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Abstract A new theory of gravity called Eddington-
inspired Born–Infeld (EiBI) gravity was recently proposed
by Bañados and Ferreira. This theory leads to some exciting
new features, such as free of cosmological singularities. In
this paper, we first obtain a charged EiBI black hole solution
with a nonvanishing cosmological constant when the electro-
magnetic field is included in. Then based on it, we study the
strong gravitational lensing by the asymptotic flat charged
EiBI black hole. The strong deflection limit coefficients and
observables are shown to closely depend on the additional
coupling parameter κ in the EiBI gravity. It is found that,
compared with the corresponding charged black hole in gen-
eral relativity, the positive coupling parameter κ will shrink
the black hole horizon and photon sphere. Moreover, the cou-
pling parameter will decrease the angular position and rel-
ative magnitudes of the relativistic images, while increase
the angular separation, which may shine new light on test-
ing such gravity theory in near future by the astronomical
instruments.

1 Introduction

Einstein’s theory of general relativity (GR) has achieved great
success on interpreting many phenomenological and experi-
mental results. However, one of its major riddles is the pre-
diction of the appearance of the singularity, such as that in
the beginning of Big Bang and at the center of black holes. In
order to resolve the singularity problem, based on the clas-
sic work of Eddington [1], and on the non-linear electrody-
namics of Born and Infeld [2], an alternative gravity theory,
Eddington-inspired Born–Infeld (EiBI) theory, was recently
proposed by Banãdos and Ferreira [3]. Different from the
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metric Born–Infeld–Einstein theory [4] and the purely affine
Eddinton theory [1], EiBI gravity is a Palatini theory of grav-
ity. For different Palatini theories see Refs. [5,6] for Pala-
tini f (R) and Born–Infeld- f (R) gravities, respectively. For
recent reviews of modified gravities, see Refs. [7–9].

EiBI gravity has aroused much interest. It was found that
EiBI gravity is completely equivalent to GR in vacuum, while
differs it when the matter is included in. In the presence
of matter, this theory shows several attractive new features.
In this gravity, the cosmological solutions of the model for
homogeneous and isotropic space–times demonstrate that
there is a minimum length (and maximum density) at early
times, pointing to an alternative theory of the absence of Big
Bang singularity in early cosmology [3]. For positive EiBI
coupling parameter κ , the singularities in gravitational col-
lapse may be prevented due to “repulsive gravity” effects
[10]. The theory also supports stable, compact pressureless
stars made of perfect fluid. So the parameter κ will have
a near optimal constraint from the relativistic stars. In Ref.
[11], the authors found that EiBI gravity coupled to a perfect
fluid reduces to GR coupled to a nonlinearly modified perfect
fluid resulting in an ambiguity between modified coupling
and equation of state. Through the energy conditions, con-
sistency, and singularity-avoidance perspectives, they argued
that such theory is viable from both an experimental and the-
oretical point of view.

Although EiBI gravity can resolve the spacetime singu-
larities and is compatible with all current observations, it is
still has some shortcomings. For example, it was shown in
Ref. [12] that it has curvature singularities at the surface of
polytropic stars and unacceptable Newtonian limit. The Big
Rip singularity was found to be unavoidable in the EiBI phan-
tom model [13]. In Refs. [14,15], the transverse and traceless
tensor modes were found to be linearly unstable in the per-
turbations to a four-dimensional homogeneous and isotropic
universe. However, in the brane-world scenario, the trans-
verse and traceless tensor fluctuations are stable [16], thus the
brane-world scenario may be helpful to stabilize the models
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in this gravity theory. For the full linear perturbed modes with
the approximate background solutions near the maximum
density, it was found that [15], for the positive EiBI param-
eter κ , the scalar modes are stable in the infinite wavelength
limit (the wave vector k = 0) but unstable for k �= 0. The
vector modes are stable, while the tensor mode is unstable
in the Eddington regime, independent of k. However, these
modes are unstable and hence cause the instabilities for neg-
ative parameter κ [15]. In Ref. [17], a general algorithm was
proposed and developed to find the action for cosmological
perturbations which rivals the conventional, gauge-invariant
approach and can be applied to theories with more than one
metric. And this method was applied to the minimal EiBI
theory, and the result shows that the tensor-to-scalar ratio of
perturbations is unacceptably large. Moreover, many authors
have looked at various aspects of this theory [18–37]. And
these works show that the new features closely depend on
the coupling parameter, especially on the positive κ .

On the other hand, lensing in strong gravitational field is a
powerful tool to test the nature of compact object. Comparing
with the lensing in the weak gravitational field case, in the
vicinity of a compact object, i.e., a black hole, the lensing
will have a rich structure, and a strong field treatment of
gravitational lensing was developed in [38–43] based on the
lens equation given in Refs. [44,45]. Many study displayed
that the property for such lensing is determined by the nature
of the compact object. So lensing in strong gravitational field
will provide us a possible way to test and distinguish different
gravitational theories in the strong gravitational region. The
results implied that with the astronomical observation in the
near future, we are allowed to verify the alternative theories
of gravity in the strong field regime [46–53]. The study has
applied to different black hole solutions, and we refer the
reader to Ref. [54] and references therein for a recent review.

It is the purpose of this paper to explore the nature of the
black hole in EiBI gravity from the viewpoint of the strong
gravitational lensing. At first, we construct a static spherically
symmetric black hole with a cosmological constant when the
electromagnetic field is included in. Then based on this black
hole solution with vanishing cosmological constant, we study
the lensing in the strong deflection limit by adopting Bozza’s
method. We find that the presence of the EiBI parameter κ

with positive value will enlarge the black hole horizon and
photon sphere. The strong deflection limit coefficients and
observables are obtained.

