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Abstract In this work we consider how the appearance
of gradients of pseudoscalar condensates in dense systems
may possibly influence the transport properties of photons in
such a medium as well as other thermodynamic characteris-
tics. We adopt the hypothesis that in regions where the pseu-
doscalar density gradient is large the properties of photons
and fermions are governed by the usual lagrangian extended
with a Chern–Simons interaction for photons and a constant
axial field for fermions. We find that these new pieces in
the lagrangian produce non-trivial reflection coefficients both
for photons and fermions when entering or leaving a region
where the pseudoscalar has a non-zero gradient. A varying
pseudoscalar density may also lead to instability of some
fermion and boson modes and modify some properties of
the Fermi sea. We speculate that some of these modifications
could influence the cooling rate of stellar matter (for instance
in compact stars) and have other observable consequences.
While quantitative results may depend on the precise astro-
physical details most of the consequences are quite universal
and consideration should be given to this possibility.

1 Introduction

Interest in possible violations of Lorentz and other fun-
damental symmetries emerged [1–7] after the paper [8],
where electrodynamics with an additional Chern–Simons
(CS) parity-odd term including a constant CS four-vector
was considered. The same authors entertained the possibil-
ity that such an effect could already be visible in the radia-
tion observed from distant radio galaxies, arriving at a neg-
ative conclusion. Nevertheless, there are some areas where
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modified Maxwell–Chern–Simons (MCS) electrodynamics
(also known as Carroll–Field–Jackiw electrodynamics) may
be relevant.

It has been suggested that parity-breaking phenomena1

may take place in peripheral heavy ion collisions [9,10]
manifesting itself in the so-called Chiral Magnetic Effect
(CME) [11–14]. Spontaneous parity violation might also
occur for sufficiently large values of the baryon density [15–
19]. Recently several experiments in heavy ion collisions
have also indicated an abnormal yield of lepton pairs [20,21]
and it was conjectured that the effect may be another mani-
festation of local parity breaking in colliding nuclei [22–26].
This effect would be due to an interplay between topological
fluctuations in QCD (see [27,28] and references therein) and
MCS electrodynamics.

Another source of possible macroscopic manifestations
of parity breaking is the presence of an axion background.
Even though there is no direct evidence of the existence of
axions yet it has been speculated that parity odd regions may
occur after Bose–Einstein condensation of axion or axion-
like fields [29–33] at several astrophysical scales. In partic-
ular this could take place in the interior of stars [34]. Recent
investigations speculate that these axion condensates2 could
be rather compact in size [35–38].

In dense nuclear matter one should contemplate also phe-
nomena such as neutral pion condensation [40] or the occur-
rence of a disoriented chiral condensate [41]. Both phenom-
ena have received considerable attention in the past.

We will generically refer to these phenomena as pseu-
doscalar condensation and most of its consequences will be
independent of the precise mechanism triggering the appear-
ance of local parity breaking.

1 Parity breaking in strong interactions is possible in out-of-equilibrium
processes or with a non-zero chemical potential.
2 These axion condensates should not be confused with the classical
cold axion background – a viable candidate for dark matter [39].
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In fact what matters for our purposes is not the existence
of pseudoscalar condensates per se but rather gradients of
the pseudoscalar density. A region with a strictly constant
pseudoscalar density has a vanishing CS four-vector and its
electromagnetic properties are described by usual Maxwell
electrodynamics. On the contrary in regions where the pseu-
doscalar density is space-dependent a non-zero CS vector
appears. In this region the relevant lagrangian to describe
electromagnetic interactions is the MCS lagrangian. Similar
arguments can be applied to the constant axial-vector field
coupling to fermions [42]. We shall therefore be interested
in this case.

In the next sections we discuss several effects resulting
from the appearance of pseudoscalar gradients in dense sys-
tems. We first consider how they may affect the propagating
modes of photons and fermions. For the former, different
polarizations are affected differently, while in the case of
fermions the Fermi sea is split in two, with slightly different
Fermi levels. We then proceed to determine transmission and
reflection coefficients for photons crossing a layer where a
pseudoscalar condensate has a gradient, concluding that it
may have a relevant influence in process mediated by radia-
tive cooling if such gradients are sufficiently large compared
to the temperature. A similar phenomenon occurs in princi-
ple for fermions, but it is much suppressed due to their larger
mass. Fermions can ‘decay’ (i.e. move from the higher Fermi
sea to the lower) in such a medium emitting a photon [42,43].
Conversely, photons propagating in such a medium but free
otherwise can materialize in a fermion–antifermion pair in
certain circumstances. To conclude we speculate about the
possible relevance of the above phenomena in degenerate
fermion systems such as compact stars where, as previously
argued pseudoscalars condensates may be present.

2 Spectrum of photons in a pseudoscalar condensate
gradient

Let us commence our analysis by assuming that in a dense
system there are domains with different pseudoscalar densi-
ties. These domains may be either of axion or pion-like type.
We will characterize the different domains by approximately
constant values of the condensate ai . Obviously a = 0, i.e. no
parity breaking at all, is also a possibility. Typically, transi-
tion regions between different domains and between a parity-
breaking region and the normal vacuum will be present. The
figure shows the generic situation we are considering: region
2 is a transition region with non-zero pseudoscalar gradient
separating regions 1 and 3.

Inside a transition region – one with a non-zero gra-
dient – the behavior of the photons can be described by
Carroll–Field–Jackiw model, or MCS electrodynamics, with
the Lagrange density

L = − 1
4 Fαβ(x)Fαβ(x) − 1

4 Fμν(x)˜Fμν(x) a(x)

+ 1
2 Aμ(x)m2

t Pμν Aν(x), (1)

where Aμ(x) and a(x) stand for the vector and effec-
tive background pseudoscalar fields respectively, ˜Fμν =
1
2 ε μνρσ Fρσ is a dual field strength and mt is an effective
transverse photon mass [44,45] (see Sect. 6) which is gener-
ated by gauge invariant polarization tensor in plasma, con-
taining the transversal projector Pμν = ημν − ∂μ∂ν/∂2. If
one uses the low momentum limit k → 0, at high tempera-
tures T and chemical potentials μ, this mass happens to be

constant, m2
t � e2

3

(

1
3T

2 + μ2

π2

)

�= 0.

