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Abstract We consider a cosmological model dominated by
bulk viscous matter with a total bulk viscosity coefficient pro-
portional to the velocity and acceleration of the expansion of
the universe in such a way that ζ = ζ0 + ζ1

ȧ
a + ζ2

ä
ȧ . We show

that there exist two limiting conditions in the bulk viscous
coefficients (ζ0, ζ1, ζ2) which correspond to a universe hav-
ing a Big Bang at the origin, followed by an early decelerated
epoch and then making a smooth transition into an accelerat-
ing epoch. We have constrained the model using the type Ia
Supernovae data, evaluated the best estimated values of all
the bulk viscous parameters and the Hubble parameter corre-
sponding to the two limiting conditions. We found that even
though the evolution of the cosmological parameters are in
general different for the two limiting cases, they show iden-
tical behavior for the best estimated values of the parameters
from both limiting conditions. A recent acceleration would
occur if ζ̃0 + ζ̃1 > 1 for the first limiting conditions and if
ζ̃0 + ζ̃1 < 1 for the second limiting conditions. The age of the
universe predicted by this model is found to be less than that
predicted from the oldest galactic globular clusters. The total
bulk viscosity seems to be negative in the past and becomes
positive when z ≤ 0.8. So the model violates the local sec-
ond law of thermodynamics. However, the model satisfies
the generalized second law of thermodynamics at the appar-
ent horizon throughout the evolution of the universe. We also
made a statefinder analysis of the model and found that it is
distinguishably different from the standard ΛCDM model at
present, but it shows a de Sitter type behavior in the far future
of the evolution.

1 Introduction

Observational data on type Ia Supernovae have shown that the
current universe is accelerating and the acceleration began in
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the recent past of the universe [1,2]. This was further sup-
ported by the observations on cosmic microwave background
radiations (CMBR) [3] and large scale structure [4]. Despite
the mounting observational evidence on this recent acceler-
ation, its nature and fundamental origin is still an open ques-
tion. Many models has been proposed to explain this current
acceleration. Basically there are two approaches. The first
one is to modify the right hand side of the Einstein equation
by considering specific forms for the energy-momentum ten-
sor Tμν having a negative pressure, which culminates in the
proposal of an exotic energy called dark energy. The sim-
plest candidate for dark energy is the so-called cosmological
constant Λ, which is characterized by the equation of state,
ωΛ = −1, and a constant energy density [5]. However, it is
faced with many drawbacks. Of these, the two main prob-
lems are the coincidence problem and the fine tuning prob-
lem [6]. The coincidence problem refers to the coincidence
of densities of dark matter and dark energy, even though their
evolutions are different, and the fine tuning problem refers
to the discrepancy between the theoretical and the observa-
tional value of the vacuum constant or cosmological con-
stant, which is assumed to drive the accelerated expansion.
These discrepancies motivated the consideration of various
dynamical dark energy models like quintessence [7,8], k-
essence [9], and perfect fluid models (like the Chaplygin gas
model) [10]. The second approach for explaining the current
acceleration of the universe is to modify the left hand side of
the Einstein equation, i.e., the geometry of the space time.
The models that belong to this class (modified gravity) are
the so-called f (R) gravity [11], f (T ) gravity [12], Gauss–
Bonnet theory [13], Lovelock gravity [14], Horava–Lifshitz
gravity [15], scalar–tensor theories [16], braneworld models
[17], etc.

It was noted by several authors that the bulk viscous fluid
can produce an acceleration in the expansion of the universe.
This was first studied in the context of inflationary phase in
the early universe [18,19]. In the context of late acceleration
of the universe, the effect of bulk viscous fluid was stud-
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ied in Refs. [20–24]. But a shortcoming in considering the
bulk viscous fluid is the problem of finding a viable mech-
anism for the origin of bulk viscosity in the expanding uni-
verse. From the theoretical point of view, bulk viscosity can
arise due to deviations from the local thermodynamic equilib-
rium [25]. In cosmology, bulk viscosity arises as an effective
pressure to restore the system back to its thermal equilib-
rium, which was broken when the cosmological fluid expands
(or contract) too fast. This bulk viscosity pressure generated
ceases as soon as the fluid reaches the thermal equilibrium
[26–28].

In this paper, we analyze the matter dominated cosmolog-
ical model with bulk viscosity with reference to the question
whether it can cause the recent acceleration of the universe.
We took the bulk viscosity coefficient as proportional to both
the velocity and the acceleration of the expansion of the uni-
verse. The matter is basically a pressureless fluid comprising
both baryonic and dark matter components. If the bulk vis-
cous matter produces the recent acceleration of the universe,
then it would unify the description of both dark matter and
dark energy. The advantage is that it automatically solves
the coincidence problem because there is no separate dark
energy component. A similar model was studied by Avelino
et al. [29], but in constraining the parameters (ζ0, ζ1, ζ2) using
the observational data the authors fixed either ζ1 or ζ2 as 0. So
it is effectively a two parameter model. In this reference the
authors have ruled out the possibility of bulk viscous matter
to be a candidate for dark energy. We think that one should
study the model by evaluating all the parameters simultane-
ously, which may lead to a more mature conclusion regarding
the status of bulk viscous dark matter as dark energy. In the
present work we aim to such an analysis in studying the evo-
lution of all the cosmological parameters by simultaneously
evaluating all the constant parameters on which the total bulk
viscous coefficient depends.

The paper is organized as follows. In Sect. 2 we present
the basic formalism of the bulk viscous matter dominated
flat universe. We derive the Hubble parameter in this sec-
tion. In Sect. 3, we identify two different limiting conditions
for the bulk viscous coefficients corresponding to which the
universe begins with a Big Bang, followed by an early decel-
erated epoch and then entering a phase of recent acceleration.
We also present the evolution of the scale factor and age of
the universe in this section. In Sect. 4 we study the evolution
of the cosmological parameters like deceleration parameter,
the equation of state parameter, matter density and curvature
scalar. Section 5 consists of the study of the status of local
second law and generalized second law of thermodynamics
in the model. In Sect. 6 we presents the statefinder analysis of
the model to contrast it with other standard models of dark
energy. The estimation of parameters using type Ia Super-
nova data is given in Sect. 7, followed by the conclusions in
Sect. 8.

2 FLRW universe dominated with bulk viscous matter

We consider a spatially flat universe described by the
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric,

ds2 = −dt2 + a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2) (1)

where (r, θ, φ) are the co-moving coordinates, t is the cosmic
time, and a(t) is the scale factor of the universe dominated
with bulk viscous matter, which can produce an effective
pressure [30,31]

P∗ = P − 3ζH (2)

where P is the normal pressure, which is 0 for non-relativistic
matter, and ζ is the coefficient of bulk viscosity, which can
be a function of Hubble parameter and its derivatives in an
expanding universe. We have not considered the radiation
component, as it is a reasonable simplification as long as we
are concerned with late time acceleration. The form of Eq. (2)
was originally proposed by Eckart [32]. A similar theory
was also proposed by Landau and Lifshitz [33]. However,
Eckart theory suffers from pathologies. One of them is that
in this theory, dissipative perturbations propagate at infinite
speeds [34]. Another one is that the equilibrium states in the
theory are unstable [35]. In 1979, Israel and Stewart [36,37]
developed a more general theory which was causal and stable
and one can obtain the Eckart theory from it in the first order
limit, when the relaxation time goes to 0. So, in the limit
of vanishing relaxation time, the Eckart theory is a good
approximation to the Israel–Stewart theory.

