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Abstract We consider the propagation of strong gravita-
tional waves interacting with a nonperturbative vacuum of
spinor fields. To described the latter, we suggest an approx-
imate model. The corresponding Einstein equation has the
form of the Schrodinger equation. Its gravitational-wave
solution is analogous to the solution of the Schrédinger
equation for an electron moving in a periodic potential.
The general solution for the periodic gravitational waves is
found. The analog of the Kronig—Penney model for gravi-
tational waves is considered. It is shown that the suggested
gravitational-wave model permits the existence of weak elec-
tric charge and current densities concomitant with the grav-
itational wave. Based on this observation, a possible experi-
mental verification of the model is suggested.

1 Introduction

An experimental search for gravitational waves (GW) is one
of the most intriguing problems in modern physics. The dis-
covery of GWs will give us confidence that we are moving
in the right direction in understanding classical gravity. If
we cannot detect GWSs, then either our apparatus is not sen-
sitive enough or something is not taken into account when
considering the propagation of GWs.

One of the effects accompanying the propagation of GWs
could be its interaction with a nonperturbative spinor vac-
uum. The reason for such an interaction to occur is that the
energy-momentum tensor of a spinor field contains the spin
connection, which in turn contains first derivatives of tetrad
components with respect to the coordinates. As a result, the
Einstein equations give the wave equation for a GW which
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contains second derivatives of the tetrad components on the
left-hand side and their first derivatives on the right-hand
side.

In Ref. [1] we have considered the propagation of a weak
GW interacting with the nonperturbative spinor vacuum.
Here we extend those results to the case of a strong GW.
In doing so, as in Ref. [1], to model the nonperturbative
vacuum of a spinor field, we will use a phenomenological
approach. Within the framework of this approach, we make
some physically reasonable assumptions as regards expecta-
tion values of the spinor field and its dispersion. This will
permit us to reduce the infinite system of differential equa-
tions for all Green functions of the nonperturbative quantum
spinor field to the finite set of equations (for more details, see
Refs. [1,2]).

Following this approach, here we will discuss the solution
of the Einstein equations for a strong GW propagating on the
background of the nonperturbative vacuum of spinor fields,
which is a generalization of the weak, plane gravitational
wave of Ref. [1].

2 Strong GW in a nonperturbative spinor vacuum

According to the textbook [3], the metric for a strong GW
propagating in one direction is sought in the form

ds® = 2d&dn + gap(ndx“dx”, ()
where x9 = £, xl = n are lightlike coordinates, and the

indices a, b run over the values 2, 3. It is convenient to intro-
duce the new variables

gav() = — x> yab(), )
det(yap) = 1. 3)
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The only nonvanishing component of the Einstein tensor G ;,,
is GT;, (i s the tetrad index and v is the spacetime index),
so that one can obtain the following Einstein equation for the
strong GW propagating in a flat vacuum spacetime:

i+ % ()}acl/hc)}bdl/ab) x =0. )
Here the dot denotes differentiation with respect to 7; y is
the two-dimensional tensor reciprocal to y,;. The function
x (1) is an unknown function, and y,,;, are arbitrary functions,
obeying the constraint (3).

As pointed out in Ref. [3], the presence of the term
Yaey P pay® has the result that after a finite time interval x
becomes zero.

This in turn leads to vanishing of the metric determinant
g, i.e., a singularity in the metric. But this singularity is not
physically significant since it is related only to the unsatisfac-
tory nature of the reference frame, “spoiled” by the passing
gravitational wave, and can be eliminated by a suitable coor-
dinate transformation.

Our goal here is to consider the propagation of GWs in a
nonperturbative spinor vacuum. We expect that such a phys-
ical system has to be considered in nonperturbative language
when both a metric and a spinor field are regarded as quan-
tum quantities and are quantized in a nonperturbative manner.
Then, to describe the interaction between a quantum met-
ric and a quantum spinor field, we have to write down the
Einstein—Dirac operator equations.