The paper is structured as follows. In Sect. 2, by solving the
equations of motion, we obtain a static, spherically symmet-
ric black hole solution with nonvanishing cosmological con-
stant. Next, we investigate the lensing by an asymptotically
flat black hole in strong deflection limit in Sect. 3. The struc-
ture of photon sphere and strong deflection limit coefficients
are got. In Sect. 4, we suppose that the gravitational field of
the supermassive black hole at the center of our Galaxy is

described by the EiBI black hole and then obtain the numer-
ical results for the main observables in the strong deflection
limit. Finally, discussion of our results is undertaken.

2 Field equations and black hole solution

In this section, we generalize the charged black hole solution
obtained in Ref. [3]. The action for the EiBI theory is given
by

S(g, �,�) = 1

8πκ

∫
d4x

(√−|gμν + κRμν(�)| − λ
√
g
)

+SM(g,�), (1)

where we set c = G = 1, Rμν(�) denotes the symmetric part
of the Ricci tensor built with the connection �, the dimen-
sionless parameter λ = 1+κ� corresponds to cosmological
constant, and SM(g,�) is the action of matter fields, which
only couple to the metric. When the parameter κ � g/R,
this action reduces to the Einstein–Hilbert action with cos-
mological constant �. While when κ � g/R, the Edding-
ton’s action will be obtained approximately. Therefore, the
EiBI parameter κ with inverse dimension of cosmological
constant bridges two different gravity theories.

By varying the action (1) with respect to the metric field
g and connection field �, we get the equations of motion for
this gravity theory:

qμν = gμν + κRμν, (2)√−|qρσ |qμν = λ
√−|gρσ |gμν − 8πκ

√−|gρσ |Tμν, (3)

where qμν is the auxiliary metric compatible to the connec-
tion with �λ

μν = 1
2g

λσ (qσμ,ν + qσν,μ − qμν,σ ).
Without the matter fields, the action reduces to the

Einstein–Hilbert one. So in order to find the new prop-
erty of the EIBI theory, we add an electromagnetic field
LM = − 1

16π
FμνFμν for simple, for which the energy–

momentum is given by

Tμν = 1

4π

(
Fμσ F

σ
ν − 1

4
gμνFσρF

σρ

)
. (4)

Then the EiBI gravity will deviate from GR. One of the inter-
esting issues is to seek the black hole solution, which will
provide a test of different gravity theory in strong gravita-
tional fields.

First, we assume a static spherically symmetric black hole
metric,

ds2 =−ψ2(r) f (r)dt2 + 1

f (r)
dr2 + r2(dϑ2 + sin2 ϑdφ2).

(5)

In the absent of matter fields, the solution is required to be
consistent with the Schwarzschild–de Sitter black hole at
large r limit for positive �, i.e.,
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ψ(r) = 1, (6)

f (r) = 1 − 2M/r − �r2/3. (7)

The auxiliary metric qμν is assumed as

ds′2 = −G2(r)F(r)dt2 + 1

F(r)
dr2

+H2(r)(dϑ2 + sin2 ϑdφ2). (8)

It corresponds to the spacetime metric (5) with relation (2).
Here we only consider the electrostatic field with nonvanish-
ing A0, while other components of the vector field vanish.
Then from the Maxwell equation, one easily gets

∂r (ψ
−1r2E) = 0, (9)

where the electric field E = −∂r A0. The solution of this
equation is

E = C0

r2 ψ(r). (10)

Here C0 is an unfixed constant. The nonvanishing compo-
nents of the energy–momentum tensor read

8πT 00 = ψ−4 f −1E2, 8πT 11 = −ψ−2 f E2, (11)

8πT 22 = r−2ψ−2E2, 8πT 33 = r−2 sin−2 θ ψ−2E2.

(12)

Inserting these into the field equation (3), we have

H2

GF
= r2

ψ f

(
λ + κC2

0

r4

)
, (13)

H2GF = r2ψ f

(
λ + κC2

0

r4

)
, (14)

G = ψ

(
λ − κC2

0

r4

)
. (15)

Solving the first two equations, we obtain

H = r

√
λ + κC2

0

r4 , (16)

F = f

(
λ − κC2

0

r4

)−1

. (17)

It is now clear that the spacetime and auxiliary metrics are
related with each other by Eqs. (15)–(17). Moreover, the field
equation (2) reduces to

4
G ′

G

H ′

H
+ 2

F ′

F

H ′

H
+ 3

G ′

G

F ′

F
+ 2

G ′′

G
+ F ′′

F

= 2

κF

⎛
⎝ 1

λ − κC2
0

r4

− 1

⎞
⎠ , (18)

4
H ′′

H
+ 2

F ′

F

H ′

H
+ 3

G ′

G

F ′

F
+ 2

G ′′

G
+ F ′′

F

= 2

κF

⎛
⎝ 1

λ − κC2
0

r4

− 1

⎞
⎠ , (19)

− 1

H2F
+ F ′

F

H ′

H
+ G ′

G

H ′

H
+ H ′2

H2 + H ′′

H

= 1

κF

⎛
⎝ 1

λ + κC2
0

r4

− 1

⎞
⎠ . (20)

From Eqs. (18) and (19), one has G ′/G = H ′′/H ′. Thus

G = C1H
′. (21)

Then the metric function ψ and electric field strength are

ψ = C1r2√
λr4 + κC2

0

, (22)

E = C0C1√
λr4 + κC2

0

. (23)

Requiring E → Q
r2 when r → ∞, the constants satisfy

C0C1 = √
λQ. (24)

From Eqs. (22) and (23), we have ψ = E
C0
r2. When the

electric field vanishes, we should have ψ = 1. So the constant
C0 measures the charge of the black hole, and we can set
C0 = Q and C1 = √

λ. Solving Eq. (20) yields

F = 1

HH ′2[
C2+

∫ (
H ′ − H2H ′

κ

(
1 −

(
λ+ κQ2

r4

)−1
))

dr

]
.