Even though Eckart theory has drawbacks, it is less com-
plicated than the Israel–Stewart theory. So it has been used
widely by many authors to characterize the bulk viscous fluid.
For example in Refs. [20,38–40], the Eckart approach has
been used in dealing with the accelerating universe with the
bulk viscous fluid. In this context, it is reasonable to point out
that Hiscock and Salmonson [41] have found that patholog-
ical Eckart theory and also truncated Israel–Stewart theory
(avoiding the non-linear terms) can produce early inflation.
However, as pointed out by the same authors, in the trun-
cated version of Israel–Stewart theory, the relaxation time is
to be a constant, which is in fact not logically correct in an
expanding universe. However, there exist some later studies
[42,43] which deal with the importance of the equation of
state in such theories in order to explain the acceleration.
But it should be checked whether these theories will produce
the late acceleration of the universe as observed today. One
should also note at this juncture that a more general formula-
tion than the Israel–Stewart model was proposed by Pavon et
al. [44] for irreversible processes, especially in dealing with
the thermodynamic equilibrium of a dissipative fluid.
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The Friedmann equations describing the evolution of a flat
universe dominated with bulk viscous matter are

H2 = ρm

3
(3)

2
ä

a
+

(
ȧ

a

)2

= −P∗ (4)

where we have taken 8πG = 1, ρm is the matter density, and
an overdot represents the derivative with respect to cosmic
time t . The conservation equation is

ρ̇m + 3H(ρm + P∗) = 0. (5)

In this paper we consider a parameterized bulk viscosity
of the form [45]

ζ = ζ0 + ζ1
ȧ

a
+ ζ2

ä

ȧ
. (6)

In an expanding universe, the bulk viscosity coefficient may
depend on both the velocity and the acceleration. The most
logical form can be a linear combination of three terms: the
first term is a constant ζ0, the second term is proportional to
the Hubble parameter, which characterizes the dependence
of the bulk viscosity on velocity, and the third is proportional
to ä

ȧ , characterizing the effect of acceleration on the bulk vis-
cosity. Moreover, such a form for the bulk viscous coefficient
implies the most general form of the equation of state [45].
In terms of the Hubble parameter H = ȧ

a , this can be written
as

ζ = ζ0 + ζ1H + ζ2

(
Ḣ

H
+ H

)
. (7)

From the Friedmann equations, and from Eqs. (2), (5), and
(7), we can obtain a first order differential equation for the
Hubble parameter by replacing d

dt with d
d ln a through d

dt =
H d

d ln a as

dH

d ln a
−

(
ζ̃1 + ζ̃2 − 3

2 − ζ̃2

)
H −

(
ζ̃0

2 − ζ̃2

)
H0 = 0 (8)

where

ζ̃0 = 3ζ0

H0
, ζ̃1 = 3ζ1, ζ̃2 = 3ζ2 (9)

are the dimensionless bulk viscous parameters and H0 is the
present value of the Hubble parameter. The above equation
can be integrated to obtain the Hubble parameter as

H(a) = H0

[
a

ζ̃1+ζ̃2−3
2−ζ̃2

(
1 + ζ̃0

ζ̃1 + ζ̃2 − 3

)
− ζ̃0

ζ̃1 + ζ̃2 − 3

]
.

(10)

This equation shows that when ζ̃0, ζ̃1, and ζ̃2 are all 0, the

Hubble parameter obeys H = H0a− 3
2 , which corresponds to

the ordinary matter dominated universe. When ζ̃1 = ζ̃2 = 0,
the Hubble parameter reduces to [23]

H(a) = H0

[
a− 3

2

(
1 − ζ̃0

3

)
+ ζ̃0

3

]
. (11)

3 Behavior of scale factor and age of the universe

In this section we analyze the behavior of scale factor in a
bulk viscous matter dominated universe. Using the definition
of the Hubble parameter, Eq. (10) becomes

1

a

da

dt
= H0

[
a

ζ̃12−3
2−ζ̃2

(
1 + ζ̃0

ζ̃12 − 3

)
− ζ̃0

ζ̃12 − 3

]
(12)

where ζ̃12 = ζ̃1 + ζ̃2. Integrating the above equation to solve
for the scale factor we get

a(t) =
[(

ζ̃0+ζ̃12 − 3

ζ̃0

)
+

(
3−ζ̃12

ζ̃0

)
e

ζ̃0
2−ζ̃2

H0(t−t0)
] 2−ζ̃2

3−ζ̃12

(13)

where t0 is the present cosmic time. Assuming, y = H0(t −
t0) and taking the second derivative of the scale factor a
(Eq. (13)) with respect to y, we obtain

d2a

dy2 = e
ζ̃0 y

2−ζ̃2

2 − ζ̃2

[
ζ̃0 + ζ̃12 − 3 + (2 − ζ̃2)e

ζ̃0 y
2−ζ̃2

]

×
⎡
⎢⎣ ζ̃0 + ζ̃12 − 3 + (3 − ζ̃12)e

ζ̃0 y
2−ζ̃2

ζ̃0

⎤
⎥⎦

2(ζ̃1−2)+ζ̃2
3−ζ̃12

. (14)

From the behavior of the scale factor and the Hubble param-
eter, it is possible to identify two limiting conditions on
(ζ̃0, ζ̃1, ζ̃2) which correspond to a universe that would start
with a Big Bang followed by an early decelerated epoch,
then making a transition into the accelerated epoch in the
later times. These two conditions are

ζ̃0 > 0, ζ̃12 < 3, ζ̃2 < 2, (15)

ζ̃0 < 0, ζ̃12 > 3, ζ̃2 > 2. (16)

The first condition is to be simultaneously satisfied with
ζ̃0 + ζ̃12 < 3 and the second condition with ζ̃0 + ζ̃12 > 3.
Instead of these, if the first condition (15) is satisfied simul-
taneously with ζ̃0 + ζ̃12 > 3 or the second condition (16)
with ζ̃0 + ζ̃12 < 3, then the universe will undergo an eter-
nally accelerated expansion; see the curve for ζ̃0 + ζ̃12 = 3
in Figs. 3 and 4. We have obtained the best estimates of
the bulk viscous parameters (ζ̃0, ζ̃1, ζ̃2) corresponding to the
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cases Eqs. (15) and (16) separately, using the SCP “Union”
SNe Ia data set, which we will discuss in Sect. 7.

