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Abstract It wasreported that massive scalar fields can form
bound states around Kerr black holes (Herdeiro and Radu,
Phys. Rev. Lett. 112:221101, 2014). These bound states are
called scalar clouds; they have a real frequency w = mQp,
where m is the azimuthal index and Qy is the horizon angu-
lar velocity of Kerr black hole. In this paper, we study scalar
clouds in a spherically symmetric background, i.e. charged
stringy black holes, with the mirror-like boundary condition.
These bound states satisfy the superradiant critical frequency
condition w = g @y for a charged scalar field, where g is the
charge of the scalar field, and @y is the horizon’s electrostatic
potential. We show that, for the specific set of black hole and
scalar field parameters, the clouds are only possible for spe-
cific mirror locations ry,. It is shown that analytical results of
the mirror location ry, for the clouds perfectly coincide with
numerical results in the ¢ Q < 1 regime. We also show that
the scalar clouds are also possible when the mirror locations
are close to the horizon. Finally, we provide an analytical
calculation of the specific mirror locations ry, for the scalar
clouds in the g Q > 1 regime.

1 Introduction

It was firstly proposed by Hod that a scalar field can have real
bound states in the near-extremal Kerr black hole [1,2]. Soon
later, it was reported in [3] that massive scalar fields can form
bound states around Kerr black holes by using the numerical
method to solve the scalar field equation in the background.
These bound states are the stationary scalar configurations in
the black hole backgrounds, which are regular at the horizon
and outside. They are named scalar clouds. More importantly,
it was shown that the backreaction of clouds can generate a
new family of Kerr black holes with scalar hair [3,4]. It is
suggested that whenever clouds of a given matter field can be
found around a black hole, in a linear analysis, there exists
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a fully non-linear solution of a new hairy black hole cor-
respondingly. However, it requires that the field generating
the clouds yields a time independent energy-momentum ten-
sor. Generally, the field should be complex and have a factor
e~ where w, is the superradiance critical frequency. For
instance, real scalar fields can give rise to clouds but not hairy
black holes [5]. So, it seems that the studies of scalar clouds
at the linear level are very important for us to find hairy black
holes at the non-linear level. This subject has attracted a lot
of attention recently [6—-16].

Generally speaking, the existence of stationary bound
states of matter fields in black hole backgrounds requires two
necessary conditions. The first is that the matter fields should
undergo the classical superradiant phenomenon [17,18] in
the black hole background. This condition can be satisfied by
the bosonic fields in the rotating black holes or the charged
scalar fields in the charged black holes [19]. When the fre-
quencies of these matter fields w are smaller than the super-
radiant critical frequency wc, there are time growing quasi-
bound states. When @ > w,, the fields are time decaying.
So, the scalar clouds exist at the boundary between these
two regimes, i.e. the frequencies of the fields are taken as
the superradiant critical frequency w.. For the rotating black
holes, the critical frequency w. is mQy, where m is the
azimuthal index and Qg is the horizon angular velocity. For
the charged black holes, w = g ®y, where ¢ is the charge of
the scalar field, and @y is the horizon’s electrostatic potential.
The second one is there should be a potential well outside the
black hole horizon in which the bound states can be trapped.
This potential well may be provided by the mass term of the
field, i.e. @ < u, where u is the mass of the scalar field.
However, sometimes the artificial boundary conditions can
play the same role.

In this paper, we will study the scalar clouds in a spher-
ically symmetric and charged background. Specifically, we
will consider the charged scalar field in the backgrounds of
charged stringy black holes. At first sight, it seems that the
massive scalar field can form the clouds in this background.
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However, it is proved that the massive charged scalar field is
stable in this background and there is no superradiant instabil-
ity [20]. To generate the superradiant instability [21,22], the
mirror-like boundary condition should be imposed accord-
ing to the black hole bomb mechanism [23,24]. Analytical
and numerical studies of this subject can be found in [25]
and [26]. Correspondingly, the scalar clouds are only possi-
ble with the mirror-like boundary condition. Using numerical
methods, we will study the dynamics of the massless charged
scalar field satisfying the frequency condition w = ¢ ®y and
the mirror-like boundary condition. We will show that, for
the specific set of black hole and scalar field parameters,
the clouds are only possible for the specific mirror locations
rm- It will be shown that the analytical results of the mirror
location ry, for the clouds perfectly coincide with the numer-
ical results. In addition, we will show that the scalar clouds
are also possible when the mirror locations are close to the
horizon. Finally, we will provide an analytical calculation of
the specific mirror locations 7y, for the scalar clouds in the
q QO > 1 regime.

