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Abstract In this paper we investigate the properties of tun-
neling spectrum from weakly isolated horizon (WIH)—a
locally defined black hole. We find that there exist corre-
lations among Hawking radiations from a WIH, information
can be carried out by such correlations, and the radiation
is an entropy conservation process. Through revisiting the
calculation of the tunneling spectrum from a WIH, we find
that Zhang et al.’s (Ann Phys 326:350, 2011) requirement
that radiated particles have the same angular momenta of
a unit mass as that of the black hole is unnecessary, and the
energy and angular momenta of the emitted particles are very
arbitrary, restricted only by keeping the cosmic censorship
hypothesis of black holes. So we resolve the information loss
paradox based on the method of Zhang et al. (Phys Lett B
675:98, 2009; Ann Phys 326:350, 2011; Int J Mod Phys D
22:1341014, 2013) in a general case.

1 Introduction

Stephen Hawking’ s astounding discovery that black holes
radiate ablack body spectrum [1,2] has been greatly stimulat-
ing the development of the theory of the black hole. Hawking
radiation gives us new insights into gravitational physics and
also provides some hints of quantum gravity. From Hawk-
ing’s famous work, we know that black holes are not the final
states of stars, and, with the emission of Hawking radiation,
they could lose energy, shrink, and eventually evaporate com-
pletely. However, because of the nature of the purely thermal
spectrum, it causes a disturbing and difficult problem: what
happens to information during black hole evaporation? This
scenario is inconsistent with the unitary principle of quantum
mechanics [3—6]. Around the year 2000, Parikh and Wilczek,
contemplating Hawking’s heuristic picture of tunneling trig-
gered by vacuum fluctuations near the horizon, proposed
a semiclassical method to investigate the emission rate by
treating Hawking radiation as a tunneling process [7,8]. This
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method considers the back reaction of the emitted particle
to the spacetime, and it does not fix the background space-
time. They found that the barrier of tunneling is created by
the outgoing particle itself, and when energy conservation is
considered, a non-thermal spectrum is given, which supports
the underlying unitary theory.

From the year 2009, Refs. [9-11] discussed in detail
Parikh and Wilczek’s non-thermal spectrum. They found that
there exist correlations among Hawking radiations (of tun-
neled particles) from a black hole, the correlations are equal
to mutual information, and black hole radiation is an entropy
conservation process, which is consistent with unitarity of
quantum mechanics. Their discussions are based on station-
ary black holes. The stationary black hole is represented by
an event horizon. However, this representation of black holes
possesses some drawbacks [12]. Firstly, to find the event
horizon knowledge of the metric of the entire spacetime is
required, in other words, defining a black hole by local con-
ditions is more reasonable. Secondly, the event horizons are
determined by the exact solutions of the Einstein equation
(most of which are of high symmetry), while realistic black
holes are often distorted by the gravitational interaction with
the matter and radiation around them. Finally, the systematic
development of the black hole thermodynamics requires the
description involving local information rather than the data
describing distant regions. The close relationship between
Hawking radiation and black hole thermodynamics reveals
that it is better to study the properties of Hawking radiation
in the framework of locally defined black holes. A success-
ful example of a locally defined black hole is the theory of
WIHs [14-18] first proposed by Ashtekar and developed by
many others. For the black hole information paradox, it is
important to study the problem for a WIH, since this model
describes real black holes and already includes all the sta-
tionary cases. It is the first time to investigate the black hole
information paradox of Hawking radiation from the view-
point of locally defined black holes. We prove that for a
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WIH, there exist correlations among Hawking radiations;
information can be carried out by such correlations, and the
radiation is an entropy conservation process. Furthermore,
in our analysis Ref. [10]’s requirement that radiated parti-
cles have the same angular momenta of a unit mass as that
of the black hole, j = %8, is unnecessary, and the energy
and angular momenta of emitted particles are very arbitrary,
restricted only by keeping the cosmic censorship hypothesis
of the black holes.

This paper is organized as follows. In Sect. 2, we revisit the
tunneling method to get the non-thermal spectrum of weakly
isolated horizon. In Sect. 3, we investigate the properties of
this non-thermal spectrum. In the last section, we give some
discussions and conclusions.

