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equations of motion are second order for both the metric
and the Maxwell potential. We also generalize the construc-
tion to involve a generic non-minimally coupled p-form field
strength. We then focus on one low-lying example in four
dimensions and construct the exact magnetically charged
black holes. We also construct exact electrically charged
z = 2 Lifshitz black holes. We obtain approximate dyonic
black holes for the small coupling constant or small charges.
We find that the thermodynamics based on the Wald formal-
ism disagrees with that derived from the Euclidean action
procedure, suggesting this may be a general situation in
higher-derivative gravities with non-minimally coupled form
fields. As an application in the AdS/CFT correspondence, we
study the entropy/viscosity ratio for the AdS or Lifshitz pla-
nar black holes, and find that the exact ratio can be obtained
without having to know the details of the solutions, even for
this higher-derivative theory.
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1 Introduction

The spacetime metric g, the nonlinear generalization of
the massless spin-2 field, is the fundamental field in the Ein-
stein formulation of gravity. Electric-magnetic interactions of
the U (1) Maxwell field A, underly almost all the phenom-
ena in condensed matter physics. With the development of
the AdS/CFT correspondence [1-3], the Einstein—-Maxwell
theory with a negative cosmological constant has become
one of the most important playgrounds in relating classical
gravity to certain strongly coupled condensed matter theories
(CMT) at the quantum level, from superconductivity [4] to
non-Fermi liquids [5,6].

While there has been great progress in studying con-
densed matter physics via gravity, the successes are mainly
of a qualitative nature. To match a condensed matter
phenomenon quantitatively as well, it is likely that one
needs to generalize the Einstein—-Maxwell theory, by intro-
ducing additional fields and/or couplings. One general-
ization, without breaking the general coordinate invari-
ance, is to consider higher-derivative extensions. Higher-
derivative gravity arises naturally in string or M-theory,
where the AdS/CFT correspondence has the most solid
foundation. The low-energy effective theories of string or
M-theory are supergravities as the leading-order expan-
sions, with some specific but infinite sequences of higher-
derivative corrections. Einstein—-Maxwell gravities in both
four and five dimensions can be supersymmetrized and
embedded in M-theory [7,8] or the type IIB string [9,
10]. (A specific extra FFA term is necessary in D =
5 for supersymmetrization.) It is thus natural to con-
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sider higher-derivative extensions for the Einstein—-Maxwell
theory.

When a linear theory involves higher derivative terms,
there are inevitable ghost excitations. This problem can eas-
ily be circumvented via nonlinear construction for scalar,
vector, and anti-symmetric tensor fields. This is because for
these fields, the first derivative is also a tensor or can be made
a tensor, without breaking the gauge symmetries. One can
then construct a higher-derivative theory by adding higher-
order polynomial invariants of these fields and/or their tenso-
rial first derivatives. Although the theory may involve high-
order total derivatives through nonlinearity, each field has at
most two derivatives acting upon directly in the equations
of motion. Consequently, the linearized theory in any back-
ground is of the second order. The situation is rather different
for the metric. The first derivative of the metric cannot be a
non-vanishing tensor and only two derivatives of the metric
may yield a tensor, namely the Riemann tensor. It follows
that a typical higher-order polynomial invariant of the Rie-
mann tensor tends to give rise to linear ghost excitations in a
generic background.

There are different approaches concerning the ghost issue
in higher-derivative gravities. In supersymmetric theories,
ghosts may not be fatal [11]. In fact in four dimensions, grav-
ity extended with quadratic curvature invariants was shown
to be renormalizabe [12,13]. Recently a new static black
hole over and above the usual Schwarzschild black hole was
obtained in the four-dimensional theory [14,15]. When there
is acosmological constant, higher-derivative gravities in AdS
backgrounds can have a critical point in the parameter space
for which the ghost modes become log modes and may be
truncated out by some strong boundary conditions. However,
this process was more successful in three dimensions [16,17]
than in four or higher dimensions [18-20].

In perturbative string theory, the coupling constants of
higher-order terms are regarded as small. One may use the
field redefinition of the metric

(1.1)

to simplify the theory order by order. In this approach, the
propagators are not modified and hence the ghost issue does
not arise, even though the theory would have ghosts when
treated own its own. The shortcoming is that the contributions
from the higher-order terms can only be regarded as small.
This is too restrictive in the applications of the AdS/CFT
correspondence, since in the discussion of gravity/CMT the
purpose of introducing higher-order terms is not simply to
add a small perturbation.

