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Abstract We consider a modified gravity plus single scalar-
field model, where the scalar Lagrangian couples symmetri-
cally both to the standard Riemannian volume-form (space-
time integration measure density) given by the square root
of the determinant of the Riemannian metric, as well as to
another non-Riemannian volume-form in terms of an aux-
iliary maximal-rank antisymmetric tensor gauge field. As
shown in a previous paper, the pertinent scalar-field dynam-
ics provides an exact unified description of both dark energy
via dynamical generation of a cosmological constant, and
dark matter as a “dust” fluid with geodesic flow as a result of
a hidden Noether symmetry. Here we extend the discussion
by considering a non-trivial modification of the purely grav-
itational action in the form of f (R) = R − αR2 generalized
gravity. Upon deriving the corresponding “Einstein-frame”
effective action of the latter modified gravity-scalar-field the-
ory we find explicit duality (in the sense of weak versus strong
coupling) between the original model of unified dynamical
dark energy and dust fluid dark matter, on one hand, and a
specific quadratic purely kinetic “k-essence” gravity–matter
model with special dependence of its coupling constants on
only two independent parameters, on the other hand. The
canonical Hamiltonian treatment and Wheeler–DeWitt quan-
tization of the dual purely kinetic “k-essence” gravity–matter
model is also briefly discussed.

1 Introduction

The unified description of dark energy and dark matter as a
manifestation of a single entity of matter has been an impor-
tant challenge in cosmology in the last decade or so (for
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extensive reviews of dark energy see [1–3], and for reviews
of dark matter see [4–6]).

Originally, a unified treatment of dark energy and dark
matter was proposed in the “Chaplygin gas” models [7–10].
Another trend aimed at unifying dark energy and dark matter
is based on the class of “k-essence” models [11–14], in par-
ticular, on the so-called “purely kinetic k-essence” models
[15] (for further developments, see [16–20]), which success-
fully avoid difficulties inherent in the generalized Chaplygin
gas models related to the non-negligible sound speed.

Also, recently a lot of interest has been attracted by the
so-called “mimetic” dark matter model proposed in [21,22].
The latter employs a special covariant isolation of the confor-
mal degree of freedom in Einstein gravity, whose dynamics
mimics cold dark matter as a pressureless “dust”. Further gen-
eralizations and extensions of “mimetic” gravity are studied
in Refs. [23,24].

Models of explicitly coupled dark matter and dark energy
described in terms of two different scalar fields were pro-
posed in Ref. [25].

In this paper we study a class of generalized models of
gravity interacting with a single scalar field employing the
method of non-Riemannian volume-forms on the pertinent
spacetime manifold, i.e., generally covariant integration mea-
sure densities independent of the standard Riemannian one
given in terms of the square root of the determinant of the
metric [26–29]. (For further developments, see Ref. [30].) In
this general class of models, also called “two-measure gravity
theories”, the non-Riemannian volume-forms are defined in
terms of auxiliary maximal-rank antisymmetric tensor gauge
fields (“measure gauge fields”).

The introduction of the two integration measures (one
standard Riemannian and the other a non-Riemannian one)
opens the possibility to obtain both dark energy and dark mat-
ter from a single scalar field dynamics, as already observed in
Ref. [31]. Subsequently, in Ref. [32] we have gone further and
have discovered the fundamental reason that a class of mod-
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els generalizing those studied in [31] describes a unification
of dark matter and dark energy as an exact sum of two sepa-
rate contributions in the pertinent energy-momentum tensor
(see also the review in Sect. 2 below). This is because of:

1. The appearance of an arbitrary integration constant from
a dynamical constraint on the scalar Lagrangian as a
result of the equations of motion for the auxiliary “mea-
sure” gauge field. This integration constant is identified
as a dynamically generated cosmological constant which
provides the dark energy component.

2. The existence of a hidden Noether symmetry of the non-
Riemannian-measure-modified scalar Lagrangian imply-
ing a conserved Noether current, which produces a
dark matter component as a “dust” fluid flowing along
geodesics.

This behavior is totally independent of the specific form of
the scalar field Lagrangian, as long as the scalar field couples
in a symmetric way to both of the measures. The latter also
ensures that the hidden “dust” Noether symmetry holds. In
addition, the fact that the dynamically generated cosmologi-
cal constant arises as an arbitrary integration constant makes
the observed vacuum energy density totally decoupled from
the parameters of the initial scalar Lagrangian.

In the present paper our main object of study is a non-
trivial extension of the modified gravity plus single scalar-
field model considered in [32], describing unification of dark
matter and dark energy. Namely, we now modify the purely
gravitational part of the action by introducing an extended
f (R)-gravity action with f (R) = R − αR2 within the first-
order Palatini formalism.1

This new non-Riemannian-measure-modified gravity-
scalar-field theory has some very interesting features. On
one hand, the hidden “dust” Noether symmetry of the scalar
field Lagrangian remains intact and so does the picture of
unified description through the pertinent energy-momentum
tensor of both the dynamical dark energy (via the dynamical
generation of the cosmological constant) and the “dust” dark
matter fluid, i.e., they appear as an exact sum of two separate
contributions to the corresponding energy density.

On the other hand, upon performing a transition to the
effective “Einstein frame” and upon the appropriate scalar-
field redefinition we arrive at a dual theory of a specific
quadratic purely kinetic “k-essence” form. In the dual purely
kinetic “k-essence” formulation the original “dust” Noether
symmetry is replaced by a simple shift symmetry of the trans-
formed scalar field.

1 Let us recall that R + R2 gravity within the second-order formalism
(which was also the first inflationary model) was originally proposed in
Ref. [33].