The classical background is different for different regions.
In the area outside the boundary layers (regions 1 and 3) a(x)
is constant. In this case the second term in lagrangian does not
give any corrections to field equation and one recovers stan-
dard electrodynamics. The only non-trivial area to describe is
the region 2. We assume that in this layer a changes linearly
from a− to a+ across the gap. Then inside the region 2 the
relevant pseudoscalar background can be locally described
by

a(x) = ζ · x[θ(ζ · (x − x−)) − θ(ζ · (x − x+))] →
ζ · x ≡ ζμx

μ; (2)

in which a fixed constant four-vector ζμ with mass dimension
is used as an argument. ζμ is actually proportional to the
local gradient of the pseudoscalar condensate. We assume
that the wave function of photons is considerably shorter
that the thickness of the layer and accordingly take the width
of the latter to infinity to simplify our calculations. In this
case Lorentz invariance would be violated in the Minkowski
half space.

If we consider a small area that does not feel the curvature
of the shell,3 we may choose for simplicity the first coordinate
along the local radius of curvature of the bubble and assume
the first boundary x− to be located at x1 = 0. In this particular
case, (ζμ) = (0, ζ, 0, 0),

a(x) = ζ x1 θ(x1), (3)

where we have now assumed that the thickness of the bound-
ary is much larger than the characteristic photon wave length
and accordingly we have taken x+ → ∞. This approxima-
tion makes the calculation simpler as it allows one to decou-
ple the effect of the two successive interfaces.

Then the wave equation reads

(� + m2
t )A

ν + ζε1νσρ θ(x1)∂σ Aρ = 0. (4)

3 Again, this is a good approximation for photons whose wavelength
is much shorter than the characteristic sizes involved.
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Its solution in the MCS medium can be found by
proper projection on the longitudinal and chiral modes (see
Appendix A). The corresponding dispersion relations are
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

kCS
1L = k0

1 =
√

ω2 − k2⊥;

kCS
1+ =

√

ω2 − m2
t − k2⊥ − ζ1

√

ω2 − k2⊥;

kCS
1− =

√

ω2 − m2
t − k2⊥ + ζ1

√

ω2 − k2⊥,

(5)

where the index ‘0’ labels the medium with the usual vacuum
dispersion relation, ω is a photon energy andk⊥ = (0, k2, k3)

is a transversal photon wave vector. This expression describes
three different physical polarizations in the MCS medium for
x1 > 0. Of course the standard Maxwellian behavior is recov-
ered by setting ζ = 0 in all expressions, which corresponds
to the region x1 < 0, where there is no Lorentz symmetry
breaking.

3 Spectrum of fermions in a pseudoscalar condensate
gradient

In this section we outline the key points of the properties in
3 + 1 Minkowski space-time of free spinor fields in the pres-
ence of a Lorentz covariance-breaking kinetic term associ-
ated with a constant axial-vector bμ. This vector is supposed
to be generated in the region between two bubbles with dif-
ferent pseudoscalar condensate and its presence will change
drastically some fermion properties in the vicinity of Fermi
surface.

The free fermion spectrum can be obtained from a modi-
fied Dirac equation in the momentum representation
(

γ μ pμ − m − γ μbμγ5
)

ψ = 0. (6)

The solution of this equation is discussed in Appendix B. The
fermion spectrum is determined by the on-shell condition

(

p2 + b2 − m2
)2 + 4b2m2 − 4(b · p)2 = 0. (7)

This equation has real solutions for any value of bμ. However,
a consistent quantization of the spinor field can be performed
if there are two pairs of opposite-sign roots of Eq. (7) and a
mass gap between them. This condition holds true [46] for
sufficiently small bμ and a mass gap between positive and
negative frequencies exists provided that no solutions with
p0 = 0 exist. Such solutions never arise for space-like bμ,
which we employ in this paper. Moreover, the choice b2 <

m2 is quite plausible as the magnitude of the constant axial
vector associated to a gradient of pseudoscalar condensate
is expected to be of the order of a few keV at most (see
discussion in next section).

For the purely space-like case one can fix bμ = (0,b) =
(0, b, 0, 0); b > 0 by the proper choice of coordinate sys-
tem.4 Then the dispersion law is given by

ω2 = p2⊥ + p2
1 + b2 + m2 ± 2b

√

p2
1 + m2

= p2⊥ +
(

b ±
√

p2
1 + m2

)2

;
p = (p1, p2, p3); p⊥ = (0, p2, p3). (8)

These solutions are separated by the stability cone. The sta-
bility border p2

μ = 0 is described by

|p1| = (m2 − b2)

2b
. (9)

4 Fermi sea in a pseudoscalar condensate gradient

In this section we shall assume that the momenta involved
fulfill the condition p � m and therefore a non-relativistic
approximation is valid.

Taking this into account the dispersion relations for
fermions in a medium with a non-vanishing pseudoscalar
gradient would approximately read

ω = m ± b + p2
1

2m
+ p2⊥

2m
. (10)

Let us assume that the medium is in thermal equilibrium
with a temperature T . The two different mass-shell condi-
tions established in the previous section will give rise to two
different Fermi seas. These in the non-relativistic limit cor-
respond to the ± branches in the above equation. Assuming
that initially N+ = N− = N the corresponding chemical
potentials μ± are obtained by solving the equations

N = V
∫

dω

√

(2m)3(ω ± b)

4π2

1

exp ω−μ±
T + 1

(11)

in respect toμ. Clearly this givesμ+ = μ−+2b and therefore
ε+
F > ε−

F (we assume that b is positive; otherwise the situa-
tion is reversed). The existence of pseudoscalar regions with
a non-zero gradient thus naturally lead to a splitting of the
Fermi sea in two, with a difference in levels directly propor-
tional to the gradient itself. For simplicity we are implicitly
assuming that the gradient is constant (i.e. the pseudoscalar
density varies linearly along the ‘1’ direction).