Our nonperturbative approach for quantizing nonlinear
fields is described in Ref. [1]. Within this method, we have,
strictly speaking, to solve the following operator equations:

Gap = xTz,, (5)
PV —miy =0, (6)

where G wv 1s the operator of the Einstein tensor; f}w is the
operator of the energy-momentum tensor; I/A/ is the operator
of the spinor field; a is the tetrad index; u is the coordinate
index; V, is the covariant derivative for the spinor with the
appropriate spin connection; » = 87 G, G is the gravitational
constant. Hereafter we use units where c = 7 = 1.

As mentioned in Ref. [1], the solution for such a set of
operator equations can be found by writing down and sub-
sequent solving an infinite system of equations for all Green
functions for quantum fields.

In practice, such a procedure can be carried out only
approximately. This means that we have to use some physi-
cal arguments to cut off the above-mentioned infinite set of
equations, and then solve the resulting finite set of equations.

Our approach is based on the following assumptions:

(1) The metric remains always classical.
(ii) The spinor field is quantum.

@ Springer

(iii) The spinor field is decomposed as a product of g- and
c-numbers.

(iv) In order to calculate the energy-momentum tensor of the
spinor field, we assume some ansétze for a 2-point Green
function of g@

In such an approximation the Einstein—Dirac operator
equations (5) and (6) can be written in the following man-
ner [1]:

Gan = (0| Ta| 0). )
(e]vut;"| o) =0, ®)
where (Q |- - - | Q) is the quantum averaging with respect to

the quantum state | Q).

Also, to check the consistency of the ansétze for a 2-point
Green function, instead of solving the Dirac equation (6), we
will use the Bianchi identities (8), as we did in Ref. [1].

3 Approximate model of the nonperturbative spinor
vacuum

In order to write down the energy-momentum tensor for a
vacuum of a spinor field interacting with a GW, we must have
a model of a nonperturbative vacuum of the spinor field. Let
us emphasize once more that we cannot use a perturbative
model of a spinor field since in the presence of a gravitational
field the set of Egs. (5) and (6) is a strongly nonlinear system.

Taking this into account and following Ref. [1], our strat-
egy in the formulation of the model of the nonperturbative
spinor vacuum is as follows: (i) we write some classical
ansitze for a spinor; (ii) we derive the corresponding energy-
momentum tensor; and (iii) we then write hats over the cor-
responding spinor components.

As the first step, we take the ansitze for the classical spinor
in the form

A
y=eon| v ©
0

For the tetrad (13) below, there is only one nonvanishing
component G, . Consequently, we have to choose the com-
ponents of the spinor A, B, V, Q so that we obtain the cor-
responding component 7j,. This happens if B = A and
Q = V. In this case we have

Ty, = —2VV* (B’ cosh B + o' sinh B + 4w) , (10)

where the prime denotes d/dn.
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With the ansitze (9) and the energy-momentum tensor
(10) in hand, we suggest the following approximate model
of the nonperturbative vacuum of the spinor field.

e The nonperturbative vacuum is described by the follow-
ing operator of the spinor field:

w — eiwr;

(11)

<> <O >

The constant operators AV appearing here are indepen-
dent of .

e The corresponding energy-momentum tensor of the
spinor field is

<Q ‘fin‘ Q> = —2<‘A/‘A/T> (ﬂ’cosh,B +a'sinh B + 4a)) )
12)

e To check this model, we calculate the divergence of the
energy-momentum tensor and show that it vanishes.

4 Einstein equations for a strong GW interacting
with the nonperturbative spinor vacuum

For the metric (1), we seek a solution of the Einstein equations
for a strong GW propagating through the nonperturbative
spinor vacuum. The tetrad for this metric is

0 1 0 0
i 1 0 0 0
e =
M 0 0 X(n)ea(n)/Z 0
00 x(me*™/Zsinh B(n)  x(me= "/
13)
with the corresponding two-dimensional metric
e® cosh? B sinh B
Yab = < sinh B e ) (14)

Here «(n) and B(n) are arbitrary functions [3].