It is essential to put stress on the following important prop-
erties of the dual theory:

(a) All three constant coefficients in the quadratic purely
kinetic “k-essence” action are given in terms of only
two independent parameters: α (the R2 coupling con-
stant) and an arbitrary integration constant M produced
by a dynamical constraint resulting from the equation
of motion of the “measure” gauge field in the original
theory.

(b) Let us emphasize that in the present context applying the
notion of “duality” is justified in the usual sense of weak
coupling in the original theory versus strong coupling in
the dual theory. Indeed, as we will see below (Eq. (39))
all coupling constants in the dual quadratic purely kinetic
“k-essence” theory are functions of 1/α.

(c) In the limit α → 0 (strong coupling limit in the dual “k-
essence” theory) the physical quantities—energy density,
pressure etc. have well-defined smooth limiting values in
spite of the singularities in the coefficients of the “k-
essence” action. The latter limiting values coincide with
the corresponding values in the original gravity–matter
theory with a standard Einstein–Hilbert gravity action
(where α = 0). Thus, the established duality reveals an
important feature of the approximate description of uni-
fied dark energy and dark matter via the quadratic purely
kinetic “k-essence” model (Eq. 40 below)—it becomes
an exact unification of both dark species in the strong
coupling limit α → 0.

(d) In the limit α → 0 the dual theory parameter M precisely
coincides with the dynamically generated effective cos-
mological constant in the original theory [32]. Thus, in
this sense we can say that the dual purely kinetic “k-
essence” theory is (partially) dynamically generated.

The above list of properties epitomizes the new features in our
treatment of the purely quadratic “k-essence” theory w.r.t. to
the previous treatment in [15].

Now, an important remark is in order. In a number of
papers dealing with “dust-like” dark matter one uses the so-
called “Lagrangian multiplier gravity” formalism [34,35].
We would like to point out that this formalism is in fact a
special particular case of the above mentioned more general
and powerful approach based on non-Riemannian spacetime
volume-forms (being used also in the present paper), which
appeared earlier and which has a profound impact in any
(field theory) models with general coordinate reparametriza-
tion invariance, such as general relativity and its extensions
[26–32,36,37], strings and (higher-dimensional) membranes
[38], and supergravity [39].

Indeed, dynamical constraints like the one on the scalar-
field Lagrangian in Eq. (8) below, which routinely appear
in all instances of applying the non-Riemannian volume-
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form method in gravity–matter theories, resembles at first
sight analogous constraints on scalar-field Lagrangians in the
“Lagrangian multiplier gravity” [34,35]. However, employ-
ing the concept of non-Riemannian volume-forms in the form
of dual field strengths of auxiliary maximal-rank tensor gauge
fields (“measure gauge fields”) as in Eq. (3) below, instead of
bare Lagrange multiplier fields, has certain essential advan-
tages:

1. Dynamical constraints in “two-measure” gravity–matter
theories result from the equations of motion of the aux-
iliary “measure” gauge fields and, thus, they always
involve an arbitrary integration constant like M in Eq.
(8) below, as opposed to picking some a priori fixed
constant within the “Lagrange multiplier gravity” for-
malism. Depending on the specific gravity–matter theo-
ries with non-Riemannian volume-forms under consider-
ation, the pertinent arbitrary integration constant acquires
the meaning of a dynamically generated cosmological
constant like the integration constant M below (cf. Ref.
[26,39]).

2. Employing the canonical Hamiltonian formalism for
Dirac-constrained systems we find that the auxiliary
“measure” gauge fields are in fact almost pure gauge
degrees of freedom except for the above mentioned arbi-
trary integration constants which are identified with the
conserved Dirac-constrained canonical momenta conju-
gated to the “magnetic” components of the “measure”
gauge fields (see Appendix A in Ref. [37]).

3. Upon applying the non-Riemannian volume-form for-
malism to minimal N = 1 supergravity the dynam-
ically generated cosmological constant triggers spon-
taneous supersymmetry breaking and mass generation
for the gravitino (supersymmetric Brout–Englert–Higgs
effect) [39]. Applying the same formalism to anti-de Sit-
ter supergravity allows one to produce simultaneously
a very large physical gravitino mass and a very small
positive observable cosmological constant [39] in accor-
dance with modern cosmological scenarios for the slowly
expanding universe of the present epoch [1–3].

4. Employing two independent non-Riemannian volume-
forms in generalized gravity-gauge+scalar-field models
[36], thanks to the appearance of several arbitrary inte-
gration constants through the equations of motion w.r.t.
the “measure” gauge fields, we obtain a remarkable effec-
tive scalar potential with two infinitely large flat regions
(one for large negative and another one for large positive
values of the scalar field ϕ) with vastly different scales
appropriate for a unified description of both the early and
the late universe’s evolution. An interesting feature is the
existence of a stable initial phase of non-singular uni-
verse creation preceding the inflationary phase—a stable
“emergent universe” without “Big-Bang” [36].

The plan of the paper is as follows. In Sect. 2, for self-
consistency of the exposition, we briefly review [32], namely,
the basic aspects of the non-Riemannian volume-form
approach leading to dynamical generation of a cosmologi-
cal constant (dynamical dark energy) and revealing a hidden
Noether symmetry allowing for a “dust” fluid representation
of dark matter, such that both dark species appear as a sum
of two separate contributions to the energy-momentum ten-
sor. Section 3 contains the main result—establishing dual-
ity (in the standard sense of weak versus strong coupling)
between the original quadratic f (R)-gravity plus a modified-
measure scalar-field model, whose matter part yields an exact
unified description of dynamical dark energy and dust fluid
dark matter, on one hand, and a specific quadratic purely
kinetic “k-essence” gravity–matter model, on the other hand.
In Sect. 4 we analyze the above models within the canonical
Dirac-constrained Hamiltonian formalism and derive the cor-
responding quantum Wheeler–DeWitt equations in the cos-
mological Friedmann–Lemaitre–Robertson–Walker frame-
work.