For both cases of the bulk viscous parameters, as given by
Eqs. (15) and (16), the Hubble parameter given in Eq. (10)
becomes infinity as the scale factor a → 0, which implies
that the density becomes infinity at the origin, indicating the
presence of the Big Bang at the origin. The behavior of the
scale factor as given in Eq. (13) is shown in Figs. 1 and 2 for
the two conditions of parameters, respectively. As (t− t0) →
0, the scale factor in both cases reduces to

a(t) →
[

1 + 3 − ζ̃12

2 − ζ̃2
H0(t − t0)

] 2−ζ̃2
3−ζ̃12

, (17)
be

st 
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t

Fig. 1 Behavior of the scale factor for the first limiting conditions of
parameters, ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2. The solid line corre-
sponds to the best fit parameters (ζ̃0, ζ̃1, ζ̃2) = (7.83,−5.13,−0.51).
The dashed line corresponds to parameter values (5,−4, 1) and the dot-
ted line corresponds to values (4,−2,−3). The parameter values are
selected so that the transition to the accelerated epoch happens in the
past
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Fig. 2 Behavior of the scale factor for the second limiting conditions
of parameters, ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2. The solid line cor-
responds to the best fit parameters (ζ̃0, ζ̃1, ζ̃2) = (−4.68, 4.67, 3.49).
The dashed line corresponds to parameter values (−6, 4, 6) and the
dotted line corresponds to values (−5, 6, 3). The parameter values are
selected so that the transition to the accelerated epoch happens in the
past

which corresponds to an early decelerated expansion. In both
cases of the limiting conditions, as (t − t0) → ∞, the scale
factor tends to

a(t) → e
ζ̃0

2−ζ̃2
H0(t−t0)

. (18)

This corresponds to an acceleration similar to the de Sit-
ter phase, which implies that the bulk viscous dark matter
behaves similar to the cosmological constant as (t − t0) →
∞, at least at the background level. An important point to
be noted is that the evolution of the scale factor is the same
for the best estimates of the bulk viscous coefficient from the
two limiting conditions; see Figs. 1 and 2.

The scale factor and red shift corresponding to the
transition from decelerated to accelerated expansion can
be obtained as shown below. From the Hubble parameter
(Eq. (10)) the derivative of ȧ with respect to a can be obtained
as

dȧ

da
= H0

[(
ζ̃1 − 1

2 − ζ̃2

) (
ζ̃0 + ζ̃12 − 3

ζ̃12 − 3

)
a

ζ̃12−3
2−ζ̃2 − ζ̃0

ζ̃12 − 3

]
.

(19)

Equating this to 0, we obtain the transition scale factor aT ,

aT =
[

ζ̃0(2 − ζ̃2)

(ζ̃1 − 1)(ζ̃0 + ζ̃12 − 3)

] 2−ζ̃2
ζ̃12−3

, (20)

and the corresponding transition red shift zT is

zT =
[

ζ̃0(2 − ζ̃2)

(ζ̃1 − 1)(ζ̃0 + ζ̃12 − 3)

]− 2−ζ̃2
ζ̃12−3

− 1. (21)

From Eqs. (20) and (21), it is clear that if ζ̃0 + ζ̃1 = 1,
the transition from decelerated phase to accelerated phase
occurs at aT = 1 and zT = 0, which corresponds to the
present time of the universe. For the first case of limiting
conditions of parameters with ζ̃0 > 0, the transition would
takes place in the past if ζ̃0 + ζ̃1 > 1 and in the future if
ζ̃0 + ζ̃1 < 1. For the second case of limiting conditions
of the parameters, which corresponds to ζ̃0 < 0, the above
conditions are reversed such that transition would takes place
in the future if ζ̃0 + ζ̃1 > 1 and in the past if ζ̃0 + ζ̃1 < 1.
These are shown in Figs. 3 and 4, respectively, where we
have plotted d2a

dy2 (Eq. 14) with y.
The age of the universe can be deduced from the scale

factor Eq. (13) by equating it to 0. The time elapsed since the
Big Bang is

tB = t0 +
(

2 − ζ̃2

H0ζ̃0

)
ln

(
1 − ζ̃0

3 − ζ̃12

)
. (22)
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Fig. 3 Evolution of the second derivative of the scale factor with
respect to y = H0(t − t0) for the first limiting conditions of parameters,
ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2. The curve corresponding to
ζ̃0 + ζ̃12 ≥ 3 represents a universe which is eternally accelerating. If
ζ̃0 + ζ̃1 > 1, the transition to the accelerating epoch happens in the past.
If ζ̃0 + ζ̃1 < 1 the transition will be in the future. If ζ̃0 + ζ̃1 = 1, the
transition occurs at present
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Fig. 4 Evolution of the second derivative of the scale factor with
respect to y = H0(t − t0) for the second limiting conditions of parame-
ters, ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2. The curve corresponding
to ζ̃0 + ζ̃12 ≤ 3 represents a universe which is eternally accelerating.
If ζ̃0 + ζ̃1 < 1, the transition to the accelerating epoch happens in the
past. If ζ̃0 + ζ̃1 > 1 the transition will be in the future. If ζ̃0 + ζ̃1 = 1,
the transition occurs at present

Hence, the age of the universe since Big Bang is

Age ≡ t0 − tB = −
(

2 − ζ̃2

H0ζ̃0

)
ln

(
1 − ζ̃0

3 − ζ̃12

)
. (23)

A plot of the age of the universe with H0 for the best
estimates of the bulk viscous parameters is shown in Fig. 5
(the evolution is the same for the best estimates from the two
limiting conditions). The age of the universe corresponding
to the best estimates of the present Hubble parameter is found
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Fig. 5 Plot of the age of the universe in Gyr with H0 in units of km
s−1 Mpc−1 for the best fit values of the bulk viscous parameters. The
plots are identical for the best estimated values of the parameters from
both limiting conditions. The point located in the figure corresponds
to an age 10.5 Gyr for the best estimate value of H0, obtained as
70.49 km s−1 Mpc−1. The shaded region corresponds to the interval
H0(55, 75) km s−1 Mpc−1 and age (10, 15.8) Gyr, which are the per-
mitted intervals for H0 and age, derived using observations on Galactic
globular clusters from the Hipparcos parallaxes [46]

to be 10.90 Gyr and is marked in the plot. This value is less
compared to the age deduced from CMB anisotropy data [47]
and also that from the oldest globular clusters [46], which
is around 12.9 ± 2.9 Gyr. For comparison, we have also
extracted the value of the Hubble parameter for the ΛCDM
model using the same data set (see Table 1 in Sect. 7) from
which the age of the universe is found to be around 13.85 Gyr.
So compared to the age of the universe from globular clusters
and the standard ΛCDM model, the present model, where
the bulk viscous matter replaces the dark energy, predicts
relatively a low age.

4 Cosmological parameters

4.1 Deceleration parameter

The results regarding the transition of the universe into the
accelerated epoch discussed in the above section can be fur-
ther verified by studying the evolution of the deceleration
parameter q, which is defined as

q(a) = − äa

ȧ2 = − ä

a

1

H2 . (24)

For the bulk viscous matter dominated universe, one can
obtain using Friedmann equations,

ä

a
= −1

6

[
ρm − 9H

(
ζ0 + ζ1H + ζ2

(
Ḣ

H
+ H

))]
. (25)

Using the dimensionless bulk viscous parameters as defined
in Eq. (9) and using Eqs. (3) and (25), the deceleration param-
eter becomes

123



348 Page 6 of 14 Eur. Phys. J. C (2015) 75 :348

q = 1

2

[
1 −

(
H0

H
ζ̃0 + ζ̃1 + ζ̃2

H

(
Ḣ

H
+ H

))]
. (26)

Substituting Eqs. (8) and (10), we can obtain the deceleration
parameter in terms of a, ζ̃0, ζ̃1, and ζ̃2 as

q(a) = 1

2 − ζ̃2

⎡
⎢⎢⎣1 − ζ̃1 − ζ̃0

a
ζ̃12−3
2−ζ̃2

[
1 + ζ̃0

ζ̃12−3

]
− ζ̃0

ζ̃12−3

⎤
⎥⎥⎦ .