At least theoretically one could contemplate a single pseu-
doscalar condensate occupying a large part of a star primar-
ily made of degenerate fermions (such a neutron star or a
white dwarf) in its interior. Let us also assume for the sake
of the argument that the condensate varies linearly with the

4 In concordant frames the results must be modified but the physical
consequences remain the same [47].
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radius. From the previous considerations this would mean
that the degenerate electrons or neutrons that sustain the star
from collapsing, in fight against the gravitational potential,
are split. Half of the fermions (the ‘+’ ones) have to deal
with more than their fair share of the weight of the star. The
natural tendency under the action of gravity would then be
to equilibrate both Fermi seas. In order to do so, some of the
‘+’ fermions have to turn into ‘−’ ones. Is this possible? The
answer is yes and it will be discussed in the coming sections.
The conversion would necessarily imply a large emission of
photons with energies up to ω � 2b.

The same phenomenon can present itself in smaller
regions of the star leading to local imbalances in the Fermi sea
that could trigger small starquakes with their corresponding
photon emissions.

5 Propagation of photons across pseudoscalar gradients

Now we describe the propagation of photons inside every of
three regions indicated in Fig. 1. Regions 1 and 3 correspond
to taking ζ = 0 while ζ �= 0 in the intermediate transition
region 2 where the pseudoscalar condensate has a gradient.
In this section we neglect a transverse photon mass mt . As is
manifest in the previous equations, different regions lead to
different dispersion relations. As a consequence non-trivial
reflection and transmission coefficients between the different
regions appear. This issue was first discussed in [48,49].

5.1 Entering the boundary layer

We assume that the thickness of the intermediate shell (region
2 in Fig. 1) is much larger than a typical wavelength and a
mean free path. Under these assumptions (4) works. Photons
fall on the boundary from a region where ordinary electro-
dynamics holds and attempt to penetrate in one governed by
MCS electrodynamics. Matching conditions for this problem
were discussed in detail in [50]. To understand which photons
penetrate into the shell it is worth to recall the discussion. A
solution of (4) can be found by using Fourier transforma-

Fig. 1 A sketch of possible domains with pseudoscalar condensates

Fig. 2 The geometry of photon propagation.n is a normal vector. In the
left region (region 1) the pseudoscalar condensate takes a constant value.
Region 2 (right) is assumed to be governed by MCS electrodynamics
describing a varying pseudoscalar condensate as befitting a transition
region

tion over all components but x1 and may be written in the
form

Ãν =

⎧

⎪

⎨

⎪

⎩

ũν→eik
0
1 x1 + ũν←e−ik0

1 x1, x1 < 0;
∑

A

[

ṽνA→eik
CS
1A x1 + ṽνA←e−ikCS

1A x1

]

, x1 > 0,

(12)

where ṽ and ũ depend on (ω, k2, k3). The first index of ṽ

denotes the corresponding component of Aν , ν = 0, 2, 3, the
second index A stands for the polarizations L ,+,− and the
arrows →, ← point out the direction of particle propagation.
It is necessary to distinguish among the various polariza-
tions because they obey different dispersion relations. Note
that we contemplate the possibility of photons developing
a transverse mass mt which can easily be reinstated in the
formulas.

Then we take the initial amplitude, and using Eq. (C.23) in
Appendix C we find the amplitudes of the transmitted waves
with polarizations L ,+,−

T± = 1

1 +
√

1 ∓ ζ

k0
1

. (13)

Longitudinally polarized photons are not affected by the
change in the medium.

The direction of outgoing photons corresponds to the
angle β (Fig. 2). After the propagation through the bound-
ary, their direction will be changed (angle α) accordingly to
their polarization. We decompose k = knn + k⊥τ (Fig. 2).
From [50] we know that k⊥ remains the same after crossing
the boundary. This means that the trajectory of the particle
and normal vector lie in one plane. However, kn changes.
We introduce the new variable kCS

n to describe the normal
component of k after crossing the boundary. For x1 < 0 one
has

cos β = k0
1

ω
. (14)

We are interested in finding the overall flux of outgoing pho-
tons from region 1 to region 2 in Fig. 2. To do this we first
consider a small volume near the boundary. We assume that
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Fig. 3 Radiation of a layer

it radiates uniformly in all directions. For us is important the
flux of energy which propagates outwards so we are inter-
ested only in upper half-sphere in Fig. 3. We assume that this
small volume radiates with a certain frequency Nω

� per solid
angle. At this moment we neglect the photon mass to get
some quantitative results. In order to find the total luminos-
ity we should integrate over the solid angle, frequency and
surface of the layer. The last integration would be the same
for the case with or without pseudoscalar condensation

L ∝
∫ ∞

0
dωNω

�

∫ π
2

min( π
2 ,arccos( ζ

ω
))

dβT+(β, ω, ζ )

+
∫ ∞

0
dωNω

�

∫ π
2

0
dβT−(β, ω, ζ ). (15)

Here one can see that integration over angles in the first term
begins from the value cos β = ζ

ω
. This value comes from

kinematical condition of the positive polarization. It is easy
to see from (13), that for T+ in denominator we have a neg-
ative value under the root if ζ > k1. Physically it means that
for falling photons with k1 < ζ it is kinematically forbidden
to convert into positive polarization photons in the medium
with a linearly varying pseudoscalar field. For negative polar-
ization there is no restriction, in (5) k1− is positive for any
values of ζ and as a result, we do not see any special limits
of the integral for negative polarization.

Next we assume that the medium is in thermal equilibrium
with a temperature T and accordingly Nω

� ∝ ω3/(e
ω
T − 1).

We will compare this value with the luminosity of the same
volume without any parity-breaking boundary effect. Let us
call this last value L0,

L0 ∝
∫ ∞

0
dωNω

�

∫ π
2

0
dβ. (16)

Finally, we can plot a graph which demonstrate the effect
of the intermediate shell on the luminosity. From Fig. 4 one
can see that the effect of changing the dispersion relation
across the boundary between region 1 with a = constant and
region 2 where a depends linearly in x1 is very noticeable. At
large values of ζ (compared with temperature) most photons

Fig. 4 The outgoing energy flow ratio for the two cases (with and
without pseudoscalar condensate)

are reflected from the boundary and accordingly the energy
radiated across the boundary decreases. Note that as a con-
sequence the radiation emitted does not correspond exactly
to that of a black body with temperature T .