It turns out that there are combinations of polynomial
invariants that are ghost free. The most famous example is
the Gauss—Bonnet term. Einstein gravity extended with the
Gauss—Bonnet term has a total of four derivatives via non-
linearity, but it is ghost free since the theory involves only

uv —> & +aRguy + BRuy
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two derivatives at the linear level. Consequently the coupling
constant of the Gauss—Bonnet term does not have to be small.
(Causality consideration may provide further restrictions on
the coupling constant [21-24].) The Gauss—Bonnet term is
one of a class of Euler integrands that give rise to general
Lovelock gravities [26]. These theories make sense only in
the context of string theory. First of all, Gauss—Bonnet grav-
ity violates causality on general grounds and the only way to
avoid this problem is by adding an infinite tower of massive
higher-spin particles [25]. Second, D = 10, N' = 1 super-
gravity with the string worldsheet o’ correction indeed has a
Riemann-squared [27]

l4 Voo
o' R*YPI R 1vpo

correction. Using the field redefinition (1.1), one can generate
the Gauss—Bonnet term at the quadratic order of the curva-
ture polynomials. In other words, the Gauss—Bonnet term or
higher-order Euler integrands arise naturally in string theory.
One may then appeal to the enormity of the string landscape
and argue that in some string vacua, the Gauss—Bonnet term
dominates and hence the Einstein—Gauss—Bonnet gravity can
be treated on its own.

In this paper, we generalize this line of approach to include
the Maxwell field, or more general p-form field strengths as
well. We construct general higher-derivative gravities cou-
pled to the Maxwell field with the Lagrangian built from
polynomial invariants of the Riemann tensor and the Maxwell
field strength. We require that in all the equations of motion
both the metric g,, and A, have at most two derivatives
acting directly so that the theory may be ghost free. Since
the field strength couples to the curvature tensor directly,
the Maxwell field is non-minimally coupled, and also the
gauge symmetry is preserved. Such couplings arise naturally
in string theory and we expect that through a field redefi-
nition analogous to (1.1), ghost-free combinations can also
emerge, as in the case of Einstein—-Gauss—Bonnet gravity or
more general Lovelock gravities.

We now give the outline of the paper. In Sect. 2, we con-
struct higher-derivative gravities whose Lagrangian consists
of the polynomial invariants of Riemann tensor and the field
strength Fy,, = d, A, — d,A,. Analogous to the Euler inte-
grands in Lovelock gravities, the combination of the polyno-
mials is such that the equations of motion are second order.
In Sect. 3, we generalize the construction to involve a generic
non-minimally coupled p-form field strength. In Sect. 4, we
consider alow-lying example in which the Einstein—-Maxwell
theory with a cosmological constant is augmented with the
polynomial of the Riemann tensor with a bilinear of F,
so that the theory has at most four total derivatives. The
equations of motion nevertheless remain second order. We
construct static charged black holes in four dimensions with
isometries of 2-sphere, 2-torus, and hyperbolic 2-space. In
Sect. 5, we study an application of the AdS/CFT correspon-
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dence and derive the boundary viscosity/entropy ratio for the
AdS and Lifshitz planar black holes. We conclude the paper
in Sect. 6.

2 Non-minimally coupled Maxwell field

2.1 The general construction

Our construction is analogous to Lovelock gravities, whose
basic ingredients are Euler integrands, defined by

1

k) _ crdy--crdi parb agb
ET = S 8uibyac Revdy ~+ Rega- @D
where R;’fi’ denotes the Riemann tensor R’ .; and

wBs _ 1oB By
SEIE = s18iy -8 (2.2)
The Euler integrands can also be expressed as

k (Zk) laib arby]
E® = i Rain' Rahy - (2.3)
The low-lying examples are
EO =1, ED =R,
E® = R* —4RM'R,, + R*"P° Ry\ps, etc. (2.4)
The term /—g E® in the Lagrangian contributes

1

kv _ aiby-agbyv paibr - paibi

EM T okl SCldl'”dek " RCldl Rdek 23

to the Einstein equation of motion. A striking property is
that no Riemann-tensor factor acquires any derivative in the
equations of motion, such that the theory remains second
order in derivatives. This is a consequence of the fact that the
variation of the Riemann tensor, namely

— V¥

SR ype = VTl — VoTh |

(2.6)

yields a total derivative in the Lagrangian for the polynomial
combinations of the Euler integrands. This is largely due to
the Bianchi identity of the Riemann tensor, namely

VigRby =0= viP R, (2.7)

In order to include the Maxwell field A in an analogous con-
struction, we introduce a bilinear tensor of the field strength
F =dA

z%b — pabp,,. (2.8)

This tensor shares some similar properties of the Riemann
tensor, but the properties (2.7) and R%pcq] = O of the Rie-
mann tensor do not extend to the Z tensor. Nevertheless,
owing to the Bianchi identity of the Maxwell field, namely

VigFpo) = 0 = VP ], (2.9)

the Z tensor satisfies the property

Vi VP 2" = v, FIV VA,

ol = o1+ 2F RPY o * Fos

(2.10)

In other words, although each term involves a total of four
derivatives, both A, and g,, have at most two derivatives.
This property is crucial in our construction.