(27)

In terms of the red shift, the above equation becomes

q(z) = 1

2−ζ̃2

⎡
⎢⎢⎣1−ζ̃1 − ζ̃0

(1 + z)
− ζ̃12−3

2−ζ̃2 [1 + ζ̃0

ζ̃12−3
] − ζ̃0

ζ̃12−3

⎤
⎥⎥⎦ .

(28)

The variation of q with z for the two sets of limiting con-
ditions of the viscous parameters are shown in Figs. 6 and 7.
The evolution corresponding to the best estimates from both
limiting conditions are identical, as is clear from the figures.
When all the bulk viscous parameters are 0, the deceleration
parameter q = 1/2, which corresponds to a decelerating
matter dominated universe with null bulk viscosity.

The present value of the deceleration parameter corre-
sponds to z = 0 or a = 1 is

q0 = q(a = 1) = 1 − (ζ̃0 + ζ̃1)

2 − ζ̃2
. (29)

best estimate

1 0 1 2 3 4
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0.0
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z t

q
t

Fig. 6 Evolution of the deceleration parameter with red shift for the
first limiting conditions of viscous parameters, ζ̃0 > 0, ζ̃0 + ζ̃12 <

3, ζ̃12 < 3, ζ̃2 < 2. q enters the negative region in the recent past if
ζ̃0 + ζ̃1 > 1, at present if ζ̃0 + ζ̃1 = 1 and in the future if ζ̃0 + ζ̃1 <

1. Evolution of q for the best estimated values of the bulk viscous
parameters is also shown. The red shift at which the q enters the negative
region for the best estimated values of the bulk viscous parameters
corresponds to zT = 0.49+0.075

−0.057

0 1 1

0 1 1
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0 1 1
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1
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z t

q
t

Fig. 7 Evolution of the deceleration parameter with red shift for the
second limiting conditions of viscous parameters, ζ̃0 < 0, ζ̃0 + ζ̃12 >

3, ζ̃12 > 3, ζ̃2 > 2. q enters the negative region in the recent past if
ζ̃0 + ζ̃1 < 1, at present if ζ̃0 + ζ̃1 = 1 and in the future if ζ̃0 + ζ̃1 > 1.

The evolution of q for the best estimated values of the bulk viscous
parameters is also shown. The red shift at which the q enters the negative
region for the best estimated values of the bulk viscous parameters
corresponds to zT = 0.49+0.064

−0.066

This equation shows that for ζ̃0 + ζ̃1 = 1, the deceleration
parameter q = 0. This implies that the transition into the
accelerating phase would occur at the present time and is
true for both cases of the parameters.

For the first case of limiting conditions of the parame-
ters (15) with ζ̃0 > 0 and ζ̃2 < 2, the current decelera-
tion parameter q0 < 0 if ζ̃0 + ζ̃1 > 1, implying that the
present universe is in the accelerating epoch and it entered
this epoch at an early stage. But q0 > 0 if ζ̃0 + ζ̃1 < 1,

implying that the present universe is decelerating and it will
be entering the accelerating phase at a future time; see Fig. 6,
which shows the behavior of q with z. For the best estimate
of the bulk viscous parameters, the behavior of q (Fig. 6)
shows that the universe transit from decelerated to acceler-
ated epoch at a recent past. The best estimate of the bulk
viscous parameters corresponding to the first limiting case,
Eq. 15 were extracted using the Supernova data and are
(ζ̃0 = 7.83, ζ̃1 = −5.13, ζ̃2 = −0.51) (see Table 1), which
indicate that ζ̃0 + ζ̃1 > 1. So the model predicts a universe
which is accelerating at present and has entered this phase of
accelerating expansion at a recent past.

For the second case of limiting conditions of the vis-
cous parameters (16) with ζ̃0 < 0 and ζ̃2 > 2, the cur-
rent deceleration parameter q0 > 0 if ζ̃0 + ζ̃1 > 1, implies
that the present universe is in the decelerating epoch and it
will be entering the accelerating phase at a future time; see
Fig. 7, which shows the behavior of q with z. But q0 < 0
if ζ̃0 + ζ̃1 < 1, implying that the present universe is accel-
erating and it entered this phase at an early time. From the
behavior of q (Fig. 7) for the best estimate of the bulk viscous
parameters corresponding to the second limiting condition,
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Eq. 16, it is clear that the transition of the universe from the
decelerated to accelerated epoch was in the recent past. The
best estimate of the bulk viscous parameters in this case are
(ζ̃0 = −4.68, ζ̃1 = 4.67, ζ̃2 = 3.49) (see Table 1), which
indicate that ζ̃0 + ζ̃1 < 1. So, for this case also, the model
predicts a universe which is accelerating at present and has
entered this phase of accelerating expansion at a recent past.

These results confirm the earlier conclusion with respect
to the behavior of d2a/dy2. For the best estimated values of
the bulk viscous parameters, the present value of the decel-
eration parameter is found to be about −0.68 ± 0.06 and
−0.68+0.066

−0.05 corresponding to the first and second limiting
conditions, respectively (see Eq. (29)). This is comparable
with the observational results on the present value of q, which
is around −0.64 ± 0.03 [47,48]. The transition red shift, at
which q enters the negative value region, corresponding to
an accelerating epoch, is found to be zT = 0.49+0.075

−0.057 for the
first case of limiting conditions of the bulk viscous param-
eters and zT = 0.49+0.064

−0.066 for the second case of limiting
conditions of the bulk viscous parameters (see Eq. (21) and
Figs. 6 and 7). An analysis of the ΛCDM model with com-
bined SNe+CMB data gives the transition red shift range as
zT = 0.45–0.73 [49]. So the transition red shift predicted by
the present model is in agreement only with the lower limit of
the corresponding ΛCDM range, and this hence can hardly
be considered as good agreement.

4.2 Equation of state

An accelerated expansion of the universe is possible only if
the effective equation of state parameter ω < −1/3, or equiv-
alently, 3ω + 1 < 0. The equation of state can be obtained
using [50],

ω = −1 − 1

3

d ln h2

dx
(30)

where x = ln a and h = H
H0

. Using Eq. (10) we get the
equation of state as

ω = −1 − 2

3(2 − ζ̃2)

[
ζ̃1 + ζ̃2 − 3 + ζ̃0

h

]
. (31)

The present value of the equation of state parameter, ω0, can
be obtained by taking h = 1. The condition for acceleration
of the present universe can then be represented as

3ω0 + 1 = −2

(
ζ̃0 + ζ̃1 − 1

2 − ζ̃2

)
< 0. (32)

For the first case of parameters with ζ̃0 > 0, ζ̃2 < 2, this
condition is satisfied if ζ̃0 + ζ̃1 > 1 and for the second case
with ζ̃0 < 0, ζ̃2 > 2, this will be satisfied if ζ̃0 + ζ̃1 < 1.
These conditions are compatible with that arrived at in the
analysis of deceleration parameter in Sect. 4.1.
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Fig. 8 Evolution of the equation of state parameter with red shift for
the best estimates of the bulk viscous parameters. It is found that the
evolution of ω are identical for the best estimates from both limiting
conditions

The evolution of the equation of state parameter with red
shift for both sets of the best fit values of the bulk viscous
parameters are found to be identical, as shown in Fig. 8. It is
clear from the figure that as z → −1 (a → ∞), ω → −1
in the future, which corresponds to the de Sitter universe and
also coincides with that of the future behavior of the ΛCDM
model [51], and it also resembles the behavior of some scalar
field models [6]. Since it is not crossing the phantom divide
ω ≤ −1, the model is free from the Big Rip singularity or Lit-
tle Rip [52]. The present value of the equation of state param-
eter is around ω0 ∼ −0.78+0.03

−0.045 and ω0 ∼ −0.78+0.037
−0.043 for

the best estimate of viscosity parameters corresponding to
the first and second limiting conditions, respectively. This
value is higher than that predicted by the joint analysis of
WMAP+BAO+H0+SN data, which is around −0.93 [53,54].