5.2 Escaping from the boundary layer

After escaping the first region photons appear, if they are
not reflected, in the intermediate shell where MCS electro-
dynamics is at work. To leave this medium and gain access to
another domain where a = constant (possibly zero) photons
have to pass through one more boundary. This corresponds
to the boundary between regions 2 and 3 in Fig. 1. We use
the same technique as in the previous section. Figures 2 and
3 still apply but reversing the areas where ordinary and MCS
electrodynamics apply. In this case

kCS
n

k⊥
= cot(α); kn

k⊥
= cot(β). (17)

Furthermore we know that for spatial CS vector there are
two transversal polarizations in the MCS medium with the
dispersion relations

kCS
n± =

√

ω2 − k2⊥ ∓ ζ

√

ω2 − k2⊥ (18)

or, since we consider photons and kn =
√

ω2 − k2⊥,

kCS
n± =

√

k2
n ∓ ζkn, (19)

and

kn
k⊥

= cot(α);
√

k2
n ∓ ζkn
k⊥

= cot(β). (20)

Using the results obtained in [50], one may find the transmis-
sion coefficient of outgoing particles for every polarization

TA = 2kCS
1A

kCS
1A + k0

1

. (21)
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We are interested only in transversal polarizations (we deal
with photons, however, the longitudinal one does not feel the
boundary anyway), so in our terms we write,

T± = 2kCS
n±

kCS
n± + kn

= 2 cot(α)

cot α + cot(β)
. (22)

For our purposes it is necessary to express T± as a function
of β, which means expressing α in terms of β. For constant
a(x), ω = |k| and one can use kn = ω cos α. So, (17) gives

cot α = cot β
ω cos α

√

ω2 cos2 α ∓ ζω cos α
. (23)

Here as usual ∓ stands for different polarizations.
Solving this equation one can find the expression for cot β

for different polarization and the value of T±,

T±(β, ζ, ω)

= 2 cot β

cot β + ±ζ+
√

ζ 2+4ω2 cot2 β(1+cot2 β)
√

4ω2(1+cot2 β)−2ζ 2∓2ζ
√

ζ 2+4ω2 cot2 β(1+cot2 β)

.

(24)

Using this formula we may find for any angle β the fraction
of incoming photons succeeding in crossing the boundary at
x+, i.e. the boundary between the regions 2 and 3 in Fig.
1. Like in the previous section we consider a small volume
which radiates at certain frequency Nω

� in a unit of solid angle
and write total luminosity

L ∝
∫ ∞

ζ

dωNω
�

∫ π
2

0
dβT+(β, ω, ζ )

+
∫ ∞

0
dωNω

�

∫ π
2

0
dβT−(β, ω, ζ ) (25)

It is worth commenting on the integration region of both
terms. Looking at Eq. (17) one may see that for negative
polarization there is not any restriction on the kinematics of
photon. This fact means we should integrate over all energies
of outgoing photons. In case of positive polarization ω cannot
be less than ζ .

Like in previous section, to show the qualitative effect of
pseudoscalar condensate we assume that the medium has a
temperature T .

From Fig. 5 one can see that for ζ > T there is a clear
effect on the flux of outgoing energy. However, the boundary
between regions 2 and 3 (Fig. 1) does not play a crucial
role in the decreasing of energy flux effect (compare Figs. 4,
5). Nevertheless, to get the total effect, one should take into
account the impact of both boundaries.

If we neglect the thermal capacity of the shell 5 then we
may plot a graph (Fig. 6) showing the combined effect of two

5 This implies assuming that the thickness of the shell is much smaller
linear sizes of a typical domain where a = constant.

Fig. 5 The outgoing energy flow ratio for the two cases (with and
without pseudoscalar condensate)

Fig. 6 The outgoing energy flow ratio calculated for both boundaries

boundaries of the domain. One sees that the effect may be
substantial and in this case the thermal evolution of the bulk
would be affected: radiative cooling (assuming that region
1 is hotter than region 3) would proceed more slowly. In
systems like neutron stars or white dwarfs radiative cooling
is not the dominant cooling mechanism and therefore the
impact of the previous effect is limited.

6 Fermion decay in a pseudoscalar gradient

Fermions crossing domains with a pseudoscalar gradient will
reveal the same effects of partial reflection as the photons
show for exactly the same reasons. The discussion of these
effects is given in Appendix D. However, if b � m then the
effects are clearly subleading.

A more important phenomenon is the instability of
fermions in a parity-breaking environment. Namely, a
fermion (be it an electron or a neutron) with a larger effec-

tive transversal mass m+ =
√

p2
1 + m2 + b may well decay

into a fermion with a smaller effective transversal mass
m− =

√

q2
1 + m2 − b by emitting a photon (in the case of

electrons) or a neutral virtual pion (in the case of neutrons)
that would immediately decay into two photons. Since the
formalism is identical in both cases let us restrict ourselves
to the case of photon emission via this mechanism for dis-
torted electrons. In this case the emergent photon will have

a transversal mass m⊥ =
√

k2
1 + m2

t + ζ 2/4 ± ζ/2 where
mt is the effective transversal photon mass in the plasma (if
any).
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Let us restrict ourselves to the purely space-like bμ =
(0, b, 0, 0) and take b > 0. Besides one can use the remaining
small Lorentz invariance O(1, 2) in the hyperplane (0, 2, 3)

and select out the transversal rest frame for the decaying
electron. Then the decay is possible for an electron with
transversal mass m+ and momentum pμ into an electron
with transversal mass m− and momentum qμ and a photon
with momentum kμ and transversal mass m⊥. Energy-mo-
mentum balance for the decay, pμ = qμ + kμ, consists of
the following relations:

b +
√

p2
1 + m2

=
√

q2⊥ +
(

√

q2
1 + m2 − b

)2

+

+
√

k2⊥ +
(

√

k2
1 + m2

t + ε2ζ 2/4 + εζ/2

)2

;
p1 = q1 + k1; q⊥ = −k⊥, (26)

where ε = 0,±1 for the photon’s longitudinal and two ζ

polarizations.
In order to estimate the threshold of the reaction that allows

‘+’ electrons to decay into ‘−’ electrons, we neglect the posi-
tive contributions of the transverse momenta in the right-hand
side,

b +
√

p2
1 + m2 >

√

q2
1 + m2 − b

+
√

k2
1 + m2

t + ε2ζ 2/4 + εζ/2, (27)

it is assumed that m > b. Thus,

2b +
√

p2
1 + m2 − εζ/2 > m +

√

m2
t + ε2ζ 2/4, (28)

from which one derives the necessary inequalities to allow
for the decay to a particularly polarized photon,

L ε = 0 2b +
√

p2
1 + m2 − m > mt ;

+ ε = +1

(

2b +
√

p2
1 + m2 − m

)

×
√

1 − ζ

2b+
√

p2
1+m2−m

> mt ;

− ε = −1

(

2b +
√

p2
1 + m2 − m

)

×
√

1 + ζ

2b+
√

p2
1+m2−m

> mt .