With these preliminaries, we consider polynomial invari-
ants of the tensor Rgdb and Zg[ll’ analogous to the Euler inte-
grands, namely

,mm) U ccidicndnérdi-éudn paiby .. RAmbm Zarb)
Smn a1b1-~-ambmb~lli71"‘Zlnl;ﬂ ci1d; Ccmdm E|tz]
&"l{;m
E’ﬂdm
| -
. (2(}’}’1 + I’l)) R[albl . Rambmzalbl . Z“mbml
- 2m+n a1by ambm ayby Zlml;m '
2.11)

It is clear that when n = 0, the above gives rise to the Euler
integrands, i.e.

L&O — g (2.12)

It is easy to perform the variation of both the metric and A:

) (\/__gL(m,n)> — \/_g<LE:’Zvr)l)8glw + L(m’n)M&AM)

+ total derivatives. (2.13)

We find

2n 8L1d| cmdmtlijl Cnlanalbl

1
(m,n) _ _ ~ (m,n)
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IMAN " @y -ty by by -+-Gin by veydy
ambm 51%1 . Z&nén
Cmdm c1dy Cndy
2m S 8 cidy - Lmdmcldl Lﬂdn axby
2m+n CUZ Dby vty by by -+-dn by~ €242

ambm b1 albl . anbn
Cm dm V V (Z Cndn )
Lmmu V,,F’w
FHV — 4n cidi-cmdm - Cndn aiby
2m+n “ayb;- ambmalbl anbn cidi
Ambm a1b1 aZbZ 3 anEn
e Fotz 1 (2.14)

2d2 Cndn

It follows from (2.7) and (2.10) that neither the metric nor
A has more than two derivatives in all terms in L(Z'U) and
Lmm

The Lagrangian for the general theory is then given by

‘C:\/__gz Z yan(m,n)’

k=0 m+n=k

(2.15)
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where y,,, are coupling constants. The full set of equations
of motion are

S 5 el =0 X % sl o

k  m4n=k m+n=k
(2.16)

Again, in all these equations, the metric and A, have at most
two derivatives acting on directly, with the total higher deriva-
tives achieved through nonlinearity. The theories are thus of
the second order.

We note that the non-minimally coupled Maxwell field
can also have the following structure:

VR R Fey e FO 217
When k = 1, this term is a total derivative. Whenk = 2n+1
with n > 1, this term vanishes. For k = 2n, this term

is proportional to the /—gL(™ owing to the identity
Riabeja = 0. Thus we shall not consider the terms (2.17).
It is also worth pointing out again that any polynomial struc-
tures involving purely the Maxwell field strength without the
Riemann tensor are allowed and hence we shall not list them
all.

2.2 A low-lying example
Having constructed general higher-derivative gravities with

non-minimally coupled Maxwell field, we shall study a low-
lying example in detail. The Lagrangian is

E:J—_g<R—2A0— AlrF2+yL(l'l)>, (2.18)
where
LY = 5CZCZRg§z“b RF? — 4R, F““F",

+ Rupea FP F€4. (2.19)

In other words, the theory is the Einstein-Maxwell theory
with a cosmological constant, together with an additional
LMD term. The Einstein equations of motion are

1o 1 2 (1.1)

Guy + ANoguv — E(F,w - Zg/wF )+ VL(,W) =0, (2.20)
where

1 1 i,

1,1) _ 1,1 déd b

L;(w ) = _EngL( )+ ZBZI)ZM Ra FZ‘jFu”

1 =5 1

+Z(S:f;;g Ravc + gcﬂacd(,d va (Zab)
(2.21)

The Maxwell equation is
V,F"=0, with FA’ = Fr —Szdngbeég. (2.22)

Owing to the Bianchi identity of the Riemann tensor, the
differential operator V,, can only land on F, but not R, and

@ Springer

hence the theory is of the second order. In Sect. 4, we shall
construct charged black holes of this theory.

3 Non-minimally coupled p-form field strength

The construction in the previous section can be easily gener-
alized to general (p—1)-form potential A, 1) whose p-form
field strength is given by

Fipy = dA([?—l)’ Foiap=p V[alAaz---ap]' G.D

For simplicity of notation, we construct the corresponding Z
tensors

284 = F By . (3.2)
The generalizing polynomial of the p-form to L™ of the
2-form field strength is then given by

2m + pn)! alea? 1...P
(m,n),p _ (— [a1b .. ambm 1 1. 7% ay |
L - 2m (p[)n Ralbl Ambm allmaf) Za’lln-a}f .
3.3)
Owing to the Bianchi identity,
11
v[aP+ Fé —aP] =0= V[prrl Fbl-»-bl’]’ (34)

it is straightforward to verify that in the equations of motion
associated with the Lagrangian

\/__gL(mJl),P

neither the metric nor A(,_1) has more than two derivatives,
even though the theory involves higher-order derivatives
through nonlinearity. When p is odd, we have L™-P = (
for n > 2, since the wedge product of an odd form with
itself vanishes. Note that for p = 1, we must have n = 0, 1.
The series L 1-1 = H was first constructed by Horn-
deski [28]. The p = 2 series was constructed in the previous
section.