4.3 Evolution of matter density

From the Friedmann equation (3) and the Hubble parameter
(10) we obtain the mass density parameter Ωm as

Ωm(a) =
[
a

ζ̃12−3
2−ζ̃2

[
1 + ζ̃0

ζ̃12 − 3

]
− ζ̃0

ζ̃12 − 3

]2

(33)

where Ωm = ρm
ρcri t

and ρcri t = 3H2
0 is the critical density.

If ζ̃0 = ζ̃1 = ζ̃2 = 0, the mass density parameter reduces
to Ωm ∼ a−3, which corresponds to the matter dominated
universe with null bulk viscosity. The evolution of the mass
density parameter for the best estimated values correspond-
ing to the two limiting conditions are shown in Fig. 9, and it is
clear that their evolutions are in coincidence with each other.
As a → 0, the matter density diverges. Figure 9 indicates
the same, which is a clear indication of the existence of the
Big Bang at the origin of the universe.
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Fig. 9 Evolution of the mass density parameter with scale factor for
the best estimated values of the bulk viscous parameters. It is found that
the variation of the mass density coincides for the best estimated values
from the two limiting conditions
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Fig. 10 Evolution of the curvature scalar with scale factor for the best
estimate parameters. It is found that the evolution of the curvature scalar
are identical for the best estimated values from the two limiting condi-
tions

4.4 The curvature scalar

The curvature scalar is the parameter used to confirm the
presence of singularities in the model. For a flat universe, the
curvature scalar is defined as

R = 6

[
ä

a
+ H2

]
. (34)

Using Eqs. (8)–(10) and (25), we obtain the curvature scalar
as

R(a) = 6H2
0

(2 − ζ̃2)(ζ̃12 − 3)2

[
2ζ̃ 2

0 (2 − ζ̃2) + (ζ̃0 + ζ̃12 − 3)

× a
ζ̃12−3
2−ζ̃2

[
(ζ̃1 − ζ̃2 + 1)(ζ̃0 + ζ̃12 − 3)a

ζ̃12−3
2−ζ̃2

− ζ̃0(ζ̃1 − 3ζ̃2 + 5)

]]
. (35)

From the above equation it is clear that asa → 0, R → ∞.

The evolution of the curvature scalar for both the cases of best
fit of the parameters coincides with each other as shown in
Fig. 10. The behavior of R shows that the curvature scalar
diverges as a → 0. This indicates the existence of Big Bang
at the origin of the universe.

5 Entropy and second law of thermodynamics

In the FLRW space–time, the law of generation of the local
entropy is given as [30]

T∇νs
ν = ζ(∇νu

ν)2 = 9H2ζ (36)

where T is the temperature and ∇νsν is the rate of generation
of entropy in unit volume. The second law of thermodynam-
ics will be satisfied if,

T∇νs
ν ≥ 0 (37)

which implies from Eq. (36) that

ζ ≥ 0. (38)

Using Eqs. (8) and (10), the total dimensionless bulk viscous
parameter (Eq. (6)) can be obtained as

ζ̃ (a) = 1

2 − ζ̃2

[
2ζ̃0 +

(
2ζ̃1 − ζ̃2

) H

H0

]
, (39)

where ζ̃ = 3ζ
H0

, the total dimensionless bulk viscous param-

eter. We have studied the evolution of ζ̃ using the best esti-
mated values for both cases of parameters and found that
the evolution of the total bulk viscous parameter are coin-
ciding for both cases as shown in Fig. 11. The figure also
shows that the total bulk viscous coefficient is evolving con-
tinuously from the negative value region to a positive region.
When z ≤ 0.8, the total bulk viscous parameter becomes
positive. This means that the rate of entropy production is

1.0 0.5 0.0 0.5 1.0 1.5 2.0
8

6

4

2

0

2

4

z

ζ

Fig. 11 Evolution of the total dimensionless bulk viscous parameter
with respect to the red shift for the best estimated values corresponding
to the two limiting conditions. ζ̃ is positive for z ≤ 0.8
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negative in the early epoch and positive in the later epoch.
Hence the local second law is violated in the early epoch
and is obeyed in the later epoch. This seems to be a draw-
back of the present model. However, it can be considered as
a theoretical possibility [55]. In an absolute way the status
of the second law of thermodynamics should be considered
along with the accounting of the entropy generation from
the horizon. In those circumstances, the second law becomes
the generalized second law of thermodynamics, which states
that the total entropy of the fluid components of the universe
plus that of the horizon should never decrease [56,57]. In the
present model this means the rate of entropy change of the
bulk viscous matter and that of the horizon must be greater
than 0. We have

d

dt
(Sm + Sh) ≥ 0 (40)

where Sm is the entropy of the matter and Sh is that of the hori-
zon. For a flat FLRW universe, the apparent horizon radius
is given as [58]

rA = 1

H
. (41)

The entropy associated to the apparent horizon is [59],

Sh = 2π A = 8π2r2
A (42)

where A = 4πr2
A is the area of the apparent horizon and we

have assumed 8πG = 1. Using the first Friedmann equation
and Eqs. (2), (5), (7), and (41), we obtain

ṙA = 1

2
r3
AH

[
−H

(
ζ̃0H0 + ζ̃1H + ζ̃2

(
Ḣ

H
+ H

))
+ ρm

]

(43)

The temperature of the apparent horizon can be defined as
[60]

Th = 1

2πrA

(
1 − ṙA

2HrA

)
. (44)

Using Eqs. (42)–(44), we arrive at

Th Ṡh = 4πr3
AH

[
ρm − H(ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+ H))

]

×
[

1 − ṙA
2HrA

]
. (45)

The change in entropy of the viscous matter inside the
apparent horizon can be obtained using the Gibbs equation,

TmdSm = d(ρmV ) + P∗dV, (46)

where Tm is the temperature of the bulk viscous matter and
V = 4

3πr3
A is the volume enclosed by the apparent horizon.