(29)

Evidently the absolute bound for the decay threshold is
reached in the rest frame of a fermion p1 = 0. At very high
temperatures T and densities (chemical potentials μ) and
moderate photon momenta the effective photon mass [44]

m2
t � e2

3

(

1
3T

2 + μ2

π2

)

suppresses the transformation of ‘+’

electrons into ‘−’ electrons in the parity-breaking layer.

The transformation from one type of fermions to the other
via photon emission is the process that may allow chemical
equilibrium between the respective Fermi levels, eventually
leading to a small excess of ‘−’ fermions in the system.6 As
we have seen the viability of the process and the character-
istics of the photon emitted depends crucially on the relation
between the three parameters b, ζ and mt . If the transition
turns out to be energetically impossible because mt is too
large, in the presence of this phenomenon a star has to be
supported by a combination of the two Fermi seas. Notice
that while in vacuum all ‘+’ electrons would like to decay
to ‘−’ electrons, this is only possible for a limited number
of electrons in the Fermi sea, as the new ‘−’ would have
nowhere to go, all levels being occupied. Therefore the con-
tribution of this anomalous process to star cooling is very
small in absolute terms although the sudden bursts of pho-
tons that may produce could represent a clear observational
signal. Whether this is the case or not depends on the trans-
parency of the crust to these photons. If transmission is neg-
ligible they would only contribute to a slight increase of the
star temperature. It is to be expected though that a sudden
reordering of the Fermi levels could produce some sort of
glitch if the neutron star turns out to be a pulsar.

7 Photon decay

Finally let us discuss another phenomenon, which may give
contribution to the flux of outgoing particles, namely, the
possibility of high-energy photon decay in a volume where
a �= constant. For a star in thermodynamic balance this phe-
nomenon is probably irrelevant but it is interesting on its own
nevertheless.

It was shown in [51] that a photon of positive polarization
may decay in the presence of a gradient of the pseudoscalar
field into an e+e− pair. This process will suppress the num-
ber of outgoing photons with positive chirality and possibly
increase the number of outgoing electrons, positrons, and
antineutrinos due to the process

e+ + n → p+ + ν̄e. (30)

We will present here some calculations to understand what
may be the quantitative effect of the photon decay. The total
decay width for high-energy photons with positive polariza-
tion in a linearly varying pseudoscalar background is [51]

�+ � αζ

3
. (31)

In order to evaluate an effect of such decays we use the same
model, as in previous section. We assume a layer where the

6 The possible backreaction of this effect on the value of the pseu-
doscalar condensate itself has not been considered.
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CS vector is pointed along the radius. We also assume that
the total flux of positive polarized photons outgoing from the
layer is N0(ω). After photons with positive polarization prop-
agate inside the region governed by MCS electrodynamics
their number should decrease as

N (t, w) = N0e− �+·t
γ , (32)

where γ = 1√
1−v2 stays for the Lorenz factor of the particle.

In this section we are going to find an order of magnitude
of the decaying process. For the simplicity let us consider
photons moving along the pseudoscalar gradient. Dispersion
law for these particles is

ω =
√

k+2 + 1

4
ζ + 1

2
ζ,

from Eq. (5). We have neglected here a plasma effective pho-
ton mass mt .

Now we will find the γ factor. The group velocity reads

v = dω

dk
=

√

ω2 − ζω

ω − 1
2ζ

< 1; (33)

γ = 1√
1 − v2

= 2ω − ζ

ζ
. (34)

And we get

N (t, ω) = N0e− t ·αζ2

3(2ω−ζ ) (35)

It is important to recall that there is a threshold for the
described decay

ω � m2
e

ζ
. (36)

This may be a large suppression factor for photons of positive
chirality. Let us assume for the sake of discussion that photon
energies are of the order ω ∼ GeV and ζ is ≥keV. Then one
can easily see that for t > 10−9 s most of photons with pos-
itive chirality have decayed. This time (10−9 s) corresponds
to a distance scale ∼10 cm, which is a quite small number
for astrophysical object. So we have to conclude that if inside
the medium there is a strong enough gradient of pseudoscalar
background, photons with positive polarization will decay in
e+e− giving increasing the lepton pairs going and suppress-
ing almost completely the number of photons with positive
chirality (of course reversing the sign of the gradient the same
argument applies to the opposite chirality).

For the process to be possible in a dense fermion medium
the resulting fermions must have energies above the respec-
tive Fermi sea levels (recall that they are slightly different for
the two fermion ‘species’).

8 Possible implications

From the previous discussion we have seen that there are
new potentially interesting effects taking place in a medium
where a pseudoscalar condensate with a non-zero gradient
is present. Whether they are relevant for real physical sys-
tems, possibly in compact stars, depends on different circum-
stances. Some of them can be assessed on general grounds
but others depend on precise astrophysical details.

Before entering into the discussion it may be interesting to
understand the magnitude of the relevant parameters b and ζ .

A hypothetic axion condensate related to an axion of the
Peccei–Quinn type may well couple to electrons although its
value is largely arbitrary but expected to be of order ye ×
〈∂x a(x)〉

fa
where ye is the corresponding Yukawa coupling and

fa the axion decay constant. a(x) is the varying axion field.
For neutrons the corresponding coupling would be enhanced
by a factor �20/30. The main uncertainty here is the value
to assume for 〈∂xa(x)〉. This quantity also determines ζ .