This paper is organized as follows. In Sect. 2, we will
present the background geometry of a charged string black
hole and the dynamic equation of the scalar field. In particu-
larly, we will give the superradiant condition and the bound-
ary condition of this black hole—mirror system. In Sect. 3, we
describe the numerical procedure to solve the radial equa-
tion under a certain boundary condition. In this section, the
numerical results are illustrated. Some general discussions of
the numerical results are also presented. In Sect. 4, an ana-
lytical calculation of the mirror radius ry, for scalar clouds
in the g©Q > 1 regime is presented. The conclusion is in
Sect. 5.

2 Description of the system

We shall consider a massless charged scalar field minimally
coupled to the charged stringy black hole with the mirror-
like boundary condition. The black hole is a static spherically
symmetric charged black hole in the low energy effective the-
ory of heterotic string theory in four dimensions, which was
first found by Gibbons and Maeda in [27] and independently
found by Garfinkle et al. in [28] a few years later. The metric
is given by

oM oM\ !
ds? = —<1——)dt2+<1——> dr?
r r

2
+r (r - %) (d6? + sin® 0dg?), (D)
and the electric potential and the dilaton field
0
Ag=——, 2)

r
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The parameters M and Q are the mass and the electric charge
of the charged stringy black hole, respectively. The event
horizon of the black hole is located at r = 2M. The area of
the sphere approaches zero when r = Q% /M. Therefore, the
sphere surface of the radius r = Q?/M is singular. When
Q? < 2M?, this singular surface is surrounded by an event
horizon. In this paper, we will always assume the cosmic
censorship hypothesis, i.e. we will only consider black holes
with the parameters satisfying the condition Q% < 2M?.
The dynamics of the charged scalar field is then governed
by the Klein—Gordon equation

(Vy —iqA) (VY —igA")¥ =0, “)

where g denotes the charge of the scalar field. By taking the
ansatz of the scalar field W = e '“' R(r)Y;;n (0, ¢), where
w is the conserved energy of the mode, [ is the spherical
harmonic index, and m is the azimuthal harmonic index with
—I < m <, one can deduce the radial wave equation in the
form of

Ad AdR +UR=0 5)
dr dr o

where we have introduced a new function A = (r —r4)(r —
r_) with r, = 2M and r_ = Q2/M, and the potential
function is given by

0%\’
U= ( - ﬁ) (@r —qQ)* — Al +1). ©)

The superradiant condition of the charged scalar field is
given by

o < q®y, (N

where &y = % is the electric potential at the horizon

[20,29,30].Itis proved in [20] that the massive charged scalar
field is stable in this black hole background. To have superra-
diant instability, we should impose the mirror-like boundary
condition [25,26]. In order to study the bound states, we shall
focus on the critical case that the scalar frequency equals the
superradiant critical frequency, i.e.

w = qdy. 3)

To solve the radial equation (5), we should impose the fol-
lowing boundary conditions:

Ro(1 4+ Y ioy Rir —r )%, r—ry,

R(r) = {O, rF=rm. ®)

The first line indicates that the scalar field is regular near the
horizon and the second line implies that the system is placed
in a perfectly reflecting cavity.
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3 Numerical procedure and results

The numerical methods employed in this problem are based
on the shooting method, which is also called the direct inte-
gration (DI) method [31-34]. It is shown that the DI method
is specially suited to find a stationary field configuration with
the mirror-like boundary condition.

Firstly, near the event horizon r = 2M, we require that the
radial function is regular and expand the radial function R(r)
as a generalized power series in terms of (r — r) as in the
first line of Eq. (9). Because the radial equation is linear, we
can take Ry = 1 without loss of generality. Substituting the
expansion of the radial wave function into the radial equation
(5), we can solve the coefficient Ry order by order in terms
of (r —r4). We have only considered six terms in the expan-
sion. The Rys can be expressed in terms of the parameters
(M, Q, q, 1), which are not exhibited here.

Then we can integrate the radial equation (5) from r =
r+(1 + €) and stop the integration at the radius of the mir-
ror. In this procedure, we have taken the small € as 107°.
The procedure can be repeated by varying the input param-
eters (M, Q, g, 1) until the mirror-like boundary condition
R(rm) = 0 is reached with the desired precision. We can
use a numerical root finder to search the location of the mir-
ror that supports the stationary scalar configuration. We have
found that, for the given input parameters (M, Q, g, ), scalar
clouds exist for a discrete set of ry,, which is labeled by the
quantum number n of nodes of the radial function R(r).

