could result in interesting sensitivities to
gravitational waves, and a time of flight T = 0.4 s, in order
to have not too small a bandwidth; obviously the choice im-
plies atom speeds of the order of 250 m/s, and we underline
that such choices are probably beyond the limits of current
technologies. Anyway, we obtain

g̃(ω)

L
∼ 10−16

[ω/(2πHz)]2
Hz2. (21)

as an estimate of the scale of the fluctuating gravitational
field seen by the atom interferometer.

To appreciate the result, we show in Fig. 2 an example
of the Newtonian noise of Eq. (17) assuming the expres-
sion in Eq. (21) for the LPSD of the fluctuating gravitational
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Fig. 2 The solid curve represents the effect of the gravity gradient
noise on a single atom interferometer, with the expected ω−4 behav-
ior, and zeroes corresponding to frequencies at which the instrument
is insensitive both to the gravity gradient fluctuations and to gravita-
tional waves. For comparison, the dashed curve represents the model
Newtonian noise effect on the Virgo interferometer

field; in the same figure we plot, for comparison, the corre-
sponding Newtonian noise for the Virgo detector.1

The zeroes represent frequencies at which the atom in-
terferometer is insensitive both to the gravity gradient noise
and to GW; note that the one shown is not a complete noise
budget, to which other noises would contribute, particularly
the atom shot noise which would exhibit peaks at those fre-
quencies, not differently from an optical interferometer in a
Michelson configuration and without Fabry–Perot cavities.

Apart this specific feature, the comparison with a large
optical interferometer shows a similar behavior as a func-
tion of the frequency, with a different noise scale dictated by
the different linear dimensions of the instruments. We un-
derline that for this type of atom interferometer, it could be
unrealistic to increase the linear size L even further: to this
end, a differential configuration appears more promising.

4 Two detectors operated in a differential configuration

Let us now consider the second term in Eq. (14), propor-
tional to the position q1. This term, already introduced in a
different context [34], is a sort of “clock” term which takes
into account the influence of the GW on the laser beam,
along its path from the source to a well defined physical
point. Its role was discussed in recent papers [35–37] and the
most relevant new property is the introduction of q1 (path of
laser beam) in place of L (path of atom beam); so, in order

1It should be underlined that in this low frequency band, below 10 Hz,
the actual noise of Virgo is dominated by other noise sources, most
notably by the direct seismic noise and by the thermal noise, not to
mention other technical noises.

to improve the sensitivity, enlarging q1 seems in principle
easier than enlarging L.

This solution requires measuring the distance from the
laser, and carries additional requirements on the coherence
and stability of the laser beam, while maintaining it at a suf-
ficient power density: it is therefore premature to draw too
optimistic conclusions about the practicality of the configu-
ration. However, the idea of adopting a two-interferometers
differential configuration [21] appears very appealing in or-
der to render the system independent from the laser position,
and may furthermore yield a good common-modes rejec-
tion.

Under the hypothesis of a common laser source for two
identical Mach–Zehnder atom interferometers in differen-
tial configuration, for which the relative distance D satisfies
the condition ωD/c 	 1 (with c the speed of light in vac-
uum), from Eq. (14) the overall difference between the two
partial phase differences at the output ports can be formally
obtained as

	φ̂(ω) = 2kD sin2(ωT /2)eiωT ĥ(ω) (22)

where D ≡ qII
1 −qI

1 as anticipated. Considering also Eq. (13)
we obtain for the differential configuration

ĥNN(ω) = 2

ω2D

[
ĝ2(ω) − ĝ1(ω)

]
, (23)

where the difference in the right hand side requires some
discussion. In a given frequency band, if the two fluctuating
gravity fields ĝ1,2 act upon sufficiently distant atom inter-
ferometers, they will be uncorrelated, and we will obtain for
the LPSD simply a sum in quadrature

h̃NN(ω) = 2

ω2D

√
g̃2

1(ω) + g̃2
2(ω) (24)

displaying no conceptual difference with respect to the lim-
its obtained for optical interferometers with long arms [32].
Considering instead a low-frequency, long-wavelength ap-
proximation, it may be appealing the situation in which,
even with two separated interferometers, the residual cor-
relation leads to a partial noise cancellation in Eq. (23).

We recall that the signals ĝ1,2(ω) are assumed to be
stochastic acceleration fields in positions 1 and 2, projected
along the direction specified by the segment D as in Fig. 3.