A pion condensate could make influence on electrons with
a coupling of 10−3 less than for photons which is related to
the π → e+e− decay [52]. We follow Ref. [42] and refer the
reader to it for more details. As for neutrons, the influence of
a varying pion condensate would be substantially larger and
it can be estimated to be of order

b � gπNN
〈∂xπ(x)〉

fπ
. (37)

Thus b is potentially large in such a situation.
Well known estimates indicate that the Fermi energy is

of the order of 0.10 MeV for the degenerate electrons inside
a white dwarf and of the order of 50 MeV for the degener-
ate neutrons in a typical neutron star. Clearly in both cases
εF << m and therefore a non-relativistic approximation
such as the one used to establish the energy levels is reason-
able.

Possibly the clearest effect predicted is the splitting of
the Fermi sea in two separate sets corresponding to differ-
ent fermion ‘species’ that obey different dispersion relations.
In the non-relativistic approximation the two Fermi levels
are separated by the quantity 2b. Under sufficient gravita-
tional pressure the two levels will tend to equilibrate with a
subsequent copious emission of photons with characteristic
frequency ∼b. Depending on specific details these sudden
bursts could correspond to low frequency radio waves. The
qualitative estimations of the rate of this interesting process
will be done elsewhere.

The possible consequences due to the change in the trans-
mission and reflection properties of photons are harder to
estimate. In stars it takes a long time for radiation to reach
surface. For instance, in the Sun the photon diffusion time
scale is ∼105 years [53]. Neutron stars are much denser
(ρ ∼ ρ0), so the mean free path of photons is very small
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(a full picture about the structure of neutron stars can be
found in [54]) and it is accepted that, after an initial stage
dominated by neutrino emission, during most of the life of
the star heat transfer proceeds through thermal diffusion in
the highly degenerate neutron gas and radiative cooling is
only effective in the outer layers of the star (crust and atmo-
sphere). The internal temperature is nearly constant thanks to
the high thermal conductivity of the neutrons, a consequence
of their extremely large mean free paths as befits a nearly
degenerate Fermi gas. The actual rate of cooling of a neutron
star depends very substantially on the opacity of the outer
layers (‘heat blanketing envelope’ [54]). Thus it seems that
the mechanisms discussed in this work could be relevant for
cooling if large pseudoscalar gradients are present near the
star’s crust, assuming of course that the commonly accepted
cooling mechanisms are correct.

White dwarfs are constituted by a highly degenerate rel-
ativistic electron gas and the mechanism of cooling in their
quasi-steady state proceeds very similarly [55,56]. Electron–
electron interactions are clearly subdominant for same reason
as neutrons in a neutron star, and transport is dominated by
electron–ion interactions (ions can be treated classically as
the temperature is comparable to their chemical potential,
while T � μe). Not only that, actually most of the white
dwarf heat is stored in the positive ions (recall that for the
ions classically Ci

V ∼ 3
2 Ni , whereas for the electron degen-

erate Fermi gas Ce
V ∼ NeT/εF � Ci

V ). Photons in the few
keV range do not interact easily with electrons due to the
quantum degeneracy of the latter having a Fermi energy of
the order of 0.10–0.20 MeV but they do interact easily with
ions and radiative cooling is mostly relevant in the external
layers of the star.

In any case the mechanisms discussed here work in the
direction of retarding the process of radiative cooling inas-
much as the latter is relevant. Not only a large fraction of the
photons may be reflected; half of them may actually be unsta-
ble if the right conditions are given and may rapidly decay to
fermion–antifermion pairs helping populate the electron sea.

We have considered other possible influences of the dis-
torted dispersion relations, such as changes in the fermion
conductivity, but they are too small to be taken into account.

9 Conclusions

In this work we have investigated how the appearance of a
pseudoscalar condensate may change the properties of pho-
tons and fermions inside a stellar matter.

While the formal aspects of the work presented here are
well founded, the practical relevance of the present study
hinges on a number of hypotheses. In particular, we have to
assume that parity may be spontaneously broken due to the
high density, to the presence of some axion condensate, or

both. We have to accept that several domains of these char-
acteristics form in the central part of the star, if our model
pretend to make a contribution to the compact star inner pro-
cesses. At the very least there should be one domain sur-
rounded by an external crust where parity is not broken.

We also have to assume that the characteristic scale of
these domains and also the intermediate transition regions
are much larger than typical wave length of photons (and
electrons) present in the star. This last assumption seems
guaranteed.The paper considers the situation when the pseu-
doscalar profile is given by two constant values at x < x−
and x > x+ with a linear interpolation in the intermediate
region. Certainly it would be more realistic to consider a setup
where the gradient varies smoothly at length scales much
longer than the photon / fermion wavelength. In this case it
can be interpolated in piecewise line approximation, i.e. the
result could be found by combining several domains with
constant CS vector in the spirit of Fig. 1 and corresponding
convolution of photon reflection/transmission coefficients.
We postpone this interesting case to a forthcoming paper.

The appearance of a pseudoscalar condensate in nuclear
matter at high baryon densities has not yet been observed
but it is predicted theoretically in a solid way [24–26]. On
the other hand different authors have speculated with the
existence of axion condensates (of a Bose–Einstein type)
with radii ranging from 10 km to 104 or 105 km. These are
very relevant sizes for stellar physics.

Then if these hypotheses hold the mechanism of stabiliza-
tion of the star and even the very process of cooling can be
affected by the presence of a CS vector induced by a varying
pseudoscalar condensate. There is little or none model depen-
dence in the predictions of this phenomenon. The transition
regions are described by Maxwell–Chern–Simons electrody-
namics and their consequences can be worked out indepen-
dently of the microscopic details of pion/axion condensation.
However, in order to get a numerical estimate of the modified
cooling rate the present mechanism would require a knowl-
edge of the distribution of the different domains, at least in
average, and more importantly an estimate of the value of
the pseudoscalar gradients relevant in the present context of
stellar plasmas.