The substitution of the tetrad (13) and the energy-
momentum tensor (12) into the Einstein equations (7) yields
the equation

1 2
—x" + [ﬁ/coshﬁ + o' sinh B — 1 (a’z—i—ﬁ’ )coshz,B

1
—ZO/,B/ sinh 2,3} x = —4dy, (15)

where the prime denotes differentiation with respect to
the dimensionless 77 = »x <\7 ‘A/T>n, and the dimensionless

o= w/ (}{ <‘7 VT>) (For convenience, we omit the tilde
from 77 and @ hereafter.) The terms B’ cosh B, a’ sinh 8 on
the left-hand side and 4w on the right-hand side of Eq. (15)
are the imprints of the nonperturbative spinor vacuum.

One sees immediately that Eq. (15) is a Schrodinger-like
equation with the effective potential

Y = _l 2 /2 2
Vegif = B’ cosh B + o' sinh I o+ B )cosh”p
1 ! ol .
_Za B’ sinh 2. (16)

In what follows we will seek periodic solutions to Eq. (15).
It is clear that for periodic functions ¢, 8 we obtain an equa-
tion similar to that describing the movement of a single elec-
tron in a crystal. Such an equation has been well studied
in the literature (see, for example, the textbook [4]), and
we can apply all mathematical methods used in solving the
Schrodinger equation to our case of a strong GW.

5 General solution

In order to solve Eq. (15) for a periodic potential, in this
section we apply the methods developed in solid state theory.
The only difference is that the function x (1) is areal function,
unlike the usual quantum mechanics where a wave function
is complex.

First of all, let us rewrite Eq. (15) in the form

—x" () + Vet (M x (n) = —dwx (). (17)

In order to find a solution of the type of GW, we have to
investigate the case of a periodic potential

Vet (0 + 10) = Verr (1), (18)

where 7 is the period of the effective potential.
We seek a solution to Eq. (17) in the form

ad 2k . (27k
X(T))=X0+Z agcos| —n | +bgsin| —n ) |.
k=1 0 10
(19)

In order to obtain a set of equations for the coefficients
X0, ak, bi, we act as follows: (a) integrate Eq. (17); (b) mul-
tiply (17) by % cos (2”77—0” n) and integrate; and (c) multiply
(17) by n%) sin (2777’—0"7]) and integrate. This yields the follow-
ing system of equations:

@ Springer
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1 & - -
Vo + 3 ; [ak Vi + bk Vk] = —dwxo, (20)
2n\ 2 - ° - _
(W a;1+X0Vn+Z [ak Vak +bx Vnk:l =—4wa,, (21)
k=1

2mn\? R - =
) bVt X [ Vit biVik | = ~dobn, - 22)
0
k=1

wheren =1,2,...,00 and
+n0/2
X0
Vo =— Vetedn; (23)
1o
—n0/2
+n0/2
- 2 2wk
Vi=— Vegrcos | —n )dn, k=1,2,...,00;
10 10
—n0/2
(24)
+no/2 ok
_ T
Vi=— VeffSiIl(—T])dT],k:1,2,...,00;
10 10
—n0/2
(25)
+n0/2
- n 4
Vak = — cos (—n) Veff COS (—n)
no no
—10/2
dn,n,k=1,2,...,00; (26)
+n0/2
- 2 2nn 2k
Vak = — cos| —n ) Vegesin| —n
no no no
—10/2
dn, n,k=1,2,...,00; 27)
+n0/2
H . <2nn >
Vak = — sin { —n
no 170
—10/2

. [ 27k
Vegesin | —n )dn, n,k=1,2,...,00. (28)
no

In principle, by using the set of Egs. (20)—(22), one can
find a GW solution for any periodic metric functions « ()
and S(n). Remarkably, in doing so, one can employ all well-
developed methods of solid state theory (see, for example,
the textbook [4]).