It should be pointed out that the non-minimal coupling
terms L7 are not the only possible structures that one
can build for ghost-free combinations. For example, when
p = 3, we can also have terms like

(2m + 3n)! R[a1b1 .

3 1 3
al -aj a,--ay]

ambm n
ongn Rab " Rapp, Yolan = Yol a3 3-5)
with
1,23 1.2 3
l:l|;2;3 == Fa @ blFa b2p3- (36)

It is fairly straightforward to verify that the equations of
motion are second order. The most dangerous term that can
arise in the equations of motion is
3 4]

Vi vy, v e

h2h3b4 (37)
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It is useful to note that

F%, =2VIeAPl 4 v, A, (3.8)

It then becomes obvious that (3.7) does not involve three or
more derivatives.

As p increases, more and more possible ghost-free poly-
nomial structures can be built. We shall not in this paper
classify all such terms for general p-forms. It is also worth
pointing out that in the construction, we can replace the p-
form field strength with the p-form potentials, whose kinetic
term needs to be further introduced. The corresponding the-
ory may also be ghost free. In particular the Einstein-vector
theory was constructed in [29].

4 Electric and magnetic black holes
4.1 Static ansatz and reduced equations of motion

In this section, we focus on the low-lying four-derivative
theory (2.18) in four dimensions, where the Gauss—Bonnet
term is a total derivative and hence irrelevant. We construct
static black holes that carry electric and magnetic charges.
The ansatz is given by

2 2 dr? 2162
dS = —I’ldf + 7 + r dQQ,e’
A=¢dt+ powq), dog) = sz), “.1)

where p is a constant. The metric functions (&, f) and
the electrostatic potential ¢ are functions of . The metric

delfz, . of the level surfaces is
dx?
2 2\ 4.2
dQ; = a2 4+ (1 —ex”)dy~. “4.2)

The topology parameter € takes values of 1,0, —1, for the
unit $2, the 2-torus or the unit hyperbolic 2-space. The 1-
form w1y is simply w(1) = xdy and sz) = dx A dy is the
volume 2-form for the metric (4.2). With these conventions,
we see instantly that the ansatz carries the magnetic charge

O = — /Qe—wz’f _ ] 43)
"= Tenl ] O T 167 P T 41 '
Throughout this paper, we set, without loss of generality,
the volume w; ¢ of level surfaces to be independent of the
topology, namely

for e =1,0,—1. “4.4)

Wy, = 4,

For € = 1, it is the true volume of the S%. For ¢ = 0 the
extensive quantities such as mass and charges are then density
quantities per 47 area.

The ansatz (4.1) is the most general one for the static
configuration with isometries of either S2, 7% or H>. The
Maxwell equation (2.22) becomes

4.5)

((8V(f—6)+r2)\/%¢’>/=0.

The first integral can easily be obtained as a quadrature,

¢’_+ E
S8y (f—e) +r2\ £’

where ¢ is an integration constant. This determines the elec-
tric charge, given by
! 201
el — F =
167 / Ve 167
where F is defined in (2.22).
The Einstein equations (2.20) can now be reduced to one

first-order nonlinear differential equation and one quadra-
ture:

(4.6)

w2.¢ 1

q9==q, 4.7)

Q. 1

1
f —4(r4_2yp2)<r(f €+ Aor)
N q°r? p*(48yf +r?)
8y (f —e)+r? r ’
/ 4 3 2 2.3
A S S
u r*—=2ypr\ r 8y (f —e€) +r?

(4.8)
4.2 General properties

Much information can be extracted without solving Egs.
(4.8). The general solution is expected to be parametrized
by three quantities, namely the mass and electric and mag-
netic charges, ( }‘q, }‘ p). The near-horizon geometry is then
specified by the horizon radius rg, for which f(rg) = 0, and
(g, p). It follows from (4.8) that

h'(ro) = u(ro) f'(ro),

2
o 2 2 2 q
f(ro) = ————- |45 — Aorg) — p* -
4(rg—2yp?) -5
0
4.9)

The temperature of the black hole can then easily be deter-
mined by the standard technique:

_ V@) f1Cro) _ £ (ro)/u(ro)
4 4 '

The entropy can be obtained using the Wald entropy formula
(30,311,

T

(4.10)

1 _ A(L/—8)
S = —gfd” 2y «/—hal/ewe“bewl, (4.11)
which yields
2 2yp? 2 32y 0,
S=mrg(14+ =5 ) =mrg 1+ —32]). (4.12)
To To

@ Springer
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It is worth commenting that the Wald entropy formula is
not always valid. It was shown to be invalid in Einstein—
Horndeski gravity, owing to the unusual behavior of the scalar
in black hole horizon [32,33]. In our charged black holes,
however, the Maxwell field behaves in a similar fashion to
the Reissner—Nordstrgm (RN) black hole on the horizon and
hence we expect that the Wald entropy formula holds in our
black hole solutions.