Among the effects that we have predicted we list the fol-
lowing: (a) photons and fermions get a distorted spectrum.
The former have non-trivial reflection coefficients by lay-
ers where the pseudoscalar density, whatever its origin may
be, varies. Inasmuch as radiative processes are relevant, i.e.
particularly in regions close to the surface of the star if a sub-
stantial pseudoscalar gradient is present, they can be severely
affected retarding the cooling of the star. (b) A similar effect is
present for fermions helping them to build up larger densities
in the star’s inner regions but its relevance is much smaller
than for photons. However, one half of the fermions are found
to be unstable in the presence of the axial background and can
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potentially decay with the emission of a photon. Only a small
fraction of fermions can actually decay due to Pauli’s exclu-
sion principle. This would have the opposite effect of helping
to cool the star to some extent (radiative cooling is inefficient
in the inner parts of a compact star). (c) A mismatch between
the Fermi seas corresponding to the two type of fermions may
be suddenly rearranged due to the star gravitational pressure
causing photon emission with a well-determined spectrum
(Fast Radio Bursts? see [57]). Needless to say the practical
relevance of these effects depends mostly on the magnitude
of the parity-breaking parameters ζ and b.

Of course if parity is broken inside a star other conse-
quences should follow since this would undoubtedly modify
the equation of state. There could also be photon birefrin-
gence [50] at the boundary layer and photon instability [51].
All taken together could help to detect parity breaking in
dense (or not so dense) stars.

If focusing particularly on neutron stars the models should
describe the cooling rate of these objects. In [58] a predicted
decay time was obtained from a model of color supercon-
ductivity and in a recent paper [59] it was shown how the
crust cooling may depend on the presence and properties of
nuclear matter. In [60,61] one may find the review of differ-
ences between the theoretical predictions and experimental
data. All in all, it seems fair to conclude that we still do not
have a good understanding of the cooling of neutron stars.

In the near future a number of new astrophysical instru-
ments will provide various information on neutron stars (see
the recent review [62]). In particular, the Neutron Star Interior
Composition Explorer (NICER) [63] to be launched in 2016
is expected to discover tens of thousands of neutron stars
and help understanding their core phenomena and to unravel
footprints of parity breaking due to pseudoscalar condensa-
tion.
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Appendix A: Solutions of MCS wave equation

We build polarization vectors using the projector on the plane
transverse vectors kμ, ζν [64]

Sν
λ ≡ δ ν

λ D + kν kλ ζ 2 + ζ ν ζλ k
2

− ζ · (ζλ k
ν + ζ ν k λ); (A.1)

D ≡ (ζ · k)2 − ζ 2 k2 = 1
2 Sν

ν .

With a help of the latter equality one can find that

S μλ ελναβ ζ αkβ = D ε
μ
ναβ ζ αkβ. (A.2)

Then to our purpose it is convenient to introduce two
orthonormal, one-dimensional, Hermitian projectors

π
μν
± ≡ S μν

2D
± i

2
εμναβ ζα kβ D− 1

2

= (

π
νμ
±

)∗ = (

π
μν
∓

)∗ ; (D > 0). (A.3)

A couple of chiral polarization vectors for the MCS field can
be constructed out of constant tetrads εν

ε
μ∗
± (k) ≡ π

μλ
± εμ. (A.4)

Their properties were thoroughly described in [64].
In order to obtain the normal modes of propagation of the

MCS field, let us introduce the kinetic 4×4 Hermitian matrix
K with elements

K λν ≡ g λν(k
2 − m2

t ) + iελναβ ζ αkβ;
K λν = K ∗

νλ. (A.5)

We obtain the general solution for ζ · x < 0 from Eqs. (A.3),
(A.4):

K μ
ν ε ν

L (k) = (k2 − m2
t ) ε

μ
L (k),

K μ
ν ε ν±(k)

=
[

δ μ
ν(k

2 − m2
t ) + √

D
(

π
μ
+ ν − π

μ
− ν

)

]

ε ν±(k)

=
(

k2 − m2
t ± √

D
)

ε
μ
± (k). (A.6)

Appendix B: Solution of modified Dirac equation

We start from the Dirac equation written in momentum phase
space:

(γ μ pμ − m − γ μbμγ 5)ψ = 0. (B.7)

It is convenient to consider the expression:

γ 0γ 1γ 5 = −iγ 0γ 1γ 0γ 1γ 2γ 3

= −iγ 2γ 3 = −
(

σ1 0

0 σ1

)

≡ −σ̂1. (B.8)
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Using this expression and multiplying the first equation by
γ 0 we get

(γ 0γ μ pμ − γ 0m + bσ̂1)ψ = 0. (B.9)

Now we introduce two projectors,

P± ≡ I ± σ̂1

2
; ψ± = P±ψ. (B.10)

One can use these projectors to simplify (B.9) with a help of
the next expressions,

[σ̂1, γ0] = 0; [σ̂1, γ1] = 0;
{σ̂1, γ2} = 0; {σ̂1, γ3} = 0, (B.11)

namely,

P+(γ 0γ μ pμ − γ 0m + bσ̂1)ψ = 0

⇐⇒ (p0 − α1 p1 − γ 0m + b)ψ+ − α⊥ p⊥ψ− = 0

(B.12)

and

(p0 − α1 p1 − γ 0m − b)ψ−α⊥ p⊥ψ+ = 0; (B.13)

where αi = γ 0γ i and α⊥ p⊥ = α2 p2 + α3 p3. To solve Eqs.
(B.12) and (B.13) we multiply (B.12) by α⊥ p⊥ and get

ψ− = (α⊥ p⊥)(p0 − α1 p1 − γ 0m + b)

p2⊥
ψ+. (B.14)

Using this relation one can easily write,
[

(p0 − α1 p1 − γ 0m − b)
α⊥ p⊥
p2⊥

× (p0 − α1 p1 − γ 0m + b) − α⊥ p⊥
]

ψ+ = 0; (B.15)

and for ψ−, ψ+ get equations,

(p2
0 − p2 − m2 − b2 ± 2b(α1 p1 + γ 0m))ψ± = 0 (B.16)

To solve this equation we express ψ± as ψ± =
(

φ±
ξ±

)

. Using

new notation we rewrite (B.16) as

(p2
0 − p2 − m2 − b2 ± 2bm)φ± ± 2bp1σ1ξ± = 0 (B.17)

(p2
0 − p2 − m2 − b2 ∓ 2bm)ξ± ± 2bp1σ1φ± = 0 (B.18)

From these equations it is easy to get
[

(p2
0 − p2 − m2 − b2)2 − 4b2m2 − 4b2 p2

1

]

φ± = 0,

(B.19)

wherefrom the dispersion law is,

p2
0 = p2 + m2 + b2 ± 2b

√

m2 + p2
1 . (B.20)

Thus the Dirac field ψ(x) may be written in form,

ψ(x) =
∑

A=±
uA(p)e−i p̂x̂+p1Ax1, (B.21)

where

p1∓

=
√

p2
0 − p2⊥ + 3b2 − m2 ± 2b

√

p2
0 − p2⊥ + 2b2 − 2m2.