Firstly, we make a comparison of the numerical and ana-
lytical results. From the analytical result Eq. (35) in Ref.
[25], one can obtain the mirror radius that supports the scalar
cloud; it can be approximately given by

120

= 10
'm 4%n (10)

We have labeled the n’th positive zero of the Bessel func-
tion Ji112 @s jiy1/2,»- The numerical results show that this
“quantum number” is closely connected with the node num-
ber n of the radial function R(r) considering the simple
relation n = n’ — 1. It should be noted that this analytical
expression for the mirror radius is only valid for the case of
q O < 1. With the condition ¢ Q < 1, the asymptotic expan-
sion matching method can be employed to solve the radial
equation approximately [25]. In Fig. 1, we have displayed
the analytical results and the numerical results of the mirror
location ryy, in terms of the black hole charge Q. Here, we
do not consider the naked singularity spacetime, so that the
value range of the black hole charge Q is (0, ﬁ], where we
have fixed the black hole mass as M = 1. It is shown that the
analytical results of the mirror location ry, for the clouds per-
fectly coincide with the numerical results, even in the region
where the analytical approximation is non-applicable. When
g = 0.2, the analytical approximation is always precise in
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Fig. 1 Mirror location ryy, plotted versus the black hole charge Q for
M = 1,1 = 1,n = 0 and for various scalar charges g. For the first
panel, g = 0.2, while for the second panel, ¢ = 0.8. The solid line
and the dashed line represent the analytical and the numerical results,
respectively
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Fig. 2 Mirror location ryy, plotted versus the black hole charge Q for
M = 1,1 = 1,q = 0.6 and for various node numbers 7. The dotted,
dashed, and solid lines represent n = 0, 1, and 2, respectively

the whole range of Q. When ¢ = 0.8, the analytical results
show an obvious difference with the numerical results only
for large Q.

In Fig. 2, we have drawn the mirror location ry, that sup-
ports the scalar cloud as a function of the black hole charge O
for various values of the node number 7 of the radial function.
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Fig. 3 Mirror location ryy, plotted versus the black hole charge Q for
M = 1,n = 0,9 = 0.6, and for various /. The dotted, dashed, and
solid lines represent [ = 1, 2, and 3, respectively
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Fig. 4 Mirror location ry, plotted versus the black hole charge Q for
M = 1,1 = 1,n = 0 and for various scalar charges g. The dotted,
dashed, and solid lines represent ¢ = 0.4, 0.6, and 0.8, respectively

It is observed that when the black hole charge Q increases,
we need to place the reflecting mirror closer to the horizon
in order to have a scalar cloud. When the node number n of
the radial function increases, the plotted lines go away from
the axis. This observation coincides with the analytical result
(10) in the regime of g Q0 < 1.

In Figs. 3 and 4, we display the mirror location ry, as
a function of the black hole charge Q for various / and q.
We can observe that the lines go far away from the axis when
increasing /, while the lines go closer to the axis when increas-
ing the scalar charge g. This is also expected from the analyt-
ical result (10). In addition, Figs. 3 and 4 together with Fig. 2
show that, when Q — 0, r, — oo. This indicates that there
is no massless scalar cloud for the Schwarzschild black hole
with the mirror-like boundary condition [16], even though it
is possible for massive scalar fields in a Schwarzschild black
hole to have arbitrarily long-lived quasi-bound states [35].

We also consider the radial dependence of the massless
scalar clouds. In Figs. 5 and 6, we have fixed the mirror radius
as rp = 40. We can solve the radial equation numerically

@ Springer
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Fig. 5 Radial functions R(r) of scalar clouds for M = 1,q =
0.6, rm = 40 with different harmonic indices / and node numbers 1. The
first and the second panels correspond to [ = 1 and 2, respectively. The
dotted, dashed, and solid lines represent n = 1, 2, and 3, respectively

