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Abstract In this article, we propose a model for a real-
istic strange star under Tolman VII metric (Tolman, Phys
Rev 55:364, 1939). Here the field equations are reduced to a
system of three algebraic equations for anisotropic pressure.
Mass, central density and surface density of strange star in
the low-mass X-ray binary 4U 1820-30 are matched with the
observational data according to our model. Strange materi-
als clearly satisfy the stability condition (i.e. sound velocities
<1) and TOV equation. Here also the surface redshift of the
star is found to be within a reasonable limit.

1 Introduction

Compact objects have attracted great attention for a long
time. Several researchers [1–10] investigated compact stars
analytically or numerically. Stars, in general, evolve by burn-
ing lighter elements into heavier nuclei from the time of
birth. In the end of nuclear burning white dwarfs, neutron
stars, quark stars, dark stars and eventually black holes may
form due to strong gravity. To include the effects of local
anisotropy, Bowers and Liang [11] stressed the importance
of local anisotropic equations of state for a relativistic fluid
sphere. They showed that anisotropy may have effects on
such parameters as the maximum equilibrium mass and the
surface redshift. In a stellar system, Ruderman [12] argued
that, in the very high density range (∼1015 gm cm−3), nuclear
matter may have anisotropic features and the nuclear inter-
action should be treated relativistically. The anisotropy in
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matter indicates that the radial pressure (pr ) is not the same
as the tangential pressure (pt ). A star becomes anisotropic
if its matter density exceeds the nuclear density [11,13,14].
This phenomenon may occur in the presence of a solid core,
a phase transition, a electromagnetic field etc. 4U 1820-30
resides in the globular cluster NGC 6624. It is an ultra-
compact binary and has an orbital period of 11.4 min [15].
During Rossi X-ray Timing Explorer (RXTE) observations,
it has been observed that 4U 1820-30 exhibits a super-
burst. Possibly this is due to burning of a large mass of car-
bon [16]. The 4U 1820-30 exhibits a super-burst, however,
these strange stars may be made of chemically equilibrated
strange matter. Scientists are searching for a matter distri-
bution which should be incorporated in the energy momen-
tum tensor to describe the strange stars. This paper depicts
how this is accomplished mathematically and discusses the
consequences of the properties of the strange stars. There
are many high mass stars, found in different types of pulsar
binaries. In these cases the masses rely on the observation of
the periastron advance, which is believed to be due to gen-
eral relativistic effects only rather than other effects such as
rotationally and tidally induced quadrupoles. One of the use-
ful tools for determining the masses of the compact stars is
X-ray eclipses. The binary eclipses are approximated analyt-
ically by assuming that the companion star is spherical with
effectively a Roche lobe radius.

In 1939, Tolman [17] proposed static solutions for a sphere
of fluid. In that article, he pointed out that due to the complex-
ity of the VIIth solution (among the eight different solutions),
it is not a feasible one for physical consideration [there was
a misprint in the Tolman solution VII (4.7) but that does not
affect the original solution]. It seems to be due to the com-
plicated nature of the solution that he was not able to provide
more physical properties of the solution. Rather we say that
he did not try to explore physics of his solution VII due to the
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complexity of the solution. We thought this solution may illu-
minate some physics. In this work, we have shown that this
solution would be interesting in the sense that this solution
corresponds to the interior of strange stars. We, here, want
to check the feasibility of our model by taking the Tolman
solution VII.

Motivated by the above fact, we are specifically interested
in modelling the strange star in the low-mass X-ray binary
4U 1820-30. We compare our measurements of mass, radius,
central density, surface density and surface redshift with the
strange star in the low-mass X-ray binary 4U 1820-30 and it
is found to be consistent with the standard data [18].

The density within the strange stars is normally beyond
the nuclear matter density. The theoretical advance in the
last few decades indicates that pressures within the stars are
anisotropic. Thus one would expect that anisotropy plays a
major role in modelling these stars.

We consider that the interior spacetime geometry of the
strange star is Tolman VII type and try to investigate the mat-
ter distributions which produce this spacetime. Our calcula-
tions show that the matter distribution that produces a Tol-
man VII type spacetime geometry should be anisotropic. This
helps us in modelling the strange star which is anisotropic
in nature as the density within the strange stars is normally
beyond the nuclear matter density.