Appendix C: Transmission/reflection through
the boundary

Equation (4) in a half-space x1 > 0 enforce v to satisfy the
following conditions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ṽ2+−→← = k2k3+iω
√

ω2−k2⊥
ω2−k2

2
ṽ3+−→←;

ṽ2−−→← = k2k3−iω
√

ω2−k2⊥
ω2−k2

2
ṽ3−−→←;

ṽ0+−→← = −ωk3−ik2

√

ω2−k2⊥
2(ω2−k2⊥)

ṽ3+−→←;

ṽ0−−→← = −ωk3+ik2

√

ω2−k2⊥
2(ω2−k2⊥)

ṽ3−−→←;
ṽ2L−→← = k2

k3
ṽ3L−→←;

ṽ0L−→← = − ω
k3

ṽ3L−→← .

(C.22)

Thus we have the solutions in both half-spaces, and we should
now match them on the boundary. If we believe that all con-
tribution to the vector field A are continuous, the integration
over x1 from −ε to ε will give us the next relations [48]

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ũ(L)
0→ = ω2

ω2−k2⊥
ũ0→ + ωk3

ω2−k2⊥
ũ3→ + ωk2

ω2−k2⊥
ũ2→;

ũ(±)
0→ = − k2⊥

2(ω2−k2⊥)
ũ0→ − ωk3∓ik2

√

ω2−k2⊥
2(ω2−k2⊥)

ũ3→

−ωk2±ik3

√

ω2−k2⊥
2(ω2−k2⊥)

ũ2→.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ũ(L)
2→ = − k2

2
ω2−k2⊥

ũ2→ − ωk2
ω2−k2⊥

ũ0→

− k2k3
ω2−k2⊥

ũ3→;

ũ(±)
2→ = ω2−k2

3
2(ω2−k2⊥)

ũ2→ + ωk2∓ik3

√

ω2−k2⊥
2(ω2−k2⊥)

ũ0→

+ k2k3∓iω
√

ω2−k2⊥
2(ω2−k2⊥)

ũ3→.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ũ(L)
3→ = − k2

3
ω2−k2⊥

ũ3→ − ωk3
ω2−k2⊥

ũ0→

− k2k3
ω2−k2⊥

ũ2→;

ũ(±)
3→ = ω2−k2

2
2(ω2−k2⊥)

ũ3→ + ωk3±ik2

√

ω2−k2⊥
2(ω2−k2⊥)

ũ0→

+ k2k3±iω
√

ω2−k2⊥
2(ω2−k2⊥)

ũ2→
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where ũν→ = ∑

A=L ,± ũ(A)
ν→. Each component of the incom-

ing amplitudes has its own transmission coefficient [48],

ṽνA→ = 2k0
1

k0
1 + kCS

1A

ũ(A)
ν→. (C.23)

Appendix D: Boundary effects for electrons

If we are interested in electrons escaping the parity-breaking
domain, we use the next solutions,

ψ1(x) =
∑

A=±
uA→(p)e−i p̂x̂+p1Ax1

+
∑

A=±
uA←(p)e−i p̂x̂−p1Ax1; (D.24)

ψ2(x) = w(p)e−i p̂x̂+p10x1 . (D.25)

Here the first term in ψ1 stands for the falling electrons, the
second term is for the reflected ones. ψ2 describes electrons
penetrating through the boundary and propagate in accor-

dance to the Dirac equation with p10 =
√

p2
0 − p2⊥ − m2.

The Dirac equation of our system may be used to obtain
matching conditions, we consider the small area near the
boundary,

(iγ μ∂μ − m − γ μbμγ5)ψ |x1=+ε
x1=−ε = 0. (D.26)

Using our choice of the b-vector, we get

(iγ 1∂1 − γ 1bθ(−x1)γ
5)ψ |+ε−ε = 0. (D.27)

Continuity of ψ is the first matching condition. Since ψ is
continuous, the previous expression leads to

∂1ψ |x1=+ε − ∂1ψ |x1=−ε = −ibγ 5ψ |x1=0. (D.28)

We now use the (D.24, D.25) forms of solutions and rewrite
matching conditions in components,

p1A(uA0← − uA0→) − p10wA0 = bwA2;
p1A(uA1← − uA1→) − p10wA1 = bwA3;
p1A(uA2← − uA2→) − p10wA2 = bwA0;
p1A(u3A← − uA3→) − p10wA3 = bwA1,

or, since wμ = u→μ + uμ←,

uA0← = 2bp1AuA2→ − (p2
1A − p2

10 + b2)uA0→
b2 + (p1A + p10)2 ;

uA1← = 2bp1AuA3→ − (p2
1A − p2

10 + b2)uA1→
b2 + (p1A + p10)2 ;

uA2← = 2bp1AuA0→ − (p2
1A − p2

10 + b2)uA2→
b2 + (p1A + p10)2 ;

uA3← = 2bp1AuA1→ − (p2
1A − p2

10 + b2)uA3→
b2 + (p1A + p10)2 .

To give some quantitative effects let us try to describe
the process of reflection of electrons. We deal with wave
functions ψ , however; only |ψ |2 has the physical meaning.
Let us for simplicity take the propagating electron with

uμ→ = (0, u1, 0, 0)

and assume that this particle is on the mass-shell p1 =
p1A( p̂). In this case after the reflection of the boundary

we would get uμ← = (0,
−(p2

1A−p2
10+b2)u1

b2+(p1A+p10)2 , 0,
2bp1Au1

b2+(p1A+p10)2 )

and

|ψ |2reflected

|ψ |2initial

= 4b2 p2
1A + (p2

1A − p2
10 + b2)2

(b2 + (p1A + p10)2)2 . (D.29)
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