2 Revisiting Parikh and Wilczek’ s tunneling spectrum
from weakly isolated horizon

In this section we revisit the calculation of the tunneling
spectrum of a WIH with some differences from the origi-
nal discussion [19], and strictly follow Parikh and Wilczek’s
calculation [7,8].

Reference [17] established the first law of WIH thermo-
dynamics,

1
SE = —«k8A + Q6J. (1
8

The expressions of the surface gravity, angular velocity, and
horizon energy of a WIH are given by

R* —4J? q 2J
K= —/———, =,
2R3V R* +4J2 RVR* +4J2
VR*+4J2
E = +, (2)

where R is the horizon radius, defined as

A

yre 3)

A is the area of any cross section of the horizon, so the entropy
of a WIH is

R

A 2
S=, =nR" “

In the semiclassical limit, we can apply the WKB formula.
The emission rate I" is given as

' ~exp(=2Im I), %)

where [ is the action of the emitted particle. The imaginary
part of the action for an s-wave outgoing positive energy
particle, from r;, to r,y,:, can be calculated as

Tout Yout Pr
ImlI = Im/ prdr = Im/ / dp,dr. (6)
Tin Tin 0
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From Hamilton’ s equation of the emitted particle,

dH
dpr = T, @)

where H = ¢ is the energy of the emitted particles, we get

Tout @ dE
ImI:Im/ / —dr. ®)
Fin 0 r

From Ref. [19], the outgoing null geodesic is
F=Bi(e+8)r+ 00 =xkr+ 03, ©9)

where Kk = B;(¢ + €) is the surface gravity of the horizon,
and it is constant on the horizon [17]. So the imaginary part
of the action is

FTout [} d:?
Iml =1Im ——dr
Fin o Kkr+ 0@?)
w Fou d
= Im/ / T de
o Jr, Kkr+ 0(r?)
w

1 @ deg
=1Im Ti— ds:rr/ —, (10)
0 K 0o K

where the integral of r is done by deforming the contour
around the pole in the third equality. For a non-rotating WIH,
Q =0and J = 0, so we obtain from Egs. (2)

|
- 11
“T4E (in

We fix the total mass of the spacetime, and allow the black
hole mass to fluctuate. After emitting a particle with energy
¢ the black hole mass becomes £ — &, so we obtain

wdg w , w
1m1=71/ —/=7r/ 4Ed€=7‘[/ 4(E — e)de
0 K 0 0

— 4re (E_ %) (12)

According to Eqgs. (2) and (4), the entropy of the non-rotating
WIH can be expressed as

S =nR> =4 E?, (13)
and the change of the entropy after emitting a particle is
AS = 4n[(E —¢)? — E*] = —8ne (E _ g) . (14)
So the tunneling rate is
= exp (=2Im I) = exp [—Sne (E — %)] — exp(AS)

= exp(d4n[(E — &) — E?]). (15)

Next, we discuss the rotating WIH. From Egs. (2), (3) and
(4), we can rewrite angular velocity €2, surface gravity « and
entropy S as

9 J EX—J2

= , K = ,
2E(E?2 +VE*Y = J?) 2E(WE* = J2 4+ E2)

S =nxR*=2n(E>+VE* - J?). (16)
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For axial symmetric WIH, using the formula [19,20], the
imaginary part of the action I should be

Im 1 =Im/[prdr—p¢d¢]=IM/[pr—M]d”

F
dH — ¢d

ds—de
_Imf/ dr_Im//—(dS—QdJ)
—Im/‘—(de—Qd])—n/#, (17)

where  is the angular velocity of the horizon and j = py is
the angular momentum of the emitted particle. We consider
the s-wave, so the particles radiate along the normal direction
of the horizon, that is, ¢ = Q. This is the requirement for the
emitted particles, and the condition that particles be emitted
with the original angular momentum of a unit mass of the
black hole, j = Es is unnecessary (see Ref. [10]).