2 Gravity–matter theory with a non-Riemannian
volume-form in the scalar-field action: exact
unification of dark energy and dust fluid dark matter

2.1 Non-Riemannian volume-form formalism

We start by considering the following non-conventional
gravity-scalar-field action—a particular case of the general
class of the so called “two-measure” gravity–matter theories
[27–29] (for simplicity we use units with the Newton con-
stant GN = 1/16π ):

S = Sgrav[gμν, �
λ
μν] +

∫
d4x

(√−g+�(B)
)
L(ϕ, X). (1)

The notations used here and below are as follows:

• The first term in (1) is the purely gravitational action in the
first-order (Palatini) formalism, where the Riemannian
metric gμν and the affine connection �λ

μν are a priori
independent variables. In the previous paper [32] we have
studied (1) with the simplest choice of Sgrav:

S =
∫

d4x
√−g R +

∫
d4x

(√−g + �(B)
)
L(ϕ, X),

(2)

where R denotes the scalar curvature—in this case the
first-order (Palatini) formalism is equivalent to the ordi-
nary second-order (metric) formalism.
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• The second term in (1)—the scalar-field action—is con-
structed in terms of two mutually independent volume-
forms:

(a)
√−g ≡ √− det ‖gμν‖ is the standard Rieman-
nian integration measure density (spacetime volume-
form);

(b) �(B) denotes an alternative non-Riemannian gener-
ally covariant integration measure density defining
an alternative non-Riemannian volume-form:

�(B) = 1

3!ε
μνκλ∂μBνκλ, (3)

where Bμνλ is an auxiliary maximal-rank antisymmetric
tensor gauge field independent of the Riemannian metric.
Bμνλ (3) is called a “measure gauge field”.

• L(ϕ, X) is the general coordinate invariant Lagrangian
of a single scalar field ϕ(x), which can be of an arbitrary
generic “k-essence” form [11–14]:

L(ϕ, X) =
N∑

n=1

An(ϕ)Xn − V (ϕ),

X ≡ −1

2
gμν∂μϕ∂νϕ,

(4)

i.e., a nonlinear (in general) function of the scalar kinetic
term X .

In this section we will concentrate on the scalar-field
action—the second term in (1). First, due to general coor-
dinate invariance we have covariant conservation of the per-
tinent energy-momentum tensor:

Tμν = gμνL(ϕ, X) +
(

1 + �(B)√−g

)
∂L

∂X
∂μϕ ∂νϕ,

∇νTμν = 0.

(5)

It follows from the equation of motion w.r.t. ϕ that

∂L

∂ϕ
+ (�(B)

+√−g
)−1

∂μ

[(
�(B) + √−g

)
gμν∂νϕ

∂L

∂X

]
= 0. (6)

Further, variation of the action (1) w.r.t. the “measure” gauge
field Bμνλ reads

∂μL(ϕ, X) = 0, (7)

i.e., the Bμνλ-equations of motion yield the following dynam-
ical constraint on the scalar-field Lagrangian:

L(ϕ, X) = −2M = const, (8)

where M is arbitrary integration constant. The factor 2 in
front of M is for later convenience; moreover, we will take
M > 0 in view of its interpretation as a dynamically gen-
erated cosmological constant [see Eqs. (10), (16), and (19)
below].

It is important to stress that the scalar-field dynamics is
determined entirely by the first-order differential equation—
the dynamical constraint Eq. (8), which, in the simplest case
of (4) (L(ϕ, X) = X − V (ϕ)) to be considered henceforth
for simplicity, implies

X − V (ϕ) = −2M −→ X = V (ϕ) − 2M. (9)

The standard second-order differential equation (6) is in fact
a consequence of (8) together with the energy-momentum
conservation ∇μTμν = 0 with

Tμν = −2Mgμν +
(

1 + �(B)√−g

)
∂μϕ∂νϕ. (10)

The physical meaning of the “measure” gauge field Bμνλ

(3) as well as the meaning of the integration constant M are
most straightforwardly seen within the canonical Hamilto-
nian treatment of (the scalar-field part of) (1)—this is sys-
tematically derived in Sect. 2 of Ref. [32]. Namely, using
short-hand notations for the components of Bμνλ (3):

�(B) = ∂μBμ = Ḃ + ∂iBi , Bμ ≡ 1

3!ε
μνκλBνκλ, (11)

B ≡ B0 = 1

3!ε
mkl Bmkl , Bi ≡ −1

2
εikl B0kl , (12)

we obtain for the canonically conjugated momenta πB, πBi

the set of Dirac first-class constraints:

πBi = 0, ∂iπB = 0 −→ πB = const ≡ −2M, (13)

where we have πB = L(ϕ, X) straightforwardly obtainable
from the explicit form of the action (1) taking into account the
representation of �(B) in (11). The above Dirac constraints
imply that all components of the “measure” gauge field Bμνλ

(12) are pure gauge (non-propagating) degrees of freedom.
The last relation in (13) is the canonical Hamiltonian ana-
log of Eq. (8) within the Lagrangian formalism—in other
words, the integration constant M in the Bμνλ-equations of
motion is (modulo a trivial numerical factor) a conserved
Dirac-constrained canonical momentum πB conjugated to
the “magnetic” component B of the “measure”-gauge field
Bμνλ (12).

For more details as regards the canonical Hamiltonian
treatment of general gravity–matter theories with (several
independent) non-Riemannian volume-forms we refer to
[37].
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2.2 “Dust” fluid conservation laws

In Ref. [32] we have shown that the scalar-field action in (1)
possesses a hidden Noether symmetry, namely (1) is invari-
ant (up to a total derivative) under the following nonlinear
symmetry transformations:

δεϕ = ε
√
X , δεgμν = 0,

δεBμνλ = −ε
1

2
√
X

εμνλκg
κρ∂ρϕ

(
�(B) + √−g

)
.