The asymptotic region is less universal. For generic
parameters, the large r expansions for f and u are

1
f:——Aorz—i—e—E
3 r

L 32y — 3)p? + 3 Ly
RO 8 A —3) ) 2 ’

3 3¢°
L PN ' D S B (4.13)
uo ré 8y Ao —3)?
This expansion becomes singular when
8yAp=3, and g #0. (4.14)

As we shall see presently that the solution describes the z =
2 charged Lifshitz black hole for these special parameters
(4.14).

It is worth commenting that as was shown in [34] for
purely electric AdS planar black holes (p = 0 and € = 0),
there is a global scaling symmetry whose conserved Noether
charge is given by

on=1% (=2rh+r2H = 248y g +4yrf9?).

4V h
(4.15)
It is easy to verify that evaluating both on the horizon and
asymptotic (A)dS infinity yields
ox| =75 s=m,
+

3 1

3
QNLO =K - §¢0q ==-M-®.0..

: 5 (4.16)

The conservation of the Noether charge implies the following
generalized Smarr relation:

M= %(TS+<I>EQ6). 4.17)

4.3 Exact general magnetic black holes
When g = 0, the ansatz (4.1) carries only magnetic charges.

In this case, the equations can be solved completely, given
by

3
L 1_2)/}?2 2
4

@ Springer

(4.18)

and
f -1 (3p2+486r2—16A0r4)ﬁ 1%
= U [
4872 r
(3 — 32y Ag) p? 115 2yp?
X——————F1 |-, = - ——
16r2 4474 4
2eyp? 1 3 7 2yp?
Fi|-, == . 4.19
L P Rebrea (4.19)

The solution becomes the usual magnetic RN black hole
when y = 0. For y < 0, the curvature singularity is located
at r = 0 and hence there must be a horizon r = ry > 0,
where rg is the largest root of f. If y > 0, there is an addi-
tional curvature singularity located at r, = (2yp?) i ,and we
must require that rg > r,. This implies

_ mG=32yngp} eyt ypr)?
32 %21 y4 21w
(Analogous bound can be found in [33,35].) Once the event
horizon r¢ exists, the temperature and entropy are given by

2 2 2 2
—p? +der2 —4A 2
7= "2 T " 200 S:nr§(1+ Vp).

(4.20)

16nr§(r§ — 2yp2)£ r()‘
4.21)
The solution becomes extremal with 7 = 0 if
p* = pi =4 — Ao)rg. (4.22)

For a general non-extremal black hole, we must have p < p,
so that the temperature is non-negative. It follows that the
condition (4.20) can be satisfied provided that it is satisfied
for the extremal solution for a given horizon radius ry. The
mass and magnetic charge of the black hole are given by

1 1

M= —pu, = —p.
ZM Om 4}7

We do not have an independent way of determining the ther-
modynamical potential ®,, for the magnetic charge, and we
determine it by completing the first law of the black hole
thermodynamics,

(4.23)

dM =TdS + ¢,d0. (4.24)
We find a complicated expression:
o, — p (7rg + 2y (p? — 32er? +l 32A0r9))

16r5(rg — 2yp?)s

2¢y p |:1 37 2yp2:|
5 Fy L

PEE

+—
3
o

o
3p 115 2pp?
—— B =32y Ag)2F1 | =, —; —; ——|. (4.25
Ter, 0 A0 1[4 e
Although we determine the ®,, using the first law (4.24),
the result is nontrivial since the first law (4.24) involves two
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independent parameters and hence a nontrivial integrabil-
ity condition. To be specific, it is nontrivial in our case that
(dM — TdS) does not involve terms proportional to dry,
which would make the first law invalid.

4.4 Exact electric z = 2 Lifshitz black holes

When p = 0, the ansatz carries only the electric charge
Q.= A—I‘q. We have not found the general exact solutions for
generic parameters. However, when

8y Ag =3, (4.26)
we find an exact solution for general g:
V244
f=gir?pe SNV TR - B oh=0?+awr.
¢ =g’ —rd), (4.27)

where the constant g is defined by Ao = —3g? and rg is the
location of the event horizon defined by f(r9) = 0. When
u = 0 = g, the solution describes a Lifshitz vacuum of
Z = 2, namely

dr?

ds? = —r2(e2r2 + €)ds?
s re(gere+e) +—g2r2+e

+r7Q3,.  (4.28)
(To be precise, the Lifshitz metric is given by € = 0, in which
case the spacetime is homogeneous. For non-vanishing €,
the metric has a curvature singularity at » = 0.) The large-r
expansion of f is given by
1
f:g2r2+e——gq—%+--~.
2 r
It follows from [36] that the mass can be read off as M =

%gq . The first law of thermodynamics

(4.29)

dM = TdS + ®,d 0, (4.30)

can easily be verified where the thermodynamics quantities
are
J'(ro)h’ (ro)

T=-—— S=rrr§,
4

1
M= —gqu, (4.31)

1
> Qe =4, = —g(rg +2u).