When the particles’ self-gravitation is taken into account
we should replace £ and J with £ — ¢ and J — j in the
expression of k and €2, so we get from Eqs. (17),

de
ImlI = 7'[/
2UE—6) [ (E—e)*—(J—&)>+(E—)?]
:n/ AE -V (E—o) —(J —e) +(E—2)]
V(E =)t — (] —¢)?
J—J
NG

We do not need to do the integration directly. The change of
the back hole entropy after emitting a particle is

_ J=j d
2UE—&)(E—&)2++/(E—e)*—(J—j)?] /

(18)

d
(J —¢&)? /

AS = 2x[(E — ¢)? +\/(E —e) = =2

—2m[E* + VE* — J2), (19)
and it is easy to get
A(AS E —¢)?
WBY) _ 4n (E ) "
9z V(E —e)* —(J = j)?
a(AS J—j
(AS) _ o, / . (20)
0] VE—e)f —(J = j)?
By putting the above equations into Eq. (18), we have
a(AS 8 AS 1
ImS_—— / ( ) ( - )dj =—=AS. (2D
2 de aj 2
So the tunneling rate is
I' = exp(—2ImS) = exp(AS)
= exp2r[(E — &)* + \/(E -t —(J - )
—27[E*+VE*—J?)). (22)

Our next discussion is based on this equation.

3 Information recovery of tunneling spectrum
from weakly isolated horizon

In this section, we investigate the properties of the tunneling
spectrum from a WIH following Refs. [9-11]. From Eq. (22),
the probability for the emission of a particle with energy and
angular momentum (e1, ji) is

D(er. ji) = expQal(E — 61)* + | (E — e — (J = j1)?]

—27[E* +VE4 — J2)). (23)

And the probability for the emission of a particle with energy
and angular momentum (&7, j») is

[(e2. j2) = exp@rL(E — e2)° +(E = e2)* = (J — )]

—27[E*+VE*—J?)). (24)

Note that (e1, j1) and (&2, j2) represent two independent
emitted particles, so the expressions should have the same
form.

Let us consider a process as follows. Firstly one particle
with energy and angular momentum (g1, j1) emits, and then
another particle with energy and angular momentum (g2, j»)
radiates. The probability for the emission of the second par-
ticle is

C(e2, joler, j1) = expRrl(E — &1 — &2)?
+\/(E —er—e)t = —ji — j»)?

2 [(E - £1)® + | (E —e1)* = (J — ji)?)).

(25)

which is the conditional probability and is different from the
independent probability (24). The probability for two suc-
cessive emissions with energy and angular momenta (g1, j)
and (&2, j») can be deduced as follows:
(e, ji, &2, jo) = Ter, jOT (e2, jaler, j1)
= exprl(E — &1)? +(E —en* — (J — jp)?]
—27[E% + VE* — I2) exp2r[(E — &1 — £2)>
+(E =61 —e* —(J — j1 — jo)?
“2m[(E = e)? + (B — en* — (J — D2
= exp(2r[(E — €] — &2)*
+(E—e1 —e* = () — j1 — jo)?

—27[E% +VE* - J2)).

(26)
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The last equality is nothing but I'(e] + &2, j1 + j2), SO we
get

I'(e1, j1, &2, j2) = U'(e1, jO (&2, jalet, j1)
=T(e1 + &2, j1 + jo)- 27

This is an important relationship which tells us that the prob-
ability of two particles emitted successively with energy and
angular momenta (€1, j1) and (&2, j») is the same as the prob-
ability of one particle with energy and angular momentum
(e1 + €2, j1 + j2). It is easy to see that

C(e1, 1, €2, 2, - -5 &0y Ji) = Ter, jOT (82, j2ler, j1)
x o x I'(e, jiler, jis ... &i—1, ji—1)
=T+ +e, 4+, (28)

which is an important relationship we will use later.
The function

C(AUB; A, B) =InT(AU B) — In[[(A)['(B)] (29)

is used to measure the statistical correlation between two
events A and B. For the Hawking radiation, the correlation
between the two sequential emissions [9—11,13] can be cal-
culated as

InT'(e1 + &2, j1 + j2) — In[T' (e, j)T (&2, j2)]
I(e1 + &2, j1+ j2)
C(er, jOT (&2, j2)
I'(er, juT (g2, jaler, j1)
(e, joT (g2, j2)

F b j bl j
(&2 J2|€'1 J) £0, (30)
(&2, j2)

which shows that the two emissions are statistically depen-
dent, and there exist correlations between sequential Hawk-
ing radiations from WIH.