(14)

Then the standard Noether procedure yields the conserved
current:

∇μ J
μ = 0, Jμ ≡

(
1 + �(B)√−g

)√
2Xgμν∂νϕ

∂L

∂X
. (15)

Let us stress at this point that the existence of the hid-
den symmetry (14) of the action (1) does not depend on the
specific form of the scalar-field Lagrangian (4). The only
requirement is that the kinetic term X must be positive.

Tμν (5) and Jμ (15) can be cast into the a relativistic
hydrodynamical form (taking into account (8)):

Tμν = −2Mgμν + ρ0uμuν, Jμ = ρ0u
μ, (16)

where

ρ0 ≡
(

1 + �(B)√−g

)
2X

∂L

∂X
, (17)

uμ ≡ ∂μϕ√
2X

(note uμuμ = −1 ). (18)

For the pressure p and energy density ρ we have accordingly

p = −2M = const, (19)

ρ = ρ0 − p =
(

1 + �(B)√−g

)
2X

∂L

∂X
+ 2M, (20)

where the integration constant M appears as dynamically
generated cosmological constant.

Let us note that constancy (19) of the pressure p = −2M
in (16) together with the covariant conservation of Tμν :

∇νTμν = ∇ν
(
ρ0uμuν

)
= uμ∇ν (ρ0uν) + ρ0

(
uν∇νuμ

) = 0, (21)

upon projecting (21) along the “velocity” vector uμ and
orthogonally w.r.t. the latter by �μλ = gμλ + uμuλ), imme-
diately implies both the covariant conservation of Jμ (15):

∇μ

(
ρ0u

μ
) = 0, (22)

and the geodesic flow equation:

uν∇νuμ = 0. (23)

As discussed in [32] the energy-momentum tensor (16)
consists of two parts with the following interpretation accord-
ing to the standard �-CDM model [40–42] [using the nota-
tions p = pDM + pDE and ρ = ρDM + ρDE in (19)–(20)]:

• A dark energy part given by the first cosmological con-
stant term in Tμν (16), which arises due to the dynam-
ical constraint on the scalar-field Lagrangian (8) with
pDE = −2M , ρDE = 2M ;

• A dark matter part given by the second term in (16) with
pDM = 0 , ρDM = ρ0 [ρ0 as in (17)], which in fact
describes a dust fluid. According to the general defini-
tions, see e.g. [43], ρDM = ρ0 (17) and ρDE = 2M are
the rest-mass and internal fluid energy densities, so that
the Noether conservation law (15) describes dust dark
matter “particle number” conservation.

3 Quadratic gravity interacting with a dark
energy-dark matter unifying scalar field: dual
to purely kinetic “K-Essence”

3.1 Derivation of the dual kinetic pure “K-Essence” theory

Let us now consider a modification of the gravitational part
of the gravity-scalar-field action (2) as follows:

S =
∫

d4x
√−g

(
R(g, �) − αR2(g, �)

)

+
∫

d4x
(√−g + �(B)

)
L(ϕ, X), (24)

where we have introduced f (R) = R−αR2 extended gravity
action in the first-order Palatini formalism:

R(g, �) = gμνRμν(�), (25)

i.e., with an a priori independent metric gμν and affine con-
nection �

μ
νλ.

Clearly, since the scalar-field action—the second term in
(24)—remains the same as in the original action (2), all
results in Sect. 2.2 remain valid.2 In other words, the modified
gravity-scalar-field action (24) possesses a “hidden” Noether
symmetry (14) producing a “dust” fluid energy density con-
served current (22) and we have the interpretation of ϕ as
describing simultaneously dark energy and dust dark matter
with geodesic dust fluid flow (23).

2 Adding the bare cosmological constant term −2�0
√−g to the gravity

action in (24) is irrelevant, since this is equivalent to a constant shift of
the scalar Lagrangian L(ϕ, X) → L(ϕ, X) − 2�0 [recall that the non-
Riemannian measure density �(B) is a total derivative (3)], which in
turn amounts on-shell to a trivial redefinition of the arbitrary integration
constant M (M → M + �0) in Eq. (8).
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The gravitational equations of motion resulting from (24)
are, however, not of the standard Einstein form. The equations
of motion w.r.t. gμν read

Rμν(�) = 1

2 f ′
R

[
Tμν + f (R)gμν

]
, (26)

f (R) = R(g, �) − αR2(g, �), f ′
R = 1 − 2αR(g, �),

(27)

with Tμν the same as in (10). The trace of Eqs. (26) yields

R(g, �) = −1

2
T, T = gμνTμν, (28)

T = −8M −
(

1 + �(B)√−g

)
2 (V (ϕ) − 2M). (29)

Variation of (24) w.r.t. �
μ
νλ yields

∫
d4 x

√−ggμν f ′
R

(∇κδ�κ
μν − ∇μδ�κ

κν

) = 0, (30)

which shows, following the analogous derivation in Ref. [27],
that �

μ
νλ becomes a Levi-Civita connection:

�
μ
νλ = �

μ
νλ(g) = 1

2
gμκ

(
∂νgλκ + ∂λgνκ − ∂κgνλ

)
, (31)

w.r.t. to the Weyl-rescaled metric gμν :

gμν = f ′
R gμν. (32)

Before going over to the physical “Einstein frame” it is
useful to perform the following ϕ-field redefinition:

ϕ → ϕ̃ =
∫

dϕ√
(V (ϕ) − 2M)

, (33)

X → X̃ = −1

2
gμν∂μϕ̃∂νϕ̃ = 1

f ′
R

, (34)

where the latter relation follows from the Lagrangian dynam-
ical constraint (9) together with (32).