(25)

Using Eq. (17), we get the metric function

f (r) = r
√

λr4 + κQ2

λr4 − κQ2⎡
⎣C2 +

∫ ⎛
⎝H ′ − H2H ′

κ

⎛
⎝1 −

(
λ + κQ2

r4

)−1
⎞
⎠

⎞
⎠ dr

⎤
⎦

= r
√

λr4 + κQ2

λ
r4 − κQ2

[
C2 −

∫
(�r4 − r2 + Q2)(λr4 − κQ2)

r4
√

λr4 + κQ2
dr

]
. (26)

At the large r limit and vanished Q, the metric function f (r)
reads

f (r) → 1 + C2√
λr

− �

3
r2 + O(r−2). (27)
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Comparing with the expression (7), we can fix the constant
C2 as

C2 = −2
√

λM. (28)

Here we have obtained the solution of the charged black hole
in EiBI gravity with nonvanishing �, which is rewritten as
follows:

ψ(r) = r2√
r4 + (κ/λ)Q2

, (29)

E(r) = Q√
r4 + (κ/λ)Q2

, (30)

f (r) = r
√

κQ2 + λr4

λr4 − κQ2

[
(3r2 − Q2 − �r4)

√
κQ2 + λr4

3r3

+1

3

√
Q3

π
√

κλ
�2(1/4) + 4

3

√
i Q3
√

κλ
F

×
⎛
⎝iarcsinh

⎛
⎝

√
i

Q

√
λ

κ
r

⎞
⎠ ,−1

⎞
⎠ − 2

√
λM

⎤
⎦ .

(31)

The integral in (26) has been calculated and the constant of
integration is added and F(�,m) = ∫ �

0 (1−m sin2 θ)−1/2dθ

with −π/2 < � < π/2 represents the first kind ellip-
tic integral. The auxiliary metric can also be obtained from
Eqs. (15)–(17).

When the charge vanishes Q = 0, we will get the
Schwarzschild–AdS black hole solution: ψ(r) = 1, f (r) =
1 − 2M

r − �
3 r

2. And taking the coupling parameter κ → 0,
it will reduces to the RN–AdS/dS solution: ψ(r) = 1,

E(r) = Q
r2 , f (r) = 1 − 2M

r + Q2

r2 − �
3 r

2.

3 Strong gravitational lensing

In this section, we would like to study the effect of the EiBI
parameter κ on the lensing in strong gravitational field.

Here we only consider an asymptotic flat black hole with
λ = 1 (� = 0). Then the black hole solution reduces to

ψ(r) = r2√
r4 + κQ2

, (32)

E = Q√
r4 + κQ2

, (33)

f (r) = r
√
r4 + κQ2

r4 − κQ2

[
(3r2 − Q2)

√
r4 + κQ2

3r3

+1

3

√
Q3

√
κπ

�2(1/4) + 4

3

√
i Q3
√

κ
F

×
(
iarcsinh

(√
i√
κQ

r

)
,−1

)
− 2M

]
. (34)

In the limit of r → ∞, we have

f (r) → 1 − 2M

r
+ Q2

r2 + 2κQ2

r4 + O(r−5). (35)

In the limit of r → √√
κQ,

ψ(r) → 1√
2
, E(r) → 1√

2κ
, f (r) → ∞. (36)

We give three ‘scalar curvature’

R[g] ≡ gμνRμν[g] ∝ (r4 − κQ2)
−3

, (37)

R[g, q] ≡ gμνRμν[q] = gμν(qμν − gμν)/κ = 8/κ, (38)

R[q] ≡ qμνRμν[q]=8
(r4 + κQ2/

√
2)(r4−κQ2/

√
2)

(r4 + κQ2)(r4 − κQ2)
,

(39)

from which we can see that both R[g] and R[q] are singular
at the r = √√

κQ, but R[g, q] is regular everywhere. For the
small EiBI parameter κ , we show the behaviors of the met-
ric functions ψ(r) and f (r) for different values of (κ, Q)

with M = 1/2 in Fig. 1. When Q = 0, we have ψ(r) = 1
and f (r) = 1 − 2M/r , which is exactly consistent with
the Schwarzschild black hole as expected. While when the
charge Q deviates from zero, the solution will be significantly
different from the Schwarzschild one. One remarkable prop-
erty is that the horizon structure of the charged EiBI black
hole is different from the charged black hole in GR, but sim-
ilar to the Schwarzschild black hole with one horizon. We
show the black hole region in the parameter space marked
with light gray color in Fig. 2. It clear that black hole with
small value of charge can have large κ . The radius rh of the
horizon as a function of the EiBI parameter κ is plotted in Fig.
3a. When the charge Q is small, rh is almost the same for any
value of the EiBI parameter κ . While when Q increases, it
displays a monotone decreasing behavior which implies that
κ shrinks the black hole horizon for fixed charge Q. And the
horizon radius of the Schwarzschild black hole rh = 1 will
be got with Q = 0. Moreover, for fixed κ , the horizon radius
decreases with Q. Here it is worth noting that the similar
asymptotically flat black hole solution was first obtained in
Ref. [3], where the metric function is expressed as an integral
form.