Using Eqs. (2) and (7), the Gibbs equation becomes

TmdSm = V dρm

+
(

ρm − H

(
ζ̃0H0 + ζ̃1H + ζ̃2

(
Ḣ

H
+ H

)))
dV . (47)

Under equilibrium conditions, the temperature Tm of the vis-
cous matter and that of the horizon Th are equal, Tm = Th .
Then the Gibbs equation (47) becomes

Th Ṡm = 4πr3
AH

[
H

(
ζ̃0H0 + ζ̃1H + ζ̃2

(
Ḣ

H
+ H

)
− ρm

)]

+ 4πr2
AṙA

[
ρm − H

(
ζ̃0H0 + ζ̃1H + ζ̃2

(
Ḣ

H
+ H

))]
.

(48)

Adding Eqs. (45) and (48), we get

Th(Ṡh + Ṡm)

= A

4
Hr3

A

[
ρm − H

(
ζ̃0H0 + ζ̃1H + ζ̃2(

Ḣ

H
+ H)

)]2

.

(49)

A, the area of the apparent horizon, H , the Hubble parameter,
and the radius, rA, are always positive, therefore, Ṡh + Ṡm ≥
0 for a given temperature. This means that the generalized
second law (GSL) is always valid. Hence the decrease in the
entropy of the viscous matter is compensated by the increase
in the entropy of the horizon. Even though the violation of
the local second law of thermodynamics can be considered
as a drawback of this model, the validity of the generalized
second law for the entire causal region of the universe may
safeguard the model.

6 Statefinder analysis

In this section, we present our analysis on comparing the
present model with other standard models of dark energy.
We have used the statefinder parameter diagnostic introduced
by Sahni et al. [61]. The statefinder is a geometrical diag-
nostic tool which allows us to characterize the properties of
dark energy in a model-independent manner. The statefinder
parameters {r, s} are defined as

r =
...
a

aH3 , s = r − 1

3
(
q − 1

2

) . (50)

In terms of h = H
H0

, r and s can be written as

r = 1

2h2

d2h2

dx2 + 3

2h2

dh2

dx
+ 1 (51)
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s = −
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx + 9
2

. (52)

Using the expression for h from Eq. (10), these parameters
become

r = (ζ̃0 + ζ̃12 − 3)(ζ̃12 − 3)

h2(2 − ζ̃2)2
a

ζ̃12−3
2−ζ̃2

[
2h + ζ̃0

ζ̃12 − 3

]

+ 3(ζ̃0 + ζ̃12 − 3)

h(2 − ζ̃2)
a

ζ̃12−3
2−ζ̃2 + 1, (53)

s =
(ζ̃0+ζ̃12−3)(ζ̃12−3)

h2(2−ζ̃2)2 a
ζ̃12−3
2−ζ̃2

[
2h + ζ̃0

ζ̃12−3

]
+ 3(ζ̃0+ζ̃12−3)

h(2−ζ̃2)
a

ζ̃12−3
2−ζ̃2

3(ζ̃0+ζ̃12−3)

h(2−ζ̃2)
a

ζ̃12−3
2−ζ̃2 + 9

2

.

(54)

The above equations show that in the limit a → ∞, the
statefinder parameters {r, s} → {1, 0}, a value correspond-
ing to the ΛCDM model of the universe. So the present model
resembles the ΛCDM model in the future. The {r, s} plane
trajectories of the model are shown in Fig. 12. The trajectories
are in coincidence with each other for the best estimates from
both sets of limiting conditions of the parameters. The trajec-
tories in the {r, s} plane are lying in the region r > 1, s < 0,
a feature similar to the generalized Chaplygin gas model of
dark energy [62]. The present model can also be discrimi-
nated from the holographic dark energy model with event
horizon as the IR cutoff, in which the r–s evolution starts

CDM

Past

Future

Present

0.12 0.10 0.08 0.06 0.04 0.02 0.00

1.0
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1.3

s

r

Fig. 12 The evolution of the model in the r–s plane for the best esti-
mates of the parameters. The curves are in coincidence with each other
for the best estimated values of the parameters from both the limiting
conditions

from a region r ∼ 1, s ∼ 2/3 and ends on the ΛCDM
point [63]. The present position of the universe, dominated
by the bulk viscous matter, is indicated in the plot and it cor-
responds to {r0, s0} = {1.25,−0.07}. This means that the
present model is distinguishably different from the ΛCDM
model.

7 Parameter estimation using type Ia Supernovae data

In this section we have obtained best fit of the parameters
ζ̃0, ζ̃1, ζ̃2, and H0 using the type Ia Supernova observa-
tions. The goodness-of-fit of the model is obtained by the
χ2-minimization. We did the statistical analysis using the
Supernova Cosmology Project (SCP) “Union” SNe Ia data
set [64], composed of 307 type Ia Supernovae from 13 inde-
pendent data sets.

In a flat universe, the luminosity distance dL is defined as

dL(z, ζ̃0, ζ̃1, ζ̃2, H0) = c(1 + z)
∫ z

0

dz′

H(z′, ζ̃0, ζ̃1, ζ̃2, H0)

(55)

where H(z, ζ̃0, ζ̃1, ζ̃2, H0) is the Hubble parameter and c is
the speed of light. The theoretical distance moduli μt for the
kth Supernova with red shift zk is given as

μt (zk, ζ̃0, ζ̃1, ζ̃2, H0) = m − M

= 5 log10

[
dL(zk, ζ̃0, ζ̃1, ζ̃2, H0)

Mpc

]
+ 25

(56)

where m and M are the apparent and absolute magnitudes of
the SNe, respectively. Then we can construct the χ2 function
as

χ2(ζ̃0, ζ̃1, ζ̃2, H0) ≡
n∑

k=1

[
μt (zk, ζ̃0, ζ̃1, ζ̃2, Ho) − μk

]2

σ 2
k

(57)

where μk is the observational distance moduli for the kth
Supernova, σ 2

k is the variance of the measurement and n is
the total number of data, here n = 307. The χ2 function
thus obtained is then minimized to obtain the best estimate
of the parameters, ζ̃0, ζ̃1, ζ̃2, and H0. From the behavior of
the scale factor and the other cosmological parameters, we
found that there exist two possible sets of conditions which
describe a universe having a Big Bang at the origin, then
entering an early stage of decelerated expansion, followed
by acceleration. These two sets of conditions are mentioned
in Sect. 3. We have used these two conditions separately in
minimizing the χ2 function. This leads to two sets of values
for the best estimates of the parameters ζ̃0, ζ̃1, ζ̃2 but H0 is the
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Table 1 Best estimates of the bulk viscous parameters and H0 and
also χ2 minimum value for the two cases of the bulk viscous matter

dominated universe. χ2
d.o.f. = χ2

min
n−m , where n = 307, the number of

data, and m = 3, the number of parameters in the model. For the best
estimation we have use SCP “Union” 307 SNe Ia data sets. We have
also shown the best estimates for the ΛCDM model for comparison,
where Ωm0 is the present mass density parameter. The subscript d.o.f.
stands for degrees of freedom

Model → bulk viscous
model with
ζ̃0 > 0, ζ̃0 +
ζ̃12 < 3, ζ̃12 <

3, ζ̃2 < 2

bulk viscous
model with
ζ̃0 < 0, ζ̃0 +
ζ̃12 > 3, ζ̃12 >

3, ζ̃2 > 2

ΛCDM

ζ̃0 7.83 −4.68 –

ζ̃1 −5.13+0.056
−0.060 4.67+0.04

−0.03 –

ζ̃2 −0.51+0.13
−0.14 3.49+0.089

−0.071 –

Ωm0 1 1 0.316

H0 70.49 70.49 70.03

χ2
min 310.54 310.54 311.93

χ2
d.o.f. 1.02 1.02 1.02

same in both cases. In addition to H0, the other cosmological
parameters, scale factor, deceleration parameter, equation of
state parameter, matter density, and curvature scalar all show
identical behaviors for both sets of best fits of the parameters.
The values of the parameters are given in Table 1. In order
to compare the results of the present model, we have also
estimated the values for ΛCDM model using the same data
set and the results are also shown in Table 1. We find that
the values of H0 and goodness-of-fit χ2

d.o.f. for the ΛCDM
model are very close to those obtained from the present bulk
viscous model. The values of the present Hubble parameter,
H0, for both cases of parameters are found to be 70.49 km s−1

Mpc−1, which is in close agreement with the corresponding
WMAP value (H0 = 70.5 ± 1.3 km s−1 Mpc−1) [48].