We further assume to model the stochastic noise in the
simplest possible way, namely as due to uncorrelated fluc-
tuations in the density of the material surrounding the de-
tector [14]. In other words a density fluctuation 	M(t) will
contribute to the acceleration field in points 1 and 2 as

g2(t) = G	M(t)

r2
2

r̂2 = G	M(t)

r3
2

r2, (25)

g1(t) = G	M(t)

r2
1

r̂1 = G	M(t)

|r2 − D|3 (r2 − D). (26)
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Fig. 3 Geometry of the detector: atom interferometers are located at
positions 1 and 2, and a fluctuating mass element is assumed at a loca-
tion r2 in a frame having position 2 as the origin, and a ẑ axis parallel
to D

Considering only the component acting along the direction
separating the two points 1 and 2, we obtain

g2(t) = G	M(t)

r2
cos(θ),

g1(t) = G	M(t)

[r2 + D2 − 2rD cos(θ)]3/2

[
r cos(θ) − D

] (27)

as the contribution to the fluctuation of the acceleration field
due to a single mass element. To obtain the total fluctuation,
we need now to sum over the space.

We first assume for simplicity that the space around the
two stations with atom interferometers can be considered
homogeneous: this could be the case for instance if the in-
strumentation is placed in a deep mine, at a depth much
larger than D. We are therefore interested in the quantity

ĥNN(ω, r) = 2

ω2D

[
ĝ2(ω) − ĝ1(ω)

]

= 2G	M(ω, r)
ω2D

{
cos(θ)

r2

− r cos(θ) − D

[r2 + D2 − 2rD cos(θ)]3/2

}
(28)

which should be summed over the volume. It is convenient
to evaluate the spectral density

〈
hNN(ω)hNN

(
ω′)〉 ≡ 2πδ

(
ω − ω′)h̃2

NN(ω)

=
∑

r,r′

〈
	hNN(ω, r)	hNN

(
ω′, r′)〉; (29)

where, following again Saulson [14], we assume the sum to
be extended over volume elements of linear size λ/2, with
	M fluctuating coherently inside these regions, and totally
uncorrelated otherwise:

〈
	M(ω, r)	M

(
ω′, r′)〉 = 2πδ

(
ω − ω′)	M̃2(ω, r)δr,r′ .

(30)

We obtain therefore

h̃2
NN(ω) = 4G2

ω4D2

∑

r

	M̃2(ω, r)
{

cos(θ)

r2

− r cos(θ) − D

[r2 + D2 − 2rD cos(θ)]3/2

}2

. (31)

If we additionally assume that the mass fluctuations do not
depend on r, we can further simplify, obtaining

h̃2
NN(ω) = 4G2	M̃2(ω)

ω4D2

∑

r

{
cos(θ)

r2

− r cos(θ) − D

[r2 + D2 − 2rD cos(θ)]3/2

}2

= 4G2	M̃2(ω)

ω4D2

(
2

λ

)3 ∫ {
cos(θ)

r2

− r cos(θ) − D

[r2 +D2 −2rD cos(θ)]3/2

}2

r2 dr d cos θ dφ,

(32)

where we have approximated the sum with an integral, nor-
malizing by the volume element of the coherent region
(λ/2)3. If we were to retain only the first term, we would ob-
tain the same result as in [14], corrected for a factor 2 which
is wrong in the original paper. The integration over the angu-
lar functions is directly carried out, resulting in a lengthy ex-
pression:

h̃2
NN(ω) = 64πG2	M̃2(ω)

ω4D2λ3
· H(D,λ),

H =
∫ r{4[8(D − r)2(D + r)2 + 3Dr(3D2 − r2)] − 3(D2 − r2)2 ln (D−r)2

(D+r)2 }
24D3(D − r)2(D + r)2

dr +
∫

2(D3 + 2r3)(D − r)

3D3r2|D − r| dr,

(33)
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which, as expected, displays double poles in r = 0 and in
r = D.

Both divergences are artefacts, which should be regulated
introducing cutoffs r ≥ λ

4 and at |r − D| ≥ λ
4 . However, it is

now necessary to distinguish two cases

Short wavelength If the distance D � λ, then the integral
over r gives

H(D,λ) = 14

3λ
+ O

(
λ

D2
ln

λ

D

)
(34)

and we obtain

h̃2
NN(sw)(ω) � 896πG2	M̃2(ω)

3ω4D2λ4
· (35)

Long wavelength In the long wavelength approximation
the integral in Eq. (33) can be carried out assuming r ≥ λ

4 �
D, obtaining

H(D,λ) = 512D2

15λ3
+ O

(
D4

λ5

)
, (36)

hence

h̃2
NN(lw)(ω) � 32768πG2	M̃2(ω)

15ω4λ6
; (37)

it seems at first surprising that the dependence on D can-
cels out in the long wavelength approximation, whereas one
could have expected to retain a dependence, which could
lead to zero the noise in the D → 0 limit case. However, we
are actually in a situation in which the instrument is sensi-
tive to the gradient of the gravity acceleration (see Eq. (23)),
and therefore, barring other sources of noise, the sensitivity
is independent on the baseline D.

We can now use Eq. (12) of [24] to relate the mass fluc-
tuations with the measured seism

	M̃2(ω) = 1

16
λ6ρ2

0

(
π

λ

)2

x̃2
seism(ω), (38)

where ρ0 is the density of the medium. We finally obtain

h̃NN(sw)(ω) � 2π
√

14πGρ0√
3ω2D

x̃seism(ω), (39)

h̃NN(lw)(ω) � 16
√

2πGρ0√
15ωcL

x̃seism(ω), (40)

where we have used the relation λω = 2πcL, with cL the
speed of longitudinal seismic waves.