6 The Kronig-Penney model for gravitational waves

In the previous section we have used the well-known methods
of solid state theory to obtain the general solution for the
GW. To discuss some particular features of the GW, here we
employ an approximate approach of solid state theory (the
Kronig—Penney model) for the description of the GW.

@ Springer

Let us consider the simplest case, § = 0, for which
Eq. (17) yields

1
—x" = Za’ZX = —dwy. (29)

For such a case we have the following two-dimensional met-
ric (14):

e* 0
Yo = ( . e_a> . (30)

In order to apply the Kronig—Penney approximation, we will
use the metric function «(n) in the range —a < n < b:

Co if —a<n<0,
Von+Ci  if 0<n<3, (31)
~Von+Cy if 5 <n<b,

a(n) =

where Cy 1 2 and Vp are constants; a + b = 1o, and
a(m+nny) =a(n), n==x1,£2,.... (32)

The corresponding effective potential Vegg = —a’ 2 /4 1s

0 if —a<n<0,

Var =1 o (33)
-4 if 0<n<b
with the periodicity

Vet (n +nno) = Vege(n), n==£1,£2,.... (34
The profiles of « and V, sy are shown in Fig. 1.

To solve Eq. (29) with the effective potential (33), we will
employ the Kronig—Penney method exactly in the same way
as in solid state theory but remembering that we have to seek
a real solution instead of a complex one, as is done for the
Schrodinger equation.

For the periodic potential (33), Eq. (29) takes the form

{X”=K2X if —a<n<0, (35)

x"=—-0% if 0<n<b,

where K? = 4w, 0* = V3 /4 — K2
For the fundamental region —a < n < b, we seek a
solution in the following form:

if —a<n<O,

Kn —Kn
x(n)={f€ +se (36)

csinQn+dcosQn if 0<n<b.
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Fig. 1 The profiles of a(n) (the top graph) and V.rr = ,w (the bottom graph)

Using these, we first constrain continuity inside the funda-
mental domain (i.e., for n = 0):

ftg=d,

(37)
K(f—g) = Qc.

For the region b < n < a + b, we seek a solution in the form
x(n) = feK[ﬂ—(a-i-b)] + ge—K[fl—(a-i-b)]. (38)
We then constrain continuity outside the fundamental domain

(i.e., for n = b):

{c sin Qb + d cos Qb = fe~Ka 4 geKa, (39)

cQcos Qb —dQsin Qb = fKe K¢ — gkeKe,

A necessary condition for the set of Egs. (37) and (39)
to have a nontrivial solution is that the determinant of the
corresponding matrix is zero:

0 1 -1 1
0 0 -K K B
sin Qb cos Qb _e—Ka _oka| = 0. (40)
Qcos Qb —QsinQb —Ke K4 KeKa

The resulting constraint equation for the parameters K, Q, a,
and b is
K2 _ Q2

Wsinhal( sinbQ + coshaK coshQ = 1. 41

Introducing the dimensionless parameters

A
i=—2, b:TO, (42)

we obtain from (41)

2x — 1 -
=X " sinh (@/%) sin (b l—x)
24/ x — x2 ( )

+ cosh (@+/x) cos (1;v1 - x) =1. (43)

X

Fig. 2 The profile of the left-hand side of the constraint equation (43)
for a = 3 and b = 50. The straight line corresponds to 1

Here0 < x <1,ie,0 <w < V02/16. The latter expression
is obtained from the condition Q2 > (, which has been
assumed to be satisfied in the derivation of the above results.
The case of Q% < 0 is discussed below.

The typical profile of the left-hand side (lhs) of the con-
straint equation (43) is shown in Fig. 2. One can see that
there is a finite number n of possible values of w,, which
depends on the values of the parameters a and b. The numer-
ical values of w, are determined by the points of intersec-
tion of the lines in Fig. 2. Note that in the limit x — 0
the Ths = —(a/2) sinb + cos l;, and when x = 1, the
lhs = (5/2) sinha + cosha, i.e., the lhs remains always
finite.