Adopting the setup 2M = 1, the spacetime metric takes
the form

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdφ2),

(40)

with the metric functions given by

A(r) = ψ2(r) f (r), B(r) = f (r)−1, C(r) = r2. (41)

Then considering that a photon comes from infinity and
returns to infinity, the deflection angle of the photon can be
expressed as
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Fig. 1 Behaviors of the metric
functions ψ(r) and f (r). We
have set M = 1/2 and λ = 1
(� = 0)
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Fig. 2 Black hole region in the parameter space. Black hole region
locates below the solid line, while above it there exists no black hole

α(r0) = I (r0) − π, (42)

I (r0) = 2
∫ ∞

r0

√
B

√
C

√
CA0
C0A

− 1
dr, (43)

where r0 denotes the closest distance that the photon can
approach. The subscript “0” represents that the metric coef-
ficients are evaluated at r0. When the parameter κ is fixed,
α(r0) monotonically decreases with r0. When r0 approaches
some certain points, the photon can complete one loop or
more than one loop before reaching the observer located at
infinity. When r0 approaches the radius rps of the photon
sphere, the photon will surround the black hole all the time
if there is no perturbation.

The equation determining the radius rps of the photon
sphere for a black hole is A′r = 2A, where a prime repre-
sents a derivative with respect to r . For the EiBI black hole,
it takes the form

8κ5/4Q2r2(r2 − Q2)
√

κQ2 + r4

= (3κ2Q4 + 2κQ2r4 + 3r8)

×
[
−4

√
i Q3/2r F

(
iarcsinh

(√
i√
κQ

r

)
,−1

)

−Q3/2r�
( 1

4

)2

√
π

+ 4
√

κ(3r − 2
√

κQ2 + r4)

]
, (44)

In general, the photon sphere for a static, spherically sym-
metric black hole is defined as the unstable circular orbit.
According to it and after a brief check, the radius of the pho-
ton sphere is just the largest solution of Eq. (44). When the
charge Q vanishes, the solution reduces to rps = 3/2, which
is consistent with that of the Schwarzschild black hole. While
for a nonvanishing Q, the equation cannot be analytically
solved. We show the numerical results in Fig. 3b. The radius
rps of the photon sphere shares the similar behavior as rh,
while has a larger value than it. From the figure, it is clear
that both Q and κ shrinks the photon sphere. Thus the photon
is more easily captured by the black hole with small Q and κ .

Next, let us consider the lensing that the photon passes
very close the photon sphere. Following the method proposed
by Bozza [38,39], we define a variable

Fig. 3 The radii of the horizon
(a) and photon sphere (b) as the
functions of the EiBI parameter
κ for different value of charge Q
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Fig. 4 Variation of the strong
deflection limit coefficients and
minimum impact parameter ups.
a a1, b a1, and c u ps
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z = 1 − r0

r
, (45)

then the total azimuthal angle is expressed as

I (r0) =
∫ 1

0
R(z, r0)K (z, r0)dz, (46)

where

R(z, r0) = 2r0
√
ABC0

C(1 − z2)
, (47)

K (z, r0) = 1√
A0 − AC0/C

. (48)

After a simple check, we find that R(z, r0) is a regular func-
tion of z and r0, while K (z, r0) diverges at z = 0. To deal
with this problem, we split (46) into two parts, the divergent
part ID(r0) and regular part IR(r0),

ID(r0) =
∫ 1

0
R(0, rps)K0(z, r0)dz, (49)

IR(r0) =
∫ 1

0
(R(z, r0)K (z, r0) − R(0, rps)K0(z, r0))dz.

(50)

In order to find the order of divergence of the integrand, we
perform a Taylor expansion of the argument inside the square
root in K (z, r0),

K0(z, r0) = 1√
χ1(r0)z + χ2(r0)z2 + O(z3)

, (51)

where the coefficients χ1(r0) and χ2(r0) cannot be shown in a
compact form, and so we do not list them. However, one thing
worth to note is that the coefficient χ1(r0) vanishes at r0 =
rps, which leads to a logarithmic divergence of the deflection
angle (42). Thus, the deflection angle can be expanded with
a logarithmic term presented by Bozza [38,39],

α(u) = −a1 log

(
u

ups
− 1

)
+ a2 + O(u − ups). (52)

The strong deflection limit coefficients a1 and a2 depend on
the radius of the photon sphere,

a1 = R(0, rps)

2
√

χ2(rps)
, (53)

a2 = −π + aR + a1 log
r2

ps(2A(rps) − r2
psA

′′(rps))

upsrpsA3/2(rps)
, (54)

aR = IR(rps). (55)

In general, the coefficient aR can not be calculated analyt-
ically, but we can get it numerically. The minimum impact
parameter is in the form

ups = rps√
A(rps)

. (56)

The coefficients a1, a2, and ups are plotted in Fig. 4. When
the charge Q = 0 (described by the black solid lines), we
have aSch

1 = 1, aSch
2 = −0.4002, and uSch

ps = 3
√

3/2 for the
Schwarzschild black hole. When the nonvanishing charge Q
is fixed, it is shown that the coefficient a1 increases, while ups
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Fig. 5 The deflection angle as a function of κ for fixed u = ups+0.005

decreases with the EiBI parameter κ . For fixed κ , a1 increase
while ups decrease with the charge Q. The variation of the
strong field limit coefficients a2 is also a monotonic function
of κ . It decreases quickly for larger Q.

Figure 5 shows the deflection angle α(u) evaluated at
u = ups + 0.005. It indicates that κ increases α(u) for the
light propagated in the charged EiBI black hole background.
And charge Q will further increase α(u). It also implies that
the presence κ and Q will give a larger α(u) than that of the
Schwarzschild black hole, i.e., α(u) = 5.85. Therefore, com-
paring with those in the Schwarzschild black hole, we could
extract the information about the size of the EiBI parameter
κ by using the strong gravitational lensing.

On the other hand, the lens geometry is a key ingredient
to investigate the black hole lensing, i.e., the positions and
magnifications of the relativistic images. So it is necessary
to give a brief introduction to the lens geometry. The lens
configuration is assumed that the black hole lens is located
between the light source and observer, and both of them are
required to be far from the black hole, so that the gravitational
fields there are very weak and the spacetime can be described
by a flat metric. Optical axis for such lens configuration is
defined as the line joining the observer and the lens. We
denote the angular positions of the source (S) and the images
(I), seen from the observer, as� and θ . Then the lens equation
is shown in the form [45]:

tan � = tan θ − DLS

DOS

[
tan(α − θ) + tan θ

]
. (57)

Here DOL, DLS and DOS correspond to the observer-lens,
lens-source, and observer-source distances, respectively.