In this work, we choose the interior spacetime geometry
of the strange star to be Tolman VII type and try to investi-
gate the matter distributions which produce this spacetime.
We assume only a Tolman VII spacetime for modelling the
strange stars. The other solutions of Tolman are not inter-
esting for us as far as we have learned in our studies [17].
In the Tolman I solution, eν = constant, i.e. the redshift
function is constant and therefore not interesting. Tolman
II corresponds to the Schwarzschild–de Sitter solution. For
the Tolman III solution, the energy density is constant and
therefore not interesting. In Tolman IV and V, the redshift
functions are very specific and therefore not interesting. In
Tolman VI, the coefficient of dr2 has been taken as con-
stant. Therefore we do not consider it. The Tolman VIII
solution,

ds2 = e−λ[B2r2bdt2 − dr2 − r2eλdθ2 + sin2θdφ2],

is conformally related to the metric whose redshift function
is very specific (polynomial function of r). So, we discard it.

We organize our paper as follows.
In Sect. 2, we provide the basic equations in connection

to the Tolman VII metric. In Sect. 3, we study the phys-
ical behaviours of the star, namely, anisotropic behaviour,
matching conditions, TOV equations, energy conditions,
stability and mass–radius relation and surface redshift in
different sub-sections. The article concludes with a short
discussion.

2 Interior solution

We assume that the interior spacetime of a star is described
by the metric

ds2 = −B2 sin2 ln
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where R, C , A, B are constants. Such a type of metric as
(1) was proposed by Tolman [17] (known as the Tolman VII
metric) to develop a viable model for a star. We assume that
the energy-momentum tensor for the interior of the star has
the standard form,

T μ
ν = (−ρ, pr , pt , pt ), (2)

where ρ is the energy density, pr and pt are the radial and
transverse pressure, respectively. Einstein’s field equations
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3 Analysis of physical behaviour

In this section we will discuss the following features of the
anisotropic strange star.

3.1 Density and pressure behaviour of the star

Now from Eqs. (3) and (6) we get

ρ = 1
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.

Therefore, ρ0 = 3

8π R2 ,
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,

where we have assumed that b is the radius of the star and ρ0

and ρb is the matter density at the centre and surface of the
star.

Now we will check whether at the centre of the star matter
density dominates or not. We see that

dρ

dr
= − 5r

π A4 < 0,

dρ

dr
(r = 0) = 0,

d2ρ

dr2 (r = 0) = − 5

π A4 < 0.

Clearly, at the centre of the star, density is maximum and it
decreases radially outward.

Similarly, from Eq. (4), we get
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Now, at the centre (r = 0),

d pr

dr
(r = 0) = 0

and
d2 pr

dr2 (r = 0) =< 0.

Therefore, at the centre, we also see that the radial pressure
is maximum and it decreases from the centre towards the
boundary. Thus, the energy density and the radial pressure are
well behaved in the interior of the stellar structure. Variations
of the energy density and two pressures have been shown in
Figs. 1 and 2, respectively.

The anisotropic parameter 	(r) = (pt − pr ), represent-
ing the anisotropic stress, is given by Fig. 3. The ‘anisotropy’
will be directed outward when pt > pr , i.e. 	 > 0, and
inward when pt < pr i.e. 	 < 0. It is apparent from Fig.
3 for our model that a repulsive ‘anisotropic’ force (	 > 0)
allows for the construction of more massive distributions.

The dimensionless quantity ω(r) = pr +2pt
3ρ

determines a
measure of the equation of state. The plot (Fig. 4) for ω(r)

Fig. 1 Variation of the energy density (ρ) at the stellar interior of the
strange star. We have taken the numerical values of the parameters as
b = 10, R = 26.25, A = 25.999, C = 0.05391
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Fig. 2 Variation of the radial and transverse pressure at the stellar inte-
rior of the strange star. We have taken the numerical values of the param-
eters as b = 10, R = 26.25, A = 25.999, C = 0.05391

Fig. 3 Effective anisotropic behaviour 	(r) at the stellar interior of
the strange star. We have taken the numerical values of the parameters
as b = 10, R = 26.25, A = 25.999, C = 0.05391

shows that the equation of state parameter is less than unity
within the interior of the strange star.