Like Eq. (25), the conditional probability I'(e;, jileq,
Jis .-+, €&i—1, ji—1) is the tunneling probability of a particle
being emitted with energy and angular momentum (g;, j;)
after a sequence of radiation from 1 — (i — 1). So the con-
ditional entropy taken away by this tunneling particle is then
given by

S Ei-1s Jie1)
S Ei—1, Jim1)- (3D

S(e&i, jiler, ji, ..
=—InT'(g, jiler, j1, ..

The mutual information for the emission of two particles
with energy and angular momenta (g1, j1) and (g2, j2) is
defined as [9-11]

S(e2, jo &1, j1) = S(e2, jo) — S(e2, jaler, j1)
= —1InT'(e2, jo) +InT(e2, jale1, j1)
_ 1 L2, 2le1, 1)

32
[(e2, j2) 2)
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which shows that mutual information is equal to correlation
between the sequential emissions, that is to say, information
is carried out by correlations between Hawking radiations.

Let us calculate the entropy carried out by Hawking radi-
ations. The entropy carried out by the first emitted particle
with energy and angular momentum (g1, ji) is

S(er, j1) = —Inl(er, j1)- (33)

The conditional entropy carried out by the second emission
after the first emission is

S(82aj2|8lajl):_]nr(82aj2|8lajl)' (34)
So the total entropy carried out by the two sequential emis-
sions is

S(er1, j1, €2, j2) = S(e1, j1) + S(e2, jaler, j1). (35)

Assuming the black hole is exhausted after radiating n par-
ticles, we have the following relationship:

n n
Ya=E Yy ji=J, (36)
i i

where E, J are the mass and angular momentum of WIH.
The entropy carried out by all the emitted particles is

n
SE1 1o enn u) = ) SCeriler i gim1. jim1)
i=1
= S(e1, j1) + S(&2, j2le1, j1)
+ -4 S(Ens Jnlets Jis ooy En—t, Jn—1)
= —InT(e1, j1) —InT(e2, jaler, j1) — -
—1InT(en, julers ji, s &n—1, jn—1)
= —In[I"(ey, j1) x T'(e2, jaler, j1)
X o X Uen, Jnlet, Jis ooy &n—1s jn—1)]
=—Inl(er+e+---+en, N+ +-+ Jjn)
=—InT['(M,J) =21 (E> + VE*—J2) = Swiu, (37)

where we use Eq. (28) in the fifth equation and Eq. (16) in
the last equation. The result shows that the entropy carried
out by all the emitted particles equals the original black hole
entropy, so the total entropy is conserved.

4 Discussions and conclusions

We have two comments on the above analysis. Firstly, the
energy and angular momenta of emitted particles are not arbi-
trary, because the black hole should satisfy the cosmic cen-
sorship hypothesis at any time, that is to say, the black hole
should satisfy the relationship, E 4 > J2.If the extreme case
E* = J?is reached, the radiation will stop since the temper-
ature of the black hole is zero. The sum of the entropy carried
out by Hawking radiations and the remaining entropy of the
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black hole is also conserved. Secondly, Ref. [10] requires
that emitted particles have the same angular momentum of
a unit mass as that of black hole, j = %5, but we find that
this condition is unnecessary in the calculation of Parikh and
Wilczek’ s tunneling spectrum. For the s-wave, the particles
radiate along the normal direction of the horizon, that is, the
emitted particles’ angular velocity equals the angular veloc-
ity of the black hole, which is the requirement for the emitted
particles.

In this paper we investigate the information loss paradox
of a WIH. We find that for the locally defined black holes, in
the tunneling spectrum there exist correlations, and informa-
tion can be carried out by such correlations, and the entropy
is conserved during the radiation process. In our analysis
we find that the energy and angular momenta of the emit-
ted particles are very arbitrary, restricted only by keeping the
cosmic censorship hypothesis of the black holes. Therefore,
we resolve the information loss paradox based on the method
of [9—11] against a realistic and general background.
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