Considering an idealized model that the source, lens, and
observer are highly aligned, then the lens equation is simpli-
fied as

� = θ − DLS

DOS
�αn . (58)

Based on the lens geometry, one gets u = DOL sin θ ∼
DOLθ . Thus the deflection angle (52) can be reexpressed
as

α(θ) = −a1 log

(
θDOL

ups
− 1

)
+ a2. (59)

Expanding (59) around α = 2nπ and solving θ , we obtain
the position of the n-th relativistic images

θn = ups

DOL
(1 + en) − upsen

a2DOL
�αn, (60)

where en = e
a2−2nπ

a1 . After substituting Eq. (58) into the
above equation, the expression of the position reduces to

θn = θ0
n + upsen

a1

DOS

DOLDLS
(� − θ0

n ), (61)

where
ups
DOL

� 1 is considered, and θ0
n = u ps

DOL
(1 + en).

Besides the angular position, the magnification is also an
important quantity to describe the relativistic images, which
is defined as

μn =
∣∣∣∣�θn

d�

dθn

∣∣∣∣
−1

. (62)

After considering
ups
DOL

� 1, we get

μn = en(1 + en)

a1�

DOS

DOL

(
ups

DOL

)2

. (63)

It is clear that μn ∼ e−n , so the first relativistic image is
the brightest one. However, μn ∼ (

ups
DOL

)2, which implies the
images are faint.

4 Observational gravitational lensing parameters

The observables must be constructed in order to compare
with astronomical observations. Here we follow Ref. [38,39]
with the suppose that the outermost relativistic image θ1 is
resolved as a single image and the remaining ones are packed
together at θ∞. Then there are three observables, θ∞ denotes
the positions of the relativistic images except the first one, s
corresponds to the angular separation between the first image
and other ones, and r̃ is the ratio between the flux of the
first image and the sum of the others. They are shown in the
following forms

θ∞ = ups

DOL
, (64)

s = θ∞e
a2−2π

a1 , (65)

r̃ = e2π/a1 . (66)

For a given theoretical model, the strong deflection limit coef-
ficients a1 and a2, and the minimum impact parameter ups

can be obtained. Then these three observables can be calcu-
lated. On the other hand, comparing them with astronomical
observations, it will allow us to determine the nature of the
black hole stored in the lensing.
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Table 1 Numerical estimation
for the observables and the
strong deflection limit
coefficients for the
Schwarzschild, RN black holes,
and the charged EiBI black holes
supposed to describe the object
at the center of our Galaxy

rm = 2.5 log r̃

κ Q θ∞ (µ arcsecs) s (µ arcsecs) rm (magnitudes) ups/Rs a1 a2

Sch-BH 0.0 26.510 0.0332 6.8219 2.598 1.000 −0.4002

0.1 26.311 0.0340 6.7909 2.581 1.005 −0.3993

0.2 25.779 0.0368 6.9899 2.526 1.020 −0.3972

RN-BH 0.3 24.788 0.0433 6.4858 2.429 1.052 −0.3965

0.35 24.084 0.0493 6.3190 2.360 1.080 −0.4001

0.1 26.326 0.0341 6.7886 2.580 1.004 −0.3994

0.2 25.751 0.0372 6.6789 2.524 1.021 −0.3974

0.1 0.3 24.722 0.0445 6.4522 2.423 1.057 −0.3982

0.35 23.980 0.0518 6.2609 2.350 1.090 −0.4068

0.1 26.304 0.0344 6.7791 2.578 1.006 −0.3995

0.2 25.658 0.0387 6.6327 2.515 1.029 −0.3989

0.5 0.3 24.445 0.0507 6.2975 2.396 1.083 −0.4102

0.35 23.519 0.0658 5.9611 2.305 1.144 −0.4445

0.1 26.277 0.0347 6.7669 2.575 1.008 −0.3997

0.2 25.531 0.0408 6.5698 2.502 1.038 −0.4017

1.0 0.3 24.049 0.0624 6.0350 2.357 1.130 −0.4473

0.35 22.764 0.1087 5.2286 2.231 1.305 −0.6902

Next, for an example, we would like to numerically esti-
mate the values of these observables of the gravitational lens-
ing in the strong deflection limit. The lens is supposed to be
the supermassive black hole located at the center of our Milk
Way, and it is described by the EiBI black hole metric (5)
with the metric functions given in (32)–(34). The mass of
the black hole is estimated to be M = 4.4 × 106M� with
M� the mass of the sun and its distance from us is around
DOL = 8.5 kpc [55]. Then we can estimate the values of the
coefficients and observables in strong gravitational lensing
in the EiBI black hole spacetime.

In Table 1, we list the numerical values of the observables
and the strong field limit coefficients for the Schwarzschild,
charged RN, and EiBI black holes. Moreover, the behaviors
of the observables are shown in Fig. 6. From it, we find that
with the increase of κ , the angular position of the relativis-
tic images θ∞ and relative magnitudes rm decrease. How-
ever, the angular separation s increases with κ for the fixed
nonvanishing charge Q. For a fixed value of κ , θ∞ and rm

decrease with the charge Q, while s increases with it. More-
over, from Table 1, we find that, for the fixed charge Q,
the relations θEiBI∞ < θRN∞ < θSch∞ , rEiBI

m < rRN
m < rSch

m ,
and sSch < sRN < sEiBI hold. Compared with the RN and
Schwarzschild black holes, the charged EiBI black hole has
small θ∞ and rm, while has large s. It is illustrated in the
Table 1 that the observable θ∞ of RN and Schwarzschild
black holes is of 2 μarcsecs, and the EiBI black hole is of 4
μarcsecs from the Schwarzschild one. Although such differ-
ence could further increase with Q and κ , it is still too small
to be tested with modern astronomical instruments [56,57].