3.2 Matching conditions

The interior metric of the star should be matched to the
Schwarzschild exterior metric at the boundary (r = b),

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2d�2.

(10)

Assuming the continuity of the metric functions gtt , grr and
∂gtt
∂r at the boundary, we get

Fig. 4 Variation of dimensionless quantity ω(r) = pr +2pt
3ρ

, which
determines a measure of the equation of state at the stellar interior of
the strange star. We have taken the numerical values of the parameters
as b = 10, R = 26.25, A = 25.999, C = 0.05391
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Now from Eq. (11), we get the compactification factor

M
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3.3 TOV equation

For an anisotropic fluid distribution, the generalized TOV
equation has the form

d pr

dr
+ 1

2
ν′ (ρ + pr ) + 2

r
(pr − pt ) = 0. (14)

Following [19], we write the above equation as

− MG (ρ + pr )
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+ 2

r
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where MG(r) is the gravitational mass inside a sphere of
radius r and is given by

MG(r) = 1

2
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ν−λ
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and eλ(r) = (1 − r2

R2 + 4 r4

A4 )−1, which can easily be derived
from the Tolman–Whittaker formula and the Einstein field
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Fig. 5 Behaviours of pressure anisotropy and gravitational and hydro-
static forces at the stellar interior of strange star. We have taken the
numerical values of the parameters as b = 10, R = 26.25, A =
25.999, C = 0.05391

equations. The modified TOV equation describes the equi-
librium condition for the strange star subject to an effective
gravitational (Fg) and effective hydrostatic (Fh) plus another
force due to the effective anisotropic (Fa) nature of the stellar
object as

Fg + Fh + Fa = 0, (17)

where the force components are given by

Fg = −1

2
ν′ (ρ + pr ), (18)

Fh = −d pr

dr
(19)

and

Fa = 2

r
(pt − pr ) . (20)

We plot (Fig. 5) the behaviours of the pressure anisotropy, and
the gravitational and hydrostatic forces in the interior region,
which shows clearly that the static equilibrium configurations
do exist due to the combined effect of pressure anisotropy and
gravitational and hydrostatic forces.

3.4 Energy conditions

All the energy conditions, namely the null energy condition
(NEC), the weak energy condition (WEC), the strong energy
condition (SEC) and the dominant energy condition (DEC),
are satisfied at the centre (r = 0).

(i) NEC: p0 + ρ0 ≥ 0,
(ii) WEC: p0 + ρ0 ≥ 0, ρ0 ≥ 0,

Fig. 6 Variation of the radial and transverse sound speed of the strange
star. We have taken the numerical values of the parameters as b =
10, R = 26.25, A = 25.999, C = 0.05391

(iii) SEC: p0 + ρ0 ≥ 0, 3p0 + ρ0 ≥ 0,
(iv) DEC: ρ0 > |p0|.

We assume the numerical values of the parameters R =
26.25, A = 25.999, C = 0.05391 to calculate the above
energy conditions.

3.5 Stability

For a physically acceptable model, one expects that the veloc-
ity of sound should be within the range 0 ≤ v2

s = (
d p
dρ

) ≤ 1
[14,20]. According to Herrera’s [14] cracking (or overturn-
ing) condition: The region for which radial speed of sound
is greater than the transverse speed of sound is a potentially
stable region.

In our case (anisotropic strange stars), we plot the radial
and transverse sound speeds in Fig. 6 and observe that these
parameters satisfy the inequalities 0 ≤ v2

sr ≤ 1 and 0 ≤
v2

st ≤ 1 everywhere within the stellar object. We also note
that v2

st − v2
sr ≤ 1. Since, 0 ≤ v2

sr ≤ 1 and 0 ≤ v2
st ≤ 1,

we have | v2
st − v2

sr |≤ 1. In Fig. 7, we have plotted | v2
st −

v2
sr |. We notice that v2

st < v2
sr throughout the interior region.