The case of Q% < 0 can be obtained from (41) by changing

QtoiQ:
K2+ 0% .
W sinhaK sinhbQ + coshaK coshbQ =1. (44)

The corresponding dimensionless equation will then be

23% sinh (a/x) sinh (bv/x = 1)
+ cosh (@+/x) cosh (Z;Vx — 1) =1. (45)

@ Springer
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Here x > 1,ie.,®w > V02/16. One can easily see that the lhs
of this expression is always greater than 1, i.e., Eq. (45) does
not have a solution. Physically, this means that there are no
GWs with o > V}/16.

7 Experimental verification

Letus discuss now possible experimental consequences com-
ing from a consideration of the propagation of a strong GW
through the nonperturbative spinor vacuum.

Direct calculations show that for such a case the following
electric current exists:

j* =y = (4(e |V 0).0.0,0). (46)
where u =&, n, v, z.

Making the transformation to Cartesian coordinates #, x
as follows:

£ = t—x _ r+x @7
-2 T
and similarly
-1 - X -1 - X
J = J+J
= 1=t (48)
V2 V2
we have
jf=—jX=z«/§<Q)x7W)Q>. (49)

This means that we have the electric charge and current densi-
ties concomitant with the GW. The electric current is directed
along the direction of propagation of the GW. This observa-
tion allows us to suggest the following experimental verifica-
tion of the GW and nonperturbative spinor vacuum models
considered here: It is possible to try to measure the weak
electric charge and current densities together with the stan-
dard measurements of GWs (LIGO, LISA, and so on). On the
other hand, instead of measurements of the electric current,
one can measure the corresponding magnetic field.

8 The correctness of the anséitze for the spinor field

The correctness of Eq. (8) is verified directly. To do this,
one can calculate the expression V,, 7, " as the classical one
and then substitute in it the 2-point Green function <1}*1/Af>

Then, taking into account that we have only one nonvanishing
component of the energy-momentum tenor Ty, [see Eq.(1 01,
the Bianchi identities (8) are trivially satisfied.
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9 Conclusion

To summarize our results:

e We have suggested an approximate model of the nonper-
turbative spinor vacuum.

e The propagation of strong gravitational waves interacting
with such a vacuum has been investigated.

e It was shown that the Einstein equation reduces to a
Schrodinger-like equation with a periodic potential.

e We have obtained the solution for the special case of the
metric function corresponding to a GW with the gyy .,
components only.

e A possible experimental verification of the nonperturba-
tive spinor vacuum model interacting with a strong grav-
itational wave has been suggested.

For better qualitative understanding of some features of
the resulting gravitational waves, we have considered the
simplest case where the periodic potential is modeled by the
Kronig—Penney potential of solid state theory. As a result,
it was shown that the GW parameters (the wavelength 7g
and the amplitude Vp) can be arbitrary but the parameter w,,,
affecting the form of the plane wave in the spinor vacuum, is
quantized.

The correctness of the approximate model of the nonper-
turbative spinor vacuum was verified by calculating the diver-
gence of the right-hand side of the Einstein equations. One
might expect that for an improved model of the nonperturba-
tive vacuum it will be necessary to use the nonperturbatively
quantized Dirac equation where the term “spin connection
x spinor field” (i.e., (Q ’wabulﬂ’ Q)) need to be taken into
account. The latter means that we have to take into account
the quantum correlation between a metric and a spinor field.

Lastly, it may be noted that the formal analogy of the
GW equation here obtained with the Schrodinger equation
allows the possibility of using the well-developed methods
from other fields of physics to solve such an equation. In
particular, for the periodic metric functions discussed here,
Eq. (17) is identical in form to the equation of motion of
an electron in a crystal. Aside from the formal aspect, such
an analogy would lead us to use physical intuition to obtain
further results in this area, as is done, for example, in analogue
gravity [5,6].
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