Thus distinguishing the EiBI black hole from a GR one may
be a challenging task for the next generation of astronomical
instruments in the near future.

As we know, it will be much accurate to determine the
nature of the black hole through the lensing using more than
one observable. Since the observables θ∞ and rm are easily
observed, we will introduce a possible way to do this by
using them. In Fig. 7, we plot the contour curves of constant
θ∞ and rm in the plane (Q, κ). So each point in the figure is
characterized by four values, i.e., Q, κ , θ∞, and rm. By fixing
θ∞ and rm from observations, we are allowed to accurately
read the charge Q and EiBI parameter κ of the black hole
through Fig. 7, where the contour curves of constant θ∞ and
rm intersect. Therefore this method could give an accurate
test of the parameters of the black hole with combining two
observables. Form the figure, we see that large κ and Q can
be more accurate determined with θ∞ and rm.

5 Conclusions

In this paper, we first obtained a charged EiBI black hole
solution with a nonvanishing cosmological constant when
the electromagnetic field is included in. The property of such
black hole is qualitatively different from the charged RN
black hole in GR. The EiBI parameter κ was found to shrink
the black hole horizon and photon sphere with a monotone
decreasing behavior. When the matter fields vanish, such
solution reduces to the Schwarzschild black hole (see the
black solid lines in Fig. 3).
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Fig. 6 Variation of the angular
position of the relativistic
images θ∞ (a), the relative
magnitudes rm (b), and the
angular separation s (c) with the
EiBI parameter κ for fixed
charge Q Q 0.0
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Fig. 7 Contour plots of the observables θ∞ and rm in the plane (Q, κ).
θ∞ is described by the blue solid lines with values 24 − 26.5 μarcsecs
from left to right. rm is described by the red dashed lines with values
6.02 − 6.82 magnitudes from right to left

Based on the solution, we explored the lensing by a asymp-
totically flat black hole in the strong deflection limit. The
result shows that the strong deflection limit coefficient a1

increases, while a2 and ups decreases with the EiBI param-
eter κ for fixed charge Q. For a fixed impact parameter ups,
the deflection angle increases with κ . Following Ref. [38,39],
we got three observables, θ∞, s, and r̃m, which measure dif-
ferent properties of the relativistic images. With the increase
of κ , θ∞ and r̃m monotonously decrease, while s increases
in the EiBI black hole spacetime. With the suppose that the
supermassive black hole at our galaxy is described by the
EiBI black hole, we found that the observable θ∞ measuring
the positions of the relativistic images is smaller than that
of the Schwarzschild and RN black hole. For large κ , the

observables has a large differences between the EiBI black
hole and GR one. Therefore these results, in principle, may
provide a possibility to test how an astronomical EiBI black
hole deviates from a GR black hole in the future astronomical
observations.

Acknowledgments This work was supported by the National Natural
Science Foundation of China (Grants No. 11205074 and
No. 11375075), and the Fundamental Research Funds for the Central
Universities (Grants No. lzujbky-2015-jl1).

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. A.S. Eddington, The Mathematical Theory of Relativity (Cam-
bridge University Press, Cambridge, 1924)

2. M. Born, L. Infeld, Foundation of the new field theory. Proc. R.
Soc. A 144, 425 (1934)

3. M. Banados, P.G. Ferreira, Eddington’s theory of gravity and its
progeny. Phys. Rev. Lett. 105, 011101 (2010). arXiv:1006.1769
[astro-ph.CO]

4. S. Deser, G.W. Gibbons, Born–Infeld-Einstein actions. Class.
Quant. Grav. 15, L35 (1998). arXiv:hep-th/9803049

5. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys.
82, 451 (2010). arXiv:0805.1726

6. A.N. Makarenko, S. Odintsov, G.J. Olmo, Born–Infeld- f (R) grav-
ity. arXiv:1403.7409

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1006.1769
http://arxiv.org/abs/hep-th/9803049
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1403.7409


253 Page 10 of 11 Eur. Phys. J. C (2015) 75 :253

7. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified grav-
ity: from F(R) theory to Lorentz non-invariant models. Phys. Rept.
505, 59 (2011). arXiv:1011.0544

8. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity
and cosmology. Phys. Rept. 513, 1 (2012). arXiv:1106.2476

9. S. Capozziello, M. De Laurentis, Extended theories of gravity.
Phys. Rept. 509, 167 (2011). arXiv:1108.6266

10. P. Pani, V. Cardoso, T. Delsate, Compact stars in Eddington inspired
gravity. Phys. Rev. Lett. 107, 031101 (2011). arXiv:1106.3569
[gr-qc]

11. T. Delsate, New insights on the matter-gravity coupling paradigm.
Phys. Rev. Lett. 109, 021101 (2012). arXiv:1201.4989 [gr-qc]

12. P. Pani, T.P. Sotiriou, Surface singularities in Eddington-inspired
Born–Infeld gravity. Phys. Rev. Lett. 109, 251102 (2012).
arXiv:1209.2972 [gr-qc]

13. M. Bouhmadi-Lopez, C.-Y. Chen, P. Chen, Is Eddington–
Born–Infeld theory really free of cosmological singularities?
arXiv:1302.5013 [gr-qc]

14. C. Escamilla-Rivera, M. Banados, P.G. Ferreira, A tensor instability
in the Eddington inspired Born–Infeld theory of gravity. Phys. Rev.
D 85, 087302 (2012). arXiv:1204.1691 [gr-qc]