We have constructed the confidence interval plane for the
bulk viscous parameters (ζ̃1, ζ̃2) by keeping ζ̃0 as a constant
equal to its best estimated value obtained by minimizing the
χ2 function. From Fig. 13, corresponding to the first set of
limiting conditions, and Fig. 14, corresponding to the second
set of limiting conditions, it is seen that the fitting of the con-
fidence intervals corresponding to 99.73 and 99.99 % proba-
bilities are poor. But the confidence intervals corresponding
to 68.3 and 95.4 % probabilities show a fairly good behav-
ior. From the equation of the total bulk viscous coefficient
(Eq. (39)) it can easily be verified that the present value of
the total viscosity coefficient is positive in the region of the
confidence interval.

For the first case of parameters with ζ̃0 > 0, it is found
that ζ̃1 = −5.13+0.056

−0.06 and ζ̃2 = −0.51+0.13
−0.14, for ζ̃0 = 7.83

with 68.3 % probability. In the second case with ζ̃0 < 0, the
values of ζ̃1 and ζ̃2 are obtained as 4.67+0.04

−0.03 and 3.49+0.089
−0.071,

respectively, for ζ̃0 = −4.68 with 68.3 % probability.
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Fig. 13 Confidence intervals for the parameters (ζ̃1, ζ̃2), for the first set
of limiting conditions, for the bulk viscous matter dominated universe
using the SCP “Union” data set composed of 307 data points. The best
estimated values of the parameters are ζ̃1 = −5.13+0.056

−0.06 and ζ̃2 =
−0.51+0.13

−0.14 and are indicated by the point. The confidence intervals
shown correspond to 68.3, 95.4, 99.73, and 99.99 % of probabilities
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Fig. 14 Confidence intervals for the parameters (ζ̃1, ζ̃2), for the second
set of limiting conditions, for the bulk viscous matter dominated uni-
verse using the SCP “Union” data set composed of 307 data points. The
best estimated values of the parameters are 4.67+0.04

−0.03 and 3.49+0.089
−0.071 and

are indicated by the point. The confidence intervals shown correspond
to 68.3, 95.4, 99.73, and 99.99 % of probabilities
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8 Conclusions

In this paper, we have carried out a study of the bulk viscous
matter dominated universe with bulk viscosity of the form
ζ = ζ0 + ζ1

ȧ
a + ζ2

ä
ȧ . This model automatically solves the

coincidence problem because the bulk viscous matter simul-
taneously represents dark matter and dark energy and causes
recent acceleration. We have identified two possible limiting
conditions for the bulk viscous parameters where the universe
begins with a Big Bang, followed by decelerated expansion
in the early times and then making a transition to the accel-
erated expansion epoch in the recent past. These conditions
correspond to (ζ̃0 > 0, ζ̃0 + ζ̃12 < 3, ζ̃12 < 3, ζ̃2 < 2), and
(ζ̃0 < 0, ζ̃0 + ζ̃12 > 3, ζ̃12 > 3, ζ̃2 > 2).

In constraining the parameter we have used the SCP
“Union” type Ia Supernova data set. We have computed the
minimum values of the χ2 function by degrees of freedom
(χ2

d.o.f.) for both cases of limiting conditions of the bulk vis-
cous parameters and they are found to be very close to 1, indi-
cating a reasonable goodness of fit. We have evaluated the
best fit values of the three parameters (ζ̃0, ζ̃1, ζ̃2) simultane-
ously for both cases of limiting conditions of the parameters
and they are shown in Table 1.

For both cases of the best estimate of the bulk viscous
parameters, the evolution of the cosmological parameters:
the scale factor, deceleration parameter, the equation of state
parameter, the matter density, and the curvature scalar are
all found to be identical. So these two sets of best estimated
values for the parameters cannot be distinguished by using
the conventional cosmological parameters. By doing a phase
space analysis, it may be possible to distinguish between
these two limiting conditions so as to remove the apparent
degeneracy in the best estimated values of bulk viscous coef-
ficient. Such a work is in progress and will be reported else-
where.

From the evolution of scale factor, it is found that for
the first limiting conditions of bulk viscous parameters, the
transition into the accelerating epoch would be in the recent
past if ζ̃0 + ζ̃1 > 1. On the other hand if ζ̃0 + ζ̃1 < 1,
the transition takes place in the future and if, ζ̃0 + ζ̃1 = 1,
the transition takes place at the present time. For the second
limiting conditions of parameters the above conditions are
getting reversed such that when ζ̃0 + ζ̃1 > 1 the transition
will takes place in the future, when ζ̃0 + ζ̃1 < 1 the transition
would occur in the recent past, and when ζ̃0 + ζ̃1 = 1 the
transition takes place at the present time.

We have also estimated the present age of the universe and
found it to be around 10.90 Gyr for the best estimates of the
parameters. Compared to the age predicted from the oldest
galactic globular clusters (12.9 ± 2.9 Gyr), the present value
is relatively less, but just within the concordance limit.

The evolution of the deceleration parameter shows that
the transition from the decelerated to the accelerated epoch

occurs at the present time, corresponding to q = 0 if
ζ̃0 + ζ̃1 = 1, for both sets of limiting conditions of the param-
eters. The transition would be in the recent past, and it corre-
sponds to q < 0 at present, if ζ̃0 + ζ̃1 > 1 for the first set of
limiting conditions and ζ̃0 + ζ̃1 < 1 for the second set. The
transition into the accelerating epoch will be in the future, and
it corresponds to q > 0 at present if ζ̃0 + ζ̃1 < 1 for the first
set of limiting conditions of the parameters and ζ̃0 + ζ̃1 > 1
for the second set. However, for the best estimates of viscous
parameters from both limiting conditions, the behaviors of
the deceleration parameters are identical. It is found that,
for the best estimates, the universe entered the accelerating
phase in the recent past at a red shift zT = 0.49+0.075

−0.057 for

the first limiting conditions and zT = 0.49+0.064
−0.066 for the

second limiting conditions. This is found to be in agreement
only with the lower limit of the corresponding ΛCDM range,
zT = 0.45–0.73 [49]. The present value of the deceleration
parameter is found to be about −0.68+0.06

−0.06 and −0.68+0.066
−0.05

for the two cases, respectively, and it is comparable with the
observational results, around −0.64 ± 0.03.