12F T T Lo £ vy T T T =

Fig. 6 Radial functions R(r) of scalarcloudsforM =1,4g = 0.8,/ =
1, rm = 40 with different node number n. The dotted, dashed, and solid
lines represent n = 1,2, and 3, respectively, and the corresponding
black hole charge Q are 0.219882, 0.583819, and 0.956562

and obtain a discrete set of black hole charges Q, labeled
by the node number n of the radial wave equation. Then
we can integrate the radial equation for the fixed node num-
bers and obtain the corresponding numerical solutions of the
radial wave functions. It is shown that the radial profile has
the typical forms of standing waves with the fixed boundary
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Fig. 7 Radial functions R(r) of scalar clouds for the small mirror
radius r, = 3. The parameters of the black hole and the scalar field are
takenas M = 1, g = 20, and [ = 1. The dotted, dashed, and solid lines
represent n = 1,2, and 3, respectively, and the corresponding black
hole charges Q are 0.306384, 0.600699, 0.913741

conditions. We have also calculated the case that / = 3. The
results are not presented here. The general form of the radial
wave function is similar to the profiles in Fig. 5.

In Fig. 7, we consider the case that the mirror location is
very close to the horizon. We take the mirror radius as ry, =
3. From our previous analytical and numerical work on the
superradiant instability of the scalar field in the background
of the charged stringy black hole plus mirror system, we need
alarge scalar field charge ¢. Here, we set ¢ = 20. We can see
that the scalar field can be bounded by the reflecting mirror
very close to the horizon to form the clouds. The radial wave
functions in this case have similar profiles to Figs. 5 and 6.

4 Scalar clouds in ¢ Q > 1 regime

In the above numerical calculations, we find that the radial
equation becomes hard to integrate when the scalar charge
q is large. So it is important to make an analytical study of
the stationary charged scalar clouds in the ¢ Q >> 1 regime.
In this section, we will give an analytical expression of the
special mirror radius rp in the gQ > 1 limit, for which
the charged scalar field can be confined to form a stationary
cloud configuration.

Following [36], it is convenient to introduce the new
dimensionless variables

r—ry ry —r_

x = , T=——, (11)
r4 r4

in terms of which the radial equation (5) becomes

+ R + 2x + dR
x(x r)m 2x r)a
+1¢*Q%x(x + 1) — I + 1)]IR =0, (12)

where we have set the superradiance critical frequency w =
q Py in the above equation.

This equation can be solved by a Bessel function in the
double limit

g0 >1, x<Kr. (13)

In this asymptotic regime, the radial equation can be reduced
to

CRLIR, 20°xR =0 (14)
X—s + — xR =0.

a2 a1
The solution is then given by the Bessel function of the first
kind

R(x) = Jo(q Qx), 15)

i.e., the stationary scalar field is then described by the above
function. By taking account of the mirror-like boundary con-
dition R(xy) = 0, we can obtain the special mirror radius
Fm as

Jo.n
m =2M + ——,

n=12,3,... (16)

where jo , is the nth positive zero of the Bessel function
Jo(x). From this expression, we can see that, when ¢ Q >
1, the reflecting mirror should be placed very close to the
horizon to form the cloud configuration. This is consistent
with the near horizon condition x < 7.

5 Conclusion

In summary, in this paper, we have studied the massless
scalar clouds in the charged stringy black holes with the
mirror-like boundary conditions. The scalar clouds are sta-
tionary bound states satisfying the superradiant critical fre-
quency @ = g ®y. The scalar clouds in rotating black holes
[3,8] can be heuristically interpreted in terms of a mechan-
ical equilibrium between the black hole-cloud gravitational
attraction and angular momentum driven repulsion. For the
charged black hole cases, the charged clouds cannot be
formed, because gravitational attraction and electromagnetic
repulsion cannot reach equilibrium [7]. An additional mirror
should be placed at a special location to reflect the charged
scalar wave.

We show that, for the specific set of black hole and scalar
field parameters, the clouds are only possible for the spe-
cific mirror location ry,. For example, for the fixed param-
eters of black hole and scalar field M, Q, ¢, [, the discrete
set of the mirror location ry, is characterized by the node
number n of the radial wave function. It is shown that the
analytical results of the mirror location ry, for the clouds
perfectly coincide with the numerical results in the region

@ Springer



142 Page 6 of 6

Eur. Phys. J. C (2015) 75:142

of g0 <« 1. However, the agreement becomes less impres-
sive for g Q = O(1) values. In addition, we also show that
the massless scalar clouds are also possible when the mirror
locations are very close to the horizon. Finally, we present
an analytical calculation of the specific mirror locations rpy,
for the scalar clouds in the ¢ Q > 1 regime.
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