For € = 0, one has generalized Smarr relation M = %(TS +
®, 0.). Note that this is different from the generalized Smarr
relation for the AdS planar black holes (4.17).

4.5 Dyonic black holes

In four dimensions, the Maxwell field in a black hole can
carry both electric and magnetic charges, giving rise to
dyonic solutions. We do not have exact solutions for such

general parameters. We find two approximate solutions, one
for small y and the other for small charges (p, q).

4.5.1 Small-y black holes

We first present the small y solutions. When y = 0, the
solutions are the dyonic RN black holes. At the linear order
of y, we find

= 2 2
a +
=gl +e-E 41 zp,
r 4r

f=Ff0+yH+00u.

2_3 2
%4-@()/2),

q )/(7[)2612 + 3q3 —20ugqr + 80g2qr4

u=1+

Pt 1075
+0@u?), (4.32)
where
Fo p*—q* (PP +4¢H)Bp* —g* —20er?)
2 4r 40r°
3 2 3 2 2 1
+g(p—q) . (4.33)
252 f

For the small-y approximation to be valid for all regions on
and out of the horizon, f must be well-defined for r > rg
where f(rg) = 0. This condition restricts the parameter c1,
namely

(P> +4¢>)(Bp? —q* —20erd)  6g%(3p? —q?)
c] = —
] 1073 o

(4.34)

Now the solution describes a dyonic black hole for suffi-
ciently small y. The asymptotic large-r expansion of the
function f is given by

2, 2 2 )
22 w o pc+qc+8g°y(dpc —q°)
=gt te— "+
f=g , 472

+ cee
(4.35)

where u = 1 — A—Itcl y. Thus the mass and electric and mag-
netic charges are

1 1 1

M:_/’Ls Qezzq, Qm:_p-

5 i (4.36)

The other thermodynamic quantities, up to the linear y order,
are given by

T — 4r§(3g2r5 —€) — p2 — q2
16711*3

LY ((12g%rg — p* + > (p* + ¢*) + 4e(p* — 3¢7))
327'rrg

)

@ Springer
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2 2
s=md1+22), o,=1
ry ro
rq(1p” +3¢> — 20faro + 80g>rg)
1018 ’
2 5(3g%r2 — e)r? + p* + 242
o = P 4 2P 08 Yotp 9 4
ro Srg

It is then straightforward to verify that the first law of black
hole thermodynamics,

dM = TdS + ®,dQ, + ,,d0,n, (4.38)

is valid up to and including the linear order of y.

The purely electric small-y solution (p = 0) was obtained
in [37], where thermodynamical properties were analyzed
using Euclidean action approach based on the quantum
statistic relation (QSR) [38]. Our results disagree with this
approach. Such a phenomenon also occurred in Einstein—
Horndeski gravity and it was suggested that the culprit is that
the theory may not have a Hamiltonian formalism [32,33].
We expect that the same situation occurs here. Our exam-
ple serves the further lesson that the QSR becomes problem-
atic in theories with non-minimally coupled derivative matter
fields.

4.5.2 Small charge black holes

An alternative approximation is to consider small charges.
The leading-order solution is then the Schwarzschild black
hole with

(4.39)

We find that up to and including the quadratic order of electric
and magnetic charges, the solutions are

f=fod+f, u=1+i, ¢=4¢,

P22y (T — 8er — 16g2r3) — r3)
4r3 ’

- 1 1
f==17 (q +500)+

L Q0 3y
+ == - _ —,
6/ rv 0 6((8g%y + Dr3 — 8y )

g2

N
Il

5=29 (4.40)
q
where
r qul ,
00 = | Fm R

q° V3
= i —6 arctan ﬁ
12V3(yaByg? + 1?3 14 ()5

+33log ((1+87g)% —2(ri0)?)

—V3log ((8yg* + r’ — 8)/,12)} . 4.41)

@ Springer

For the expansion to be valid, the horizon r =
f (ro) = 0 should not be altered. This implies that

P>y (Tjx — 8erg — 16g%r3) — r3)
4r8 '

ro with

1
1= —ZQ(ro) -
(4.42)

The thermodynamical quantities can now be easily calcu-
lated, given by

1 1 '(ro)/u(ro)
M=Zp=(+ci), r — {0l ,
2 2 47

2 2
S=7‘rr§<1+ yf ),
Ty

1 Q(ro)

Qe = qu q>€ = - )
q

1 p((6yg®> + Drg —2ey)

On =3P Pn= = . : (4.43)
0

It is now straightforward to verify that the first law (4.38) is
indeed satisfied up to and including the quadratic order of
the electric and magnetic charges.