Now, using Eqs. (27)–(29), which together with (34)
imply:

1

X̃
= 1 − α

[
8M +

(
1 + �(B)√−g

)
2 (V (ϕ) − 2M)

]
, (35)

as well as Eqs. (31)–(32) and (34) we can rewrite all equa-
tions of motion resulting from (24), in particular the quadratic
f (R)-gravity Eqs. (26), in terms of the new metric gμν (32)
and the new scalar field ϕ̃ (33) in the standard form of Ein-
stein gravity equations:

Rμν − 1

2
gμνR = 1

2
Tμν (36)

with the following notations:

• Here Rμν and R are the standard Ricci tensor and scalar
curvature of the Einstein-frame metric (32).

• The Einstein-frame energy-momentum tensor

Tμν = gμνLeff − 2
∂Leff

∂gμν (37)

is given in terms of the following effective ϕ̃-scalar field
Lagrangian of a specific quadratic purely kinetic “k-
essence” form:

Leff(X̃) = A2 X̃
2 − A1 X̃ + A0 (38)

A2 ≡ 1

4α
− 2M, A1 ≡ 1

2α
, A0 ≡ 1

4α
. (39)

Let us stress that the three constant coefficients in (38) depend
only on two independent parameters (α, M), the second one
being a dynamically generated integration constant in the
original theory (24).

Thus, we have established a duality between the modified-
measure gravity-scalar-field theory (24) within the origi-
nal gμν frame and the special quadratic purely kinetic “k-
essence” theory within the conformally rescaled gμν frame
(Einstein frame):

Sk−ess=
∫

d4
√−g

[
R +

(
1

4α
− 2M

)
X̃2 − 1

2α
X̃+ 1

4α

]
.

(40)

with a matter Lagrangian (38)–(39).
The Einstein-frame effective energy-momentum tensor

(37) in the perfect fluid representation reads [taking into
account (38)–(39)]

T̄μν = gμν p̃ + ũμũν (ρ̃ + p̃) , (41)

p̃ =
(

1

4α
− 2M

)
X̃2 − 1

2α
X̃ + 1

4α
, (42)

ρ̃ = 3

(
1

4α
− 2M

)
X̃2 − 1

2α
X̃ − 1

4α
, (43)

ũμ ≡ ∂μϕ̃√
2X̃

, gμν ũμũν = −1.

Because of the obvious Noether symmetry of (40) under
constant shift of ϕ̃:

ϕ̃ → ϕ̃ + const (44)

the corresponding Noether conservation law is identical to
the ϕ̃-equations of motion:

∇μ

(
gμν∂νϕ̃

∂ L̃eff

∂ X̃

)
= 0, (45)
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where ∇μ indicates a covariant derivative w.r.t. Levi-Civita
connection in the gμν (Einstein) frame.

Introducing now the standard thermodynamical notions
of enthalpy per unit particle h̃ and particle number density
ñ within the above Einstein-frame system, where ρ̃ + p̃ =
h̃ñ, and taking into account the expressions (42)–(43), the
Noether current conservation law (45) and the covariant con-
servation ∇ν

T̃μν = 0 of (41) can be written, respectively, as

∇μ

(̃
nũμ

) = 0, ũν∇ν ũ
μ + �̃ν

μ∂ν ln h̃ = 0, (46)

where

h̃ =
√

2X̃ , �̃μν = gμν + ũμũν,

ñ =
√

2X̃
∂ L̃eff

∂ X̃
=

√
2X̃

[
1

2α

(
X̃ − 1

) − 4MX̃

]
. (47)

Comparing Eqs. (46) in the Einstein frame with the cor-
responding relations in the original gμν-frame (22)–(23) we
conclude that:

• Conservation of the dust dark matter energy density cur-
rent (22) in the gμν frame is dual to the conservation of
the particle number density current within the Einstein
frame—first Eq. (46), which in fact is the standard ϕ̃-
equation of motion resulting from the action (40). That
is, the “hidden” nonlinear Noether symmetry of (24) is
dual to the shift symmetry (44) of (40).

• In the original gμν frame the dust dark matter flows along
the geodesics (23), whereas in the dual Einstein frame the
dual purely kinetic “k-essence” fluid does not any more
flow along the geodesics [second Eq. (46)].

The purely kinetic “k-essence” theory (40) apart from the
trivial vacuums ϕ̃ = const possesses in addition a non-trivial
“kinetic vacuum” solution X̃vac of the equations of motion
(45):

∂ L̃eff

∂ X̃

∣∣∣∣
X̃vac

= 0 −→ X̃vac = 1

1 − 8αM
, (48)

implying the dark energy property [cf. (41)]:

(ρ̃ + p̃)
∣∣
X̃vac

= 0, ρ̃
∣∣
X̃vac

= 2M

1 − 8αM
≡ 2�eff (49)

with effective cosmological constant:

�eff = M

1 − 8αM
. (50)

The explicit form of (48) reads

gμν∂μϕ̃vac∂νϕ̃vac + 2

1 − 8αM
= 0. (51)

It has the form of the standard Hamilton–Jacobi equation for
the action of a massive relativistic point-particle moving in
a gμν-background with mass squared:

m2
0 ≡ 2

1 − 8αM
. (52)

In other words ϕ̃vac(x) = m0T , where T is the proper-time
for the particle to reach the spacetime point x from some
reference point x(0).

3.2 FLRW reduction of the dual kinetic pure “K-Essence”
theory

Let us now consider a reduction of the dual quadratic
purely kinetic “k-essence” gravity-scalar-field model (40) for
the Friedman–Lemaitre–Robertson–Walker (FLRW) class of
metrics:

ds2=−N 2(t)dt2+a2(t)

[
dr2

1 − Kr2 +r2(dθ2+ sin2θdφ2)

]
.