Comparing with Eq. (18) for the gravity gradient noise
affecting the Virgo interferometer, we see that in the short
wavelength limit, represented by Eq. (39), the frequency
dependence (as expected) is the same. Instead, in the long

wavelength limit Eq. (40), the NN affecting the atom in-
terferometer has a slower growth for ω → 0, reflecting the
presence of correlated noise at the two stations, that partially
cancels out in Eq. (23).

We underline that this cancellation is not specific of a
dual atomic interferometer: the same effect would occur
in optical interferometers like Virgo, for shorter baselines.
However, in optical interferometers long baselines are moti-
vated by the need to reject the mirror position noise, which
scales inversely with the distance: in atom interferometers
some position noises, like the thermal noise, are instead ex-
pected to be absent, hence the baseline could be shorter.

In order to assess the significance of the cancellation ef-
fect, we choose favorable, yet realistic parameters: for the
medium surrounding our hypothetical instrument, we as-
sume a large cL = 5000 m/s, characteristic of compact rock,
and a density ρ0 � 2.7 × 103 kg m−3, a typical value for
the continental crust; we also assume, on the basis of mea-
surement taken in underground environments (for instance
in the Kamioka mine [38] which will host KAGRA) a seis-
mic noise x̃seism 10 times lower than the one measured at the
Virgo site (Eq. (20)).

We also assume to build a relatively large instrument,
taking for the distance between the atom interferometers a
value D � 1 km as proposed in [39]: we obtain

h̃NN(sw)(ω) � 10−18

[ω/(2π Hz)]4
Hz−1/2,

ω

2π
� cL

D
� 5 Hz,

(41)

h̃NN(lw)(ω) � 6 × 10−19

[ω/(2π Hz)]3
Hz−1/2,

ω

2π
	 cL

4D
� 1.25 Hz.

(42)

The resulting limit to the atom interferometer sensitivity is
displayed in Fig. 4, over a frequency range which runs from
the long to the short wavelength regimes; for comparison we
display also the NN affecting the Virgo instrument; in the
high frequency regime, the two curves differ just by a small
scale, reflecting the different size of the instruments and the
lower seismic noise anticipated for an underground atom in-
terferometer. In the low frequency regime the residual cor-
relation of the Newtonian noise which affects the two atom
interferometers, thanks to the shorter baseline, contributes to
a milder growth as ω → 0, and therefore leads to a sizable,
though not dramatic, reduction of the noise over the Virgo
case.

5 Conclusions

In this work we have evaluated the effect of fluctuations of
the gravity field on the sensitivity of atom interferometers,
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Fig. 4 Comparison of models of the Newtonian Noise as seen by the
Virgo interferometer (dashed line) or by an hypothetical pair of atom
interferometers operated in differential configuration (continuous line).
Above a few Hz, the two curves run parallel, at different scales because
of the different seismic noise (10 times lower for the hypothetical un-
derground atom interferometers), and the different baseline of the two
instruments (3 km for the length of Virgo arms, 1 km for the distance
between the atom interferometers). At lower frequencies, thanks to its
shorter baseline, the dual atom interferometer displays a different slope
thanks to the cancellation effect

thus providing an estimate of the so-called Newtonian (or
gravity gradient) noise for this kind of instruments.

We have seen that a mid-scale atom interferometer, with
a baseline L ∼ 200 m, is subject to a noise essentially equiv-
alent to the one affecting a large scale optical interferometer,
as Virgo.

We have also found that operating two small-scale atom
interferometers, linked by a laser, at a larger distance D ∼ 1
km, in differential configuration, as proposed for instance
in [39], there is an advantage at low frequency thanks to
the residual Newtonian noise correlation and the resulting
partial cancellation. However, the noise reduction is not dra-
matic and the Newtonian limit remains very significant: it is
worth reminding that in order to detect a binary neutron star
inspiral (say, at z ∼ 1) sensitivities better than 10−22 would
be required at 1 Hz; even for larger systems, say a 1000M�
binary black-hole coalescence, sensitivities of the order of
10−20 should be achieved, as discussed for instance in [40].

We conclude that, similarly to what is foreseen for future
optical interferometers [11], operating successfully atom in-
terferometers in the [0.1,10] Hz frequency window will
require mitigating the gravity gradient noise; not just by
choosing very quiet, underground sites, but also devising
clever noise subtraction strategies.

We acknowledge that this study has a limitation in the
model for the gravity fluctuations, which is approximate;
however, as it has been the case for similar studies carried
out for optical interferometers [23, 24], we believe that the
use of more refined models will change the numerical re-

sults only by small factors, which would not alter our con-
clusions.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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