15. K. Yang, X.L. Du, Y.X. Liu, Linear perturbations in Eddington-
inspired Born–Infeld gravity. Phys. Rev. D 88, 124037 (2013).
arXiv:1307.2969 [gr-qc]

16. Y.X. Liu, K. Yang, H. Guo, Y. Zhong, Domain Wall Brane in
Eddington Inspired Born-Infeld. Phys. Rev. D 85, 124053 (2012).
arXiv:1203.2349 [hep-th]

17. M. Lagos, M. Banados, P.G. Ferreira, S. Garcia-Saenz, Noether
identities and gauge-fixing the action for cosmological. Phys. Rev.
D 89, 024034 (2014). arXiv:1311.3828 [gr-qc]

18. J. Casanellas, P. Pani, I. Lopes, V. Cardoso, Testing alternative
theories of gravity using the Sun. Astrophys. J. 745, 15 (2012).
arXiv:1109.0249 [astro-ph.SR]

19. P.P. Avelino, Eddington-inspired Born–Infeld gravity: astrophysi-
cal and cosmological constraints. Phys. Rev. D 85, 104053 (2012).
arXiv:1201.2544 [astro-ph.CO]

20. P.P. Avelino, R.Z. Ferreira, Bouncing Eddington-inspired Born–
Infeld cosmologies: an alternative to Inflation. Phys. Rev. D 86,
041501 (2012). arXiv:1205.6676 [astro-ph.CO]

21. P.P. Avelino, Eddington-inspired Born–Infeld gravity: nuclear
physics constraints and the validity of the continuous fluid. JCAP
1211, 022 (2012). arXiv:1207.4730 [astro-ph.CO]

22. Y.H. Sham, L.M. Lin, P.T. Leung, Radial oscillations and stability
of compact stars in Eddington-inspired Born–Infeld. Phys. Rev. D
86, 064015 (2012). arXiv:1208.1314 [gr-qc]

23. I. Cho, H.-C. Kim, T. Moon, Universe driven by perfect fluid in
Eddington-inspired Born–Infeld. Phys. Rev. D 86, 084018 (2012).
arXiv:1208.2146 [gr-qc]

24. J.H.C. Scargill, M. Banados, P.G. Ferreira, Cosmology with
Eddington-inspired gravity. Phys. Rev. D 86, 103533 (2012).
arXiv:1210.1521 [astro-ph.CO]

25. S. Jana, S. Kar, Three dimensional Eddington-inspired Born–
Infeld gravity: solutions. Phys. Rev. D 88, 024013 (2013).
arXiv:1302.2697 [gr-qc]

26. I. Cho, H.C. Kim, A new synthesis of matter and gravity: a
nongravitating scalar field. Phys. Rev. D 88, 064038 (2013).
arXiv:1302.3341[gr-qc]

27. Y.H. Sham, P.T. Leung, L.M. Lin, Compact stars in Eddington-
inspired Born–Infeld gravity: anomalies associated with phase tran-
sitions. Phys. Rev. D 87, 061503 (2013). arXiv:1304.0550 [gr-qc]

28. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Dark matter den-
sity profile and galactic metric in Eddington-inspired Born–Infeld.
arXiv:1305.0820 [gr-qc]

29. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Structure of neu-
tron, quark and exotic stars in Eddington-inspired Born–Infeld.
Phys. Rev. D 88, 044032 (2013). arXiv:1305.6770[gr-qc]

30. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Wormhole
geometries in Eddington-inspired Born–Infeld. arXiv:1307.1883
[gr-qc]

31. G.J. Olmo, D. Rubiera-Garcia, H. Sanchis-Alepuz, Geonic black
holes and remnants in Eddington-inspired Born–Infeld gravity.
arXiv:1311.0815 [hep-th]

32. H.C. Kim, Physics at the surface of a star in Eddington-inspired
Born–Infeld. arXiv:1312.0705 [gr-qc]

33. H.C. Kim, Origin of the universe: a hint from Eddington-inspired
Born–Infeld gravity. arXiv:1312.0703 [gr-qc]

34. Y.H. Sham, L.M. Lin, P.T. Leung, Testing universal relations of neu-
tron stars with a nonlinear matter–gravity coupling theory. Astro-
phys. J. 781, 66 (2014). arXiv:1312.1011 [gr-qc]

35. X.L. Du, K. Yang, X.H. Meng, Y.X. Liu, Large scale
structure formation in eddington-inspired Born–Infeld gravity.
arXiv:1403.0083 [gr-qc]

36. H. Sotani, Observational discrimination of Eddington-inspired
Born–Infeld gravity from general relativity. arXiv:1404.5369
[astro-ph.HE]

37. K. Fernandes, A. Lahiri, Kaluza Ansatz applied to Eddington
inspired Born-Infeld gravity. Phys. Rev. D 91, 044014 (2015).
arXiv:1405.2172 [gr-qc]

38. V. Bozza, S. Capozziello, G. Iovane, G. Scarpetta, Strong field
limit of black hole gravitational lensing. Gen. Rel. Grav. 33, 1535
(2001). arXiv:gr-qc/0102068

39. V. Bozza, Gravitational lensing in the strong field limit. Phys. Rev.
D 66, 103001 (2002). arXiv:gr-qc/0208075

40. V. Bozza, Quasi-equatorial gravitational lensing by spinning black
holes in the strong field limit. Phys. Rev. D 67, 103006 (2003).
arXiv:0210109 [gr-qc]

41. V. Bozza, F. DeLuca, G. Scarpetta, M. Sereno, Analytic Kerr black
hole lensing for equatorial observers in the strong deflection limit.
Phys. Rev. D 72, 083003 (2005). arXiv:0507137 [gr-qc]