(53)

Then the action (40) acquires the form (using again short-
hand notations (39); in what follows we will take the spatial
FLRW curvature K = 0 for simplicity):

S =
∫

dt

[
−a ȧ2

N
+ N

4
a3

(
1

α
− 1

α

φ̇2

N 2

+
(

1

4α
− 2M

)
φ̇4

N 4

)]
, (54)

with φ̇ ≡ dϕ̃
dt . The φ ≡ ϕ̃-equation of motion from (54)

yields (using henceforth the gauge N = 1):

dpφ

dt
= 0 −→ pφ = a3

[
− 1

2α
φ̇ +

(
1

4α
− 2M

)
φ̇3

]
,

(55)

where pφ is the constant conserved canonically conjugated
momentum of φ ≡ ϕ̃.

The equation of motion w.r.t. a resulting from (54)—the
Friedmann equation—reads

ȧ2 = 1

6
a2ρ(pφ/a3), (56)

with ρ(pφ/a3) denoting the energy density as a function of
pφ

a3 :
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ρ(pφ/a3) = −A0 − 1

2
A1φ̇

2(pφ/a3) + 3

4
A2φ̇

4(pφ/a3)

= 1

8α
φ̇2(pφ/a3) + 3

4

pφ

a3 φ̇(pφ/a3) − 1

4α
,

(57)

where in the second line of (57) relation (55) was used. Here
φ̇(pφ/a3) ≡ y is one of the roots of the cubic equation (55):

y3 − 2

1 − 8αM
y − 4α

1 − 8αM

pφ

a3 = 0, (58)

which explicitly read

y1 = Ã + B̃, y2,3 = −1

2

(
Ã + B̃

) ± i

√
3

2

(
Ã − B̃

)
, (59)

where

Ã, B̃ ≡ 2α

1 − 8αM

pφ

a3

±
√(

2α

1 − 8αM

pφ

a3

)2

−
(

2

3(1 − 8αM)

)3

. (60)

Similarly, for the pressure we have

p(pφ/a3) = A0 − 1

2
A1φ̇

2(pφ/a3) + 1

4
A2φ̇

4(pφ/a3)

= − 1

8α
φ̇2(pφ/a3) + pφ

4a3 φ̇(pφ/a3) + 1

4α
, (61)

where again in the second line the cubic equation (58) has
been used.

The Friedmann equation (56) can be solved approximately
for small and large values of a using expressions (59)–(60):

φ̇(pφ/a3) �
(

2αpφ

1 − 8αM

)1/3

a−1 for a → 0, (62)

φ̇(pφ/a3) �
√

2

1 − 8αM
+ α

pφ

a3 for a → ∞. (63)

Accordingly, we have for the energy density (57):

ρ(pφ/a3) � 3

4

(
4α

1 − 8αM

)1/3

p4/3
φ a−4 for a → 0, (64)

i.e. radiation domination for small a, and [using the notations
(50) and (52)]:

ρ(pφ/a3) � 2M

1 − 8αM
+

√
2

1 − 8αM

pφ

a3 (65)

= 2�eff + m0
pφ

a3 for a → ∞, (66)

i.e., dark energy domination plus a subleading “dust” dark
matter contribution for large a.

An important property of the above derivation of the dual-
ity between the original gμν-frame quadratic f (R)-gravity
plus non-Riemannian-modified-measure scalar-field action
(24), on one hand, and the Einstein-frame special quadratic
purely kinetic “k-essence” theory (40), on the other hand, is
that there exists a smooth limit α → 0 of the energy den-
sity (57) and pressure (61) in the latter theory in spite of the
singularity at the strong coupling limit α → 0 in all kinetic
“k-essence” coefficients (38)–(39). The corresponding limit-
ing values at α = 0 of the energy density and pressure of the
dual purely kinetic “k-essence” theory (40) are those of the
original theory (24) with the standard Einstein gravity action
(α = 0), i.e., the theory (2) [32]. In particular, in the limit
α → 0 we get precisely the expression for the energy den-
sity being an exact sum of dark energy and dust dark matter
contributions produced by (2) [32].

Indeed, from (55) and (59)–(60) we obtain for α → 0:

φ̇(pφ/a3) � √
2 + α

(
4
√

2M + pφ

a3

)

+ α2

[
24

√
2M − 3

√
2

4

( pφ

a3

)2
]

+ O(α3),

(67)

wherefrom (57) and (61) yield for small α:

ρ(pφ/a3) � 2M + √
2
pφ

a3

+ α

[
16M2+4

√
2M

pφ

a3 +1

2

( pφ

a3

)2
]

+O(α2),

(68)

p(pφ/a3) � −2M − α

[
16M2 − 1

2

( pφ

a3

)2
]

+ O(α2).

(69)

The expression (68) resembles the large-a asymptotics
(65) for the energy density, however, unlike the latter Eq.
(68) is valid for generic values of the FLRW factor a [and
small values of α—the R2 coupling constant in the original
theory (24)].

The cosmological implications of general purely kinetic
“k-essence” models have been previously studied extensively
in Refs. [15–20]. In particular, an important strong inequality
(Eqs. (26)–(27) in [15]) involving the parameters of a generic
quadratic purely kinetic “k-essence” theory was derived from
the requirement that the onset of dark matter behavior must
occur before the epoch of equal matter and radiation, and also
that in the present stage of evolution the dark energy compo-
nent must exceed twice the dark matter component in the per-
tinent energy density, The counterpart of the above Scherrer
inequality in the present settings becomes the requirement:

αM 
 1, (70)
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which completely conforms to the result (68).
From Eqs. (57)–(61) we obtain for the squared sound

speed:

c2
s = ∂p

∂ρ
= 1

3

[
1 − 1√

1 + 3α [(1 − 8αM)ρ − 2M]

]
(71)

with ρ as in (57)–(58). Obviously c2
s → 0 for α → 0, which

conforms to the limiting values (68)–(69). Also, c2
s (71) is

well defined (positive) and reasonably small for ρ > 2M(1−
8αM)−1, which is obviously fulfilled for small α according
to (68).