5 AdS/CFT application: viscosity/entropy ratio

Having constructed theory and obtained many charged black
hole solutions, we are in the position to discuss applications
in the AdS/CFT correspondence. One such an application is
that the AdS planar or Lifshitz black holes are dual to some
ideal fluid and the linear response of a graviton in the SO (2)-
rotational invariant directions can be used to calculate the
shear viscosity of the fluid [39,40]. In two-derivative gravi-
ties, various arguments were given that the viscosity/entropy
ratio is fixed, given by

n 1

i 5.1
This value is no longer held in higher-derivative gravities
[41]. There is no universal answer; it depends on the details of
theories such as coupling constants, as well as the integration
constants of the solution such as the mass and charges.

For higher-derivative gravities, there is typically the short-
coming in the literature that the results are applicable only
for small coupling constants of the higher-derivative terms
[37,42-45]. This may be a consequence of two obstacles.
One is that the higher-derivative theory is only defined for
the small couplings, as in the case of perturbative string the-
ory. The theory would have a ghost issue when treated on
its own. This issue is resolved by our construction so that
the theory can be ghost free. Another obstacle is that exact
solutions may be lacking for higher-derivative gravities for
general parameters. This is indeed the case for our theory.
Although we have found many exact examples of special
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solutions, we do not have the exact solutions of the most
general dyonic black holes for the generic parameters.

Recently a new technique was developed where the vis-
cosity can be calculated without knowing the exact solutions
[34]. This technique was developed mainly for two-derivative
gravities. The key point of this technique is that AdS planar
black holes or Lifshitz black holes have a scaling symmetry
that gives rise to a Noether charge which relates the quantity
on the horizon to that on the asymptotic infinity. The conse-
quence is a generalized Smarr relation, which can be viewed
as the bulk dual to the boundary viscosity/entropy relation.
Since the existence of the Noether charge associated with the
scaling symmetry is independent of the number of derivatives
of the theory, we find that this technique can be adopted for
our higher-derivative gravities as well. Thus although we do
not have the general solutions for equations (4.8), the equa-
tions themselves are enough for us to determine the viscos-
ity/entropy ratio.

To proceed, we set Ag = —3g2. It is important to note
that we are now dealing with the case € = 0. It follows from
Eq. (4.8) that we have

ro(3g*ry — p* —q°)

fl(ro) = (5.2)
4(rg — 2yp?)
The temperature is therefore
_ B¢’y — p* — q*)u(rg) 53

167 (rg —2yp?)

To derive the shear viscosity, we consider the traceless and
transverse perturbation on the metric,

dQ%,ezo = dx% + dx% — d)cl2 + dx% 4+ 2W(r, t) dxydx;.

5.4)
The graviton mode W (7, t) satisfies
U — hfw”
_h (r(nf) —4hf) + 2y f¢' (4hf¢') —r(hf' —5fR)¢) W =0
2r(h =2y f¢"?) -
(5.5)
together with the constraint
/
v P (%qﬁ”) ¥ =0. (5.6)

The constraint arises in the linearized Einstein equations in
the diagonal (x1, x1) and (x2, x2) directions, while the wave
Eq. (5.5) arises in the off-diagonal (xi, x2) direction. The
constraint (5.6) is automatically satisfied for general dyonic
black holes in the Einstein—-Maxwell theory, corresponding
to y = 0. For non-vanishing y, the constraint is satisfied
only for either a purely electric solution or a purely magnetic
solution, but not for the general dyonic solution, i.e. we need
to impose

Qe Qm =0.

It turns out that the wave Eq. (5.5) can be analyzed with-
out imposing the condition (5.7), and hence we shall thus
proceed. Making a Fourier transformation in time,

(5.7)

W(r, 1) = ey (r), (5.8)
we find, near the horizon, that i satisfies
2
(r =)V + r = ) + ——sms Y =0 (5.9)
r—ro r—ro 1672272 = L. .
This equation can be solved exactly, implying
Y = Yoo~ i oatr—m) T O GE) (5.10)

r—ro

In other words, we select only the ingoing modes. To extend
the horizon solution to asymptotic infinity, we make the fol-
lowing ansatz:

i o A
Y= I/f0€74;,i7-log(rfro) ~ ¢ T lOg(gzrz)

x (1 —ia)U(r)+(9(w2)>, (5.11)

where U should be regular on the horizon and vanish at the
asymptotic infinity. At the linear order of w, we find that the
function U is a quadrature, given by

P S /7
r2h+2yf¢) \
r (r4 + 2y (8r2f + qz) + 64]/2‘)"2) ( -
16774 —2ypD) 2+ 8y )3 L 17
+02 +38y0) (1274622 = )= P02 +3201)) ) Vi
(5.12)

V=V-

In order for U to be regular on the horizon, we must have
V (ro) = 0, which implies

v = 00 =2 (12¢%r5 = p? = ¢*)v/ulro)
0 167 T ro(ry — 2y p?)