42. V. Bozza, F. DeLuca, G. Scarpetta, Kerr black hole lensing for
generic observers in the strong deflection limit. Phys. Rev. D 74,
063001 (2006). arXiv:gr-qc/0604093

43. V. Bozza, Gravitational lensing by black holes. Gen. Relativ. Gravit.
42, 2269 (2010). arXiv:0911.2187 [gr-qc]

44. S. Frittelli, T.P. Kling, E.T. Newman, Spacetime perspective
of Schwarzschild lensing. Phys. Rev. D 61, 064021 (2000).
arXiv:0001037 [gr-qc]

45. K.S. Virbhadra, G.F.R. Ellis, Schwarzschild black hole lensing.
Phys. Rev. D 62, 084003 (2000). arXiv:astro-ph/9904193

46. E.F. Eiroa, Gravitational lensing by Einstein–Born–Infeld black
holes. Phys. Rev. D 73, 043002 (2006). arXiv:0511065 [gr-qc]

47. K. Sarkar, A. Bhadra, Strong field gravitational lensing in
scalar tensor theories. Class. Quant. Grav. 23, 6101 (2006).
arXiv:0602087 [gr-qc]

48. S. Chen, J. Jing, Strong field gravitational lensing in the deformed
Horava–Lifshitz black hole. Phys. Rev. D 80, 024036 (2009).
arXiv:0905.2055 [gr-qc]

49. Y. Liu, S. Chen, J. Jing, Strong gravitational lensing in a squashed
Kaluza–Klein black hole spacetime. Phys. Rev. D 81, 124017
(2010). arXiv:1003.1429 [gr-qc]

50. C. Liu, S. Chen, J. Jing, Strong gravitational lensing of Quasi–Kerr
compact object with arbitrary quadrupole moments. JHEP 1208,
097 (2012). arXiv:1208.1072 [gr-qc]

51. C. Ding, S. Kang, C.Y. Chen, S. Chen, J. Jing, Strong gravitational
lensing in a noncommutative black-hole spacetime. Phys. Rev. D
83, 084005 (2011). arXiv:1012.1670 [gr-qc]

52. G.V. Kraniotis, Precise analytic treatment of Kerr and Kerr–(anti)
de Sitter black holes as gravitational lenses. Class. Quant. Grav.
28, 085021 (2011). arXiv:1009.5189 [gr-qc]

53. G.V. Kraniotis, Gravitational lensing and frame dragging of light
by a Kerr–Newman (anti) de Sitter black hole. arXiv:1401.7118
[gr-qc]

123

http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/1106.2476
http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/1106.3569
http://arxiv.org/abs/1201.4989
http://arxiv.org/abs/1209.2972
http://arxiv.org/abs/1302.5013
http://arxiv.org/abs/1204.1691
http://arxiv.org/abs/1307.2969
http://arxiv.org/abs/1203.2349
http://arxiv.org/abs/1311.3828
http://arxiv.org/abs/1109.0249
http://arxiv.org/abs/1201.2544
http://arxiv.org/abs/1205.6676
http://arxiv.org/abs/1207.4730
http://arxiv.org/abs/1208.1314
http://arxiv.org/abs/1208.2146
http://arxiv.org/abs/1210.1521
http://arxiv.org/abs/1302.2697
http://arxiv.org/abs/1302.3341
http://arxiv.org/abs/1304.0550
http://arxiv.org/abs/1305.0820
http://arxiv.org/abs/1305.6770
http://arxiv.org/abs/1307.1883
http://arxiv.org/abs/1311.0815
http://arxiv.org/abs/1312.0705
http://arxiv.org/abs/1312.0703
http://arxiv.org/abs/1312.1011
http://arxiv.org/abs/1403.0083
http://arxiv.org/abs/1404.5369
http://arxiv.org/abs/1405.2172
http://arxiv.org/abs/gr-qc/0102068
http://arxiv.org/abs/gr-qc/0208075
http://arxiv.org/abs/0210109
http://arxiv.org/abs/0507137
http://arxiv.org/abs/gr-qc/0604093
http://arxiv.org/abs/0911.2187
http://arxiv.org/abs/0001037
http://arxiv.org/abs/astro-ph/9904193
http://arxiv.org/abs/0511065
http://arxiv.org/abs/0602087
http://arxiv.org/abs/0905.2055
http://arxiv.org/abs/1003.1429
http://arxiv.org/abs/1208.1072
http://arxiv.org/abs/1012.1670
http://arxiv.org/abs/1009.5189
http://arxiv.org/abs/1401.7118


Eur. Phys. J. C (2015) 75 :253 Page 11 of 11 253

54. V. Bozza, Gravitational lensing by black holes. Gen. Rel. Grav. 42,
2269 (2010). arXiv: 0911.2187 [gr-qc]

55. R. Genzel, F. Eisenhauer, S. Gillessen, The galactic center mas-
sive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121
(2010). arXiv:1006.0064 [astro-ph.GA]

56. A. Eckart, T. Bertram, N. Mouawad, T. Viehmann, C. Straubmeier,
J. Zuther, Long range science perspectives for the VLTI. Astrophys.
Space Sci. 286, 269 (2003)

57. V. Bozza, L. Mancini, Observing gravitational lensing effects by
Sgr A* with gravity. Astrophys. J. 753, 56 (2012). arXiv:1204.2103
[astro-ph.GA]

123

http://arxiv.org/abs/0911.2187
http://arxiv.org/abs/1006.0064
http://arxiv.org/abs/1204.2103

	Black hole solution and strong gravitational lensing in Eddington-inspired Born–Infeld gravity
	Abstract 
	1 Introduction
	2 Field equations and black hole solution
	3 Strong gravitational lensing
	4 Observational gravitational lensing parameters
	5 Conclusions
	Acknowledgments
	References