The new aspects in our current treatment w.r.t. Refs. [15–
20] are as follows:

• We have derived an explicit duality between the original
gμν-frame quadratic f (R)-gravity plus non-Riemannian-
modified-measure scalar-field action (24), on one hand,
and the Einstein-frame special quadratic purely kinetic
“k-essence” theory (40).

• Unlike the general purely kinetic “k-essence” treatment
[15–20] all three coefficients in our kinetic “k-essence”
action (38)–(39) explicitly depend on only two indepen-
dent parameters (α, M), the latter being a dynamically
generated integration constant.

• In spite of the singularity of all “k-essence” coefficients
A1, A2, A3 (39) for small α [the coupling constant of the
R2 in the original theory (24)], the energy density and
pressure in the dual purely kinetic “k-essence” theory
have smooth limit for α → 0, whereby their limiting val-
ues (68) and (69) exactly coincide with the corresponding
values in the original theory (24) with α = 0, i.e., (2) [32].

• The established duality between (24) and (40) elucidates
the origin of the unified description of dark energy and
dark matter within the approach based on “purely kinetic
k-essence” models [15].

4 Canonical Hamiltonian formalism
and Wheeler–DeWitt equation

For the canonical Hamiltonian formalism applied to generic
generalized gravity–matter models with one or more non-
Riemannian spacetime volume-forms we refer to [37]. In
particular, for the theory (2) the canonical Hamiltonian anal-
ysis was discussed in detail in Sect. 2 of Ref. [32].

Here we will consider specifically the Hamiltonian treat-
ment and quantization of the action (54)—reduction of the
purely kinetic “k-essence” model (40) for the Friedman–
Lemaitre–Robertson–Walker (FLRW) class of metrics (53).

From the explicit form of the FLRW action (54) we deduce
the canonically conjugated momenta pa , πN and pφ w.r.t. a,
N and φ ≡ ϕ̃:

pa = −2aȧ

N
, πN = 0,

pφ = a3
[
− 1

2α

φ̇

N
+

(
1

4α
− 2M

)
φ̇3

N 3

]
,

(72)

where the second relation for πN is a primary Dirac first-class
constraint. The total canonical Hamiltonian becomes

Htotal = N

[
− p2

a

24a
+ a3ρ(pφ/a3)

]
(73)

with ρ(pφ/a3) as in (57), thus Htotal by itself is a secondary
Dirac first-class constraint with N playing the role ot its
Lagrange multiplier. Since φ ≡ ϕ̃ is a cyclic variable its
canonically conjugated momentum pφ is conserved.

Quantization according to the Dirac-constrained Hamil-
tonian formalism proceeds by imposing the quantized oper-
ator version of the Hamiltonian constraint—the expression
in the square brackets in (73)—on the quantum wave func-
tion �(a, pφ)—the Wheeler–DeWitt equation. The ordering
ambiguity in the quantized version of the first term there is
resolved by changing variables:

a → ã = 4√
3
a3/2, (74)

and taking the special operator ordering:

p2
a

24a
→ 1√

12a
p̂a

1√
12a

p̂a = −1

2

∂2

∂ ã2 . (75)

Therefore, the Wheeler–DeWitt equation acquires the form
of Schrödinger equation for zero energy eigenvalue:

[
−1

2

∂2

∂ ã2 + Veff (̃a, pφ)

]
�(̃a, pφ) = 0 (76)

with effective potential:

Veff (̃a, pφ) = −a3ρ(pφ/a3) (77)

[ρ(pφ/a3) as in (57), and a and ã related as in (74)]. Explic-
itly:

Veff (̃a, pφ)= − 3̃a2

16

[
1

8α
f 2(̃a, pφ)+4pφ

ã2 f (̃a, pφ)− 1

4α

]
,

(78)

where f (̃a, pφ) ≡ y is a root of the cubic equation [cf. Eqs.
(55), (58)–(59)]:

y3 − 2

1 − 8αM
y − 64αpφ

3(1 − 8αM)
ã−2 = 0. (79)
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Using the asymptotics (64)–(65) we obtain for the small
ã and large ã of Veff (̃a, pφ):

Veff (̃a, pφ) � −
(

9αp4
φ

1 − 8αM

)1/3

ã−2/3

−
(

2αpφ

1 − 8αM

)2/3 1

8α
(80)

for small ã, and

Veff (̃a, pφ) � − 3M

8(1 − 8αM)
ã2 −

√
2

1 − 8αM
pφ (81)

for large ã. Using (79) we find thatVeff (̃a, pφ) (78) is negative
for all ã ∈ (0,∞) and diverges to −∞ at both ends of the
interval according to (80)–(81).