2 2
=r2|1+ va .
0 rg

To extract the information of the shear viscosity of the bound-
ary field theory, we consider the effective Lagrangian for i,
given by

(5.13)

N;zﬁ 22,
L T h(h+2yf¢)¢ 4 (5.14)

Thus the action can be evaluated,

~ 1 €=0 2 I 12N 1/

! IGN/Q(Z) (r Vo H2vie )w‘”)‘z
r(h+2yf¢"?) , rf =2f 2
7167‘“/? (47'rrfU + - ) + O(w?),
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1
= —io Vo + O(w?). (5.15)
The shear viscosity can then be read off:
1 1 32y Q2
=-Vo=-r3[1 ¢]. 5.16

It follows from the definition of the entropy (4.12) that the
viscosity/entropy ratio is then given by
4 2

g - 4i M (5.17)

T ry + 32y O,
Thus we obtain the ratio without using any exact solution.
Owing to the constraint (5.7), the result is applicable for all
purely electric or purely magnetic black holes, for all ranges
of y where a black hole exists.

The viscosity (5.16) was obtained also in [37] for the
small y parameter for which the approximate solution was
found. Our general result confirms this. However, our vis-
cosity/entropy ratio (5.17) disagrees with [37] even for van-
ishing Q,, and small y. This is because the entropy in [37]
was obtained using the Euclidean action procedure, which we
believe is invalid in this theory. It should also be emphasized
that as we mentioned in the introduction, higher-derivative
gravities in general give a bound on the coupling constants
such as y due to the causality consideration. This leads to
a further constraint on the allowed value for the viscos-
ity/entropy ratio. (See, for examples, [22,23,46,47].) We
expect the analogous causality bound also exists in our case.

6 Conclusions

In this paper we constructed higher-derivative gravities with
anon-minimally coupled Maxwell field A(;y = A, dx*. The
general Lagrangian consists of invariant polynomials built
from the Riemann tensor and the field strength F() = dA(j).
These polynomials are analogous to the Euler integrands
in Lovelock gravities in that the field equations of motion
remain of second order for both the metric and A,. The total
higher derivatives are achieved through nonlinearity. The lin-
earized equations of motion in any background involve only
two derivatives and hence the theories can be ghost free. We
also generalize the construction to involve a generic non-
minimally coupled p-form field strength. We noted that as
p increases, more and more invariant polynomials could be
constructed to give rise to ghost-free theories. However, we
did not classify all possible structures.

As an application in black hole physics, we focused on
a low-lying example in which the Einstein—-Maxwell gravity
with a cosmological constant was augmented by a polyno-
mial built from the Riemann tensor and bilinear F3), with
a coupling constant y. We constructed charged static black

@ Springer

holes in four dimensions with isometries of $2, T2, and H?.
Although we do not have the most general exact solutions,
we obtained many exact special ones, including the mag-
netic black holes and also electrically charged Lifshitz black
holes with critical exponent z = 2. We then constructed
analytic approximate dyonic solutions with small charges
or with small parameter y. We studied the thermodynam-
ics of the black holes and obtained the general first law. An
important lesson is that the first law based on the Wald for-
malism disagrees with that from the Euclidean action proce-
dure based on QSR. Such a phenomenon was first observed
in Einstein—-Horndeski gravity and it was suspected that
Einstein—Horndeski gravity may not admit a Hamiltonian
formalism [32]. Our results suggest this may be a widespread
situation for theories involving non-minimally coupled form
fields.

We then studied an application of the theory in the
AdS/CFT correspondence by deriving the boundary viscos-
ity/entropy ratio for AdS or Lifshitz planar black holes. The
purpose of our work is that higher-derivative terms in our
theory do not have to be small and the theory can stand on
its own right. The lack of the exact general solution appears
to produce an obstacle to get general results for all allowed
parameters. We find that the viscosity/entropy ratio can be
fully determined without the need to know the black hole
solutions; the equations of motion suffice. We thus obtain
the viscosity/entropy ratio for all parameters, including the
coupling constant y and electric and magnetic charges, none
of which has to be small.

Form fields arise naturally in string and M-theory. They
typically couple to gravity non-minimally in higher-order
expansions of the low-energy effective theories of the pertur-
bative strings. Our ghost-free construction makes it possible
to treat the theories in finite order and study the theories on
their own right. The explicit results of black holes and their
certain AdS/CFT application in the low-lying example shows
rich structures that deserve further investigation.
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