In other words, v2
st < v2

sr keeps the same sign everywhere
within the matter distribution, i.e. no cracking will occur.
These results show that our anisotropic compact star model
is stable.

3.6 Mass–Radius relation and surface redshift

In this section, we study the maximum allowable mass–
radius ratio in our model. According to Buchdahl [21], for a
static spherically symmetric perfect fluid the allowable mass–
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Fig. 7 Variation of |v2
st − v2

sr | of the strange star

Fig. 8 Variation of the mass function of the strange star. We have taken
the numerical values of the parameters as b = 10, R = 26.25, A =
25.999, C = 0.05391

radius ratio is given by 2Mass
Radius < 8

9 . Mak et al. [22] also gave
more generalized expression. In our model the gravitational
mass in terms of the energy density ρ can be expressed as

M = 4π

b∫

0

ρ r2dr = b

2

[
b2

R2 − 4
b4

A4

]

. (21)

The compactness of the star is given by

u = M(b)

b
= 1

2

[
b2

R2 − 4
b4

A4

]

. (22)

The nature of the mass and compactness of the star from the
centre are shown in Figs. 8 and 9.

The surface redshift (Zs) corresponding to the above com-
pactness (u) is obtained as

Fig. 9 Variation of the compactness of the strange star. We have taken
the numerical values of the parameters as b = 10, R = 26.25, A =
25.999, C = 0.05391

Fig. 10 Variation of the redshift function of the strange star. We
have taken the numerical values of the parameters as b = 10, R =
26.25, A = 25.999, C = 0.05391

1 + Zs = [1 − (2u)]−
1
2 , (23)

where

Zs = 1
√

1 − b2

R2 + 4 b4

A4

− 1. (24)

Thus, the maximum surface redshift for the anisotropic
strange stars of different radius could be found very eas-
ily from Fig. 10. We calculate the maximum surface red-
shift for our configuration using the numerical values of the
parameters as b = 9.5, R = 16.9, A = 24.18 and we get
Zs = 0.375. The nature of the surface redshift of the star is
shown in Fig. 10.
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4 Conclusion

In this work we have investigated the nature of anisotropic
strange stars in the case of the low-mass X-ray binary 4U
1820-30 by making the following considerations: (a) The
stars are anisotropic in nature i.e. pr �= pt . (b) The space-
time of the strange stars can be described by the Tolman VII
metric.

The results are quite interesting: (i) Though the radial pres-
sure (pr ) vanishes at the boundary (r = b), the tangential
pressure (pt ) does not. However, at the centre of the star, its
anisotropic behaviour vanishes. (ii) Our model is well stable
according to the Herrera stability condition [14]. (iii) From
the mass–radius relation, any interior features of the star can
be evaluated.

Therefore, our overall features of anisotropic strange stars
under the Tolman VII metric satisfy all physical requirements
of a stable star.

It is to be noted that while solving Einstein’s equations as
well as for plotting, we have set c = G = 1. Now, plugging
G and c into the relevant equations, the values of the central
density and surface density of our strange star turn out to
be ρ0 = 0.55 × 1015 gm cm−3 and ρb = 0.27 × 1015

gm cm−3 for the numerical values of the parameters b =
9.5, R = 16.9, A = 24.18. Also, the mass of our strange
star is calculated as 1.01M�. Interestingly, we observe that
the measurement of the mass, radius and central density of
our strange star are almost consistent with the strange star in
the low-mass X-ray binary 4U 1820-30 [18].

Recently, Cackett et al. [23] reported that the gravitational
redshift of the strange star in the low-mass X-ray binary 4U
1820-30, based on the modelling of the relativistically broad-
ened iron line in the X-ray spectrum of the source observed
with Suzaku is Zs = 0.43. The surface redshift of our strange
star with radius 9.5 km turns out to be 0.375. This indicates
that the measurement of the redshift of our strange star is
nearly in compliance with the strange star in the low-mass
X-ray binary 4U 1820-30.

Finally, we conclude by pointing out that spacetime com-
prising the Tolman VII metric with anisotropy may be used
to construct a suitable model of a strange star in the low-mass
X-ray binary 4U 1820-30.
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