According to Scherrer’s inequality (70) α must be very
small. Thus, substituting (68) into (77) and accounting for
the change of variables (74) renders the Wheeler–DeWitt
effective potential into the following form:

Veff (̃a, pφ) � −3M

8
(1 + 8αM) ã2

− α
8p2

φ

3
ã−2 − √

2pφ(1 + 4αM), (82)

valid for any ã ∈ (0,∞). In other words, for small α (82) is
a sum of inverted harmonic oscillator potential with negative
frequency squared:

ω2 = −3M

4
(1 + 8αM) = −3

4
�eff , (83)

where �eff is the effective cosmological constant (50) for
small α, plus an inverse square potential and with an “energy”
eigenvalue E = √

2pφ(1 + 4αM).
Thus, in the limit α → 0 the Wheeler–DeWitt equation

(76) becomes the Schrödinger equation for an inverted har-
monic oscillator with negative frequency squared (83) and
with “energy” eigenvalue E = √

2pφ :

[
−1

2

∂2

∂ ã2 − 3M

8
ã2 − √

2pφ

]
�(̃a, pφ) = 0. (84)

The inverted harmonic oscillator was extensively studied
in Ref. [44] (for a more recent account and further references,
see [45]). In particular, the inverted oscillator was applied in
[46] to the study of the quantum mechanical dynamics of
the scalar field in the so called “new inflationary” scenario.
Since the energy eigenvalue spectrum of the inverted har-
monic oscillator is continuous (E ∈ (−∞,+∞)) and the cor-
responding energy eigenfunctions are not square-integrable,
its application in the context of cosmology [46] required the

employment of wave-packets w.r.t.E instead of energy eigen-
functions.

Similarly, in the present case the value of pφ—the con-
served canonical momentum of the kinetic “k-essence” scalar
field φ ≡ ϕ̃ in (54)—is the analog of energy eigenvalue E in
the Wheeler–DeWitt Schrödinger-like equation (84) (mod-
ulo the factor

√
2). Therefore, now in the strong coupling

limit α → 0 the “k-essence” field φ ≡ ϕ̃ plays the role of
a Wheeler–DeWitt time τ ≡ 1√

2
φ and Eq. (84) acquires the

form of a “time-dependent” Schrödinger-like equation for
the inverted harmonic oscillator upon Fourier transforming
the “energy”-eigenvalue Eq. (84):

i
d

dτ
�(̃a, τ ) =

[
−1

2

∂2

∂ ã2 − 3M

8
ã2

]
�(̃a, τ ), (85)

�(̃a, τ ) =
∫ ∞

−∞
dpφ

1√
2π

e−i
√

2pφτ�(̃a, pφ). (86)

Following [46] the appropriate normalized to unity [on the
semiaxis ã ∈ (0,∞)] wave-packet solution of the “time-
dependent” Wheeler–DeWitt equation (85) is of the form
[using the notation ω (83) for α = 0]:

�(̃a, τ ) =
(

2ω

π
sin(2b)

)1/4

(cos(b − iωτ))−1/2

× exp

{
−1

2
ã2ω tan(b − iωτ)

}
, (87)

where b is an integration constant describing the width of the
wave packet. Accordingly, the average value of the FLRW

scale factor a =
√

3
4 ã2/3 [cf. (74)–(75)] is given by

〈̃a〉 ≡
∫ ∞

0
dã ã|�(̃a, τ )|2 =

[
cos(2b) + cosh(2ωτ)

πω sin(2b)

]1/2

,

(88)

exhibiting no singularity (〈̃a〉 → 0) at any “time” τ .

5 Conclusions

In the present paper we have discussed in some detail the main
properties of a generalized model of gravity interacting with
a single scalar field, where we have employed the method of
non-Riemannian spacetime volume-forms (alternative gen-
erally covariant integration measure densities) constructed in
terms of auxiliary maximal-rank tensor gauge fields (“mea-
sure” gauge fields).

In the preceding paper [32] we have shown that the non-
Riemannian-measure-modified scalar-field action (2) yields
a simple unified description of dark energy and dust dark
matter. Namely, the corresponding energy density arises as
an exact sum of a dark energy component in the form of
a dynamically generated cosmological constant appearing

123



Eur. Phys. J. C (2016) 76 :90 Page 11 of 12 90

as an arbitrary integration constant in the solution of the
“measure” gauge field equations, and a dark matter com-
ponent produced by a hidden Noether symmetry (not affect-
ing the gravity part) giving rise to a Noether conserved cur-
rent, which identifies the scalar-field dynamics as a dust fluid
motion along the geodesics.

Here we extended the above treatment by coupling the
non-Riemannian-measure-modified scalar-field dynamics to
quadratic f (R) gravity. We have found an explicit duality in
the usual sense of “weak versus strong coupling” between
the original non-standard gravity-scalar-field model provid-
ing an exact unified description of dynamical dark energy
and dust fluid dark matter in the matter sector, on one hand,
and a quadratic purely kinetic “k-essence” gravity–matter
model, on the other hand. The latter dual theory arises as
the “Einstein-frame” theory of its original counterpart. It is
special in a sense that the couplings in the dual quadratic
kinetic “k-essence” action are given in terms of only two
parameters (α, M)—the R2-coupling constant in the original
action (1) and a dynamically generated integration constant
M upon solving the equations of motion for the auxiliary
“measure” gauge field in (1). Moreover, in spite of the diver-
gence of the “k-essence” coupling constants when α → 0
(strong coupling limit), both the “k-essence” energy density
and the “k-essence” pressure have smooth limits at α = 0
with the limiting values coinciding with their respective val-
ues in (2)—the weak coupling limit of the original theory (1),
leading to an explicit unified description of dark energy and
dust dark matter as an exact sum of two separate contributions
to the total energy density.

The established duality in the present paper explains the
ability of the purely kinetic “k-essence” models [15] to pro-
vide approximately a unified description of dark energy and
dark matter and reveals that this unified description becomes
exact in the strong coupling limit of a special type of quadratic
purely kinetic “k-essence” theory.

Finally, we have used the standard Dirac approach to con-
strained Hamiltonian systems for a canonical Hamiltonian
treatment of the non-Riemannian-measure-modified gravity-
scalar-field theory, specifically for the reduction of the latter
in the case of FLRW class of cosmological spacetime met-
rics. In the limit of vanishing R2 coupling the associated
Wheeler–DeWitt equation acquires the form of a Schrödin-
ger-like equation with the effective potential of an inverted
harmonic oscillator. The quantum average value of the FLRW
scale factor does not exhibit any singularities in its time evo-
lution.
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