We have analyzed the equation of state parameter for the
best estimates of the bulk viscous parameters only. The equa-
tion of state parameter ω → −1 as z → −1, which means
that the bulk viscous matter dominated universe behaves like
the de Sitter universe in the future. It is also clear that the
equation of state parameter of this model does not cross the
phantom divide and, thereby, is free from the Big Rip singu-
larity. The present value of the equation of state parameter
is around −0.78+0.03

−0.045 and −0.78+0.037
−0.043 for the best fit of

viscosity parameters corresponding to the two limiting con-
ditions, respectively. This value is higher than that predicted
by the joint analysis of WMAP+BAO+H0+SN data, which
is around −0.93 [53,54].

From the expression for matter density, it is clear that it
diverges as the scale factor tends to 0, which indicates the
existence of the Big Bang at the origin. This is further con-
firmed by obtaining the curvature scalar, which also becomes
infinity at the origin.

The evolution of the total bulk viscous parameter is stud-
ied for the best estimates of the bulk viscous parameter cor-
responding to Eqs. (15) and (16). In the initial epoch of
expansion, the total bulk viscosity is found to be negative
and hence violating the local second law of thermodynam-
ics. But it becomes positive from z ≤ 0.8, from there on
the local second law is satisfied. However, we found that the
generalized second law is satisfied throughout the evolution
of the universe.

Since the model predicts the late acceleration of the uni-
verse as like the standard forms of dark energy, we have
analyzed the model using statefinder parameters to distin-
guish it from other standard dark energy models especially
from ΛCDM model. The evolution of the present model in
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the {r, s} plane is shown in Fig. 12 and it shows that the
evolution of the {r, s} parameter behaves in such a way that
r > 1, s < 0, a feature similar to the Chaplygin gas model.
The present position of the bulk viscous model in the r–s
plane corresponds to {r0, s0} = {1.25,−0.07}. Hence the
model is distinguishably different from the ΛCDM model.

Even though the model predicts the late acceleration, it
failed particularly in predicting the age of the universe and
equation of state parameter. It also fails with regard to the
validity of the local second law of thermodynamics even
though the generalized second law is satisfied. A similar
model was studied in Ref. [29], where the authors have ruled
out the possibility of bulk viscous dark matter as a candidate
of dark energy. But their analysis is essentially a two param-
eter one, since they took either ζ̃1 or ζ̃2 as 0 with ζ̃0 > 0. In
the present work we have evaluated ζ̃0, ζ̃1, and ζ̃2 simultane-
ously and found that there is a possibility for ζ̃0 < 0, which
gives a similar evolution of the cosmological parameters as
with ζ̃0 > 0. A crucial test of this model is whether it predicts
the conventional radiation dominated phase in the early uni-
verse. To this aim, one has to study the phase space structure
of this model and that will be a subject of our future study.
Such a study may also remove the apparent degeneracy in
the best estimated values of the bulk viscous parameters.

In Ref. [21], the authors have considered a unified model
for the dark sectors with a single component universe con-
sisting of bulk viscous dark matter, with the viscosity coef-
ficient as a function of density alone. They have found that
in the background level the model predicts an early decel-
eration and a late acceleration. They also have analyzed the
evolution of the first order density perturbation. Regarding
the density perturbation growth, the authors have shown that
for ζ(ρ) = αρm , with m = −0.4 and α ∝ 0.236, the den-
sity perturbations behave drastically different from that of
cold dark matter in such a way that the presence of the
viscosity becomes significant and rapidly damped out the
density perturbations at small scales. This also causes the
decay of gravitational potential and hence modifies the large
scale CMB spectrum. The authors have pointed out that if
ζ becomes a function of H and Ḣ , like our case, the situa-
tion becomes more complex and would enhance the damping
of the perturbation growth. A similar study was also car-
ried out in Ref. [65]. Here, the authors have considered the
ansatz ζ ∝ ρν for the coefficient of bulk viscosity, and with
ν = 1

2 , the model mimics the ΛCDM background evolution.
They have shown that the viscous dark fluids contribute to
the ISW effect and thereby suppress the structure growth at
small scales.

An important effect with which the model is to be con-
trasted is the integrated Sachs–Wolfe effect (ISW). The ISW
effect is the change in the energy of a CMB photon as it passes
through the evolving gravitational potential wells [66]. For
large time, the behavior ofa tends to that of the ΛCDM model

for which φ ∼ 1 + z. So compared to the time of decoupling
(z ∼ 1090), the potential will be diluted at later times which
consequentially causes the ISW effect. In the appendix, we
have presented a brief argument regarding the ISW effect in
the present model.
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Appendix: ISW effect

Viscous dark matter will, in general, resist density perturba-
tions. Consequently it will dilute the gravitational potential
at the perturbed regions. This will subsequently affect the
CMB radiation and lead to the ISW effect.

The ISW effect is the change in the energy of a CMB pho-
ton as it passes through the evolving gravitational potential
wells. It is obtained as(

�T

T

)
ISW

= 2
∫ η0

ηr

Φ ′[(η0 − η)n̂, η]dη (58)

where n̂ is the photon trajectory and η0 is the conformal time
today and ηr is the conformal time at recombination, Φ is the
gravitational potential, and a prime represents the derivative
with respect to the conformal time.

So the first step toward the calculation of the ISW effect is
to obtain the evolution of gravitational potential in an expand-
ing universe. This can be obtained from Einstein’s equation
by taking care of the perturbations. Viscous dark matter may
cause a fast decay of the gravitational potential, which mod-
ifies the CMB spectrum.

In Fourier space, the gravitational potential takes the
form [67]

Φ = 3

2

Ωmo

a

(
H0

k

)2

δ(k, η) (59)

where the density perturbation, δ(k, η) = G(η)δ(k, 0). G(η)

is the growth factor, which is related to the Hubble parameter
as

G(η) ∝ H(η)

H0

∫ ∞

z(η)

dz′(1 + z′)
(

H0

H(z′)

)3

. (60)
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In a matter dominated universe, G ∝ a, so Φ remains a
constant, hence there is no ISW effect.

In our model, by considering the bulk viscous coefficient
ζ = ζ0 + ζ1

ȧ
a + ζ2

ä
ȧ , the Hubble parameter evolves as

Eq. (10). By using this relation, the integral in the growth fac-
tor becomes a hypergeometric function. For simplification,

let us consider the case when a is large, then H ∝ a
ζ̃1+ζ̃2−3

2−ζ̃2 .
Then the growth factor becomes

G ∝ (1 + z)
ζ̃1+ζ̃2−3

2−ζ̃2

⎛
⎜⎝ (2 − ζ̃2)z

−3ζ̃1+ζ̃2+5
2−ζ̃2

−3ζ̃1 − ζ̃2 + 5

⎞
⎟⎠ . (61)

Therefore the potential becomes Φ ∝ z8.34(1 + z)4.45 (by
using extracted parameter values). From the last scattering
surface, which corresponds to z = 1091, to the present epoch,
z = 0, the potential will be rarefied. This causes the ISW
effect. However, only with an exact calculation and by obtain-
ing the correlation function, one can get the total ISW effect
and its effect on the structure formation.
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