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Abstract This work deals with new classes of spinors
of mass dimension 1 in Minkowski spacetime. In order
to accomplish it, Lounesto’s classification scheme and the
inversion theorem are going to be used. The algebraic frame-
work shall be revisited by explicating the central point per-
formed by the Fierz aggregate. Then the spinor classification
is generalized in order to encompass the new mass dimension
1 spinors. The spinor operator is shown to play a prominent
role to engender the new mass dimension 1 spinors, accord-
ingly.

1 Introduction

There is a spinor classification due to Lounesto [1], which is
particularly interesting for physicists due to its twofold ubiq-
uitous aspect: on the one hand it is based upon bilinear covari-
ants, and thus upon physical observables. On the other hand,
by a peculiar multivector structure—the Fierz aggregate—
that leads to the so-called boomerang [1], a quite elegant
geometrical interpretation may be added to the classifica-
tion. Moreover, with the aid of the boomerang it is possible
likewise to prove that there are precisely six different classes
of spinors in Lounesto’s classification [1]. The most general
forms of the respective spinors in each class were introduced
in [2]. Lounesto’s spinor classification was further employed
to derive all the Lagrangians for gravity from the quadratic
spinor Lagrangian [3]. Higher dimensional spaces have a
similar spinor classification [4], however, the so-called geo-
metric Fierz identities [5] obstruct the proliferation of new
spinors classes in higher dimensions [4].

Within the Lounesto classification, a specific bilinear
covariant plays a crucial role, since it cannot be zero. This
bilinear represents the current density, at least for the case
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of a regular spinor describing the electron. Its components
read J = Jμeμ = ψ†γ0γμψeμ, where ψ denotes a spinor

and eμ is a dual basis in C �1,3. Additionally, it is valuable
to remark that J = Jμeμ is essential for the definition of

the boomerang structure. Regarding the electron theory, it is
straightforward to realize the physical argument to explain
why J must not vanish. Indeed, J is the conserved current in
this case and therefore if J = 0 there is no associated particle

[6]. In particular the time component J0 = ψ†ψ provides the
probability density of the electron, and when integrated over
the spacetime it should obviously be non-null.

One of the main points that shall be pursued in this work is
that J can be understood as a conserved current solely when
the considered spinor obeys the usual dynamics rules by the
Dirac equation, namely, it is an eigenspinor of the Dirac oper-
ator or, equivalently, it is described by the Dirac Lagrangian.
The canonical mass dimension in this case is the same mass
dimension 3/2 associated to usual spin-1/2 fermions in the
standard model. Since we are looking for possible manifes-
tations of mass dimension 1 fermions in Minkowski space-
time, it is indeed possible to set J = 0, accordingly. In fact,
by accomplishing it, even the previously mentioned alge-
braic argument precluding new spinor classes may be cir-
cumvented. Nevertheless, in this novel context, we should
emphasize that the underlying dynamics shall not be dictated
by the well-known Dirac equation. As the construction is rel-
ativistic, the spinors arising from the analysis withJ = 0 shall
respect a priori merely the Klein–Gordon equation. Actually,
in a very conventional scheme, they must do so. Hence, the
epigraph is now explained: the resulting spinors must have
mass dimension 1. Clearly by “mass dimension” we mean the
canonical mass dimension of the associated quantum field,
which inherits this property from the dynamics respected by
its expansion coefficients.

Mass dimension 1 spinors have attracted attention mainly
due to the fact that they can be coupled only to gravity, and to
scalar fields as well, in a perturbatively renormalizable way.
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It thus makes it suitable for exploration under the ensign of
dark matter. Mass dimension 1 spinors in Minkowski space-
time known in the literature are the so-called Elko spinors,
which have been studied in a comprehensive context. They
comprise prominent applications in 4D gravity and cosmol-
ogy [3,7–11], and in brane-world models as well [12,13],
besides their exotic counterparts [14,15]. Moreover, in spite
of the robust and rich framework already developed [16–20],
Elko has been predicted to be measured in Higgs processes at
LHC [21,22] and explored in tunneling methods concerning
black holes [23]. Massive spin-1/2 fields of mass dimension
were obtained by constructing quantum fields from higher-
spin Elkos, however, these fields are still linked to the Elko
construct. We stress, however, that the spinors to be found
here are intrinsically different from the Elkos by the simple
fact that J �= 0 in the Elko case.

The classification of mass dimension 1 spinors is per-
formed by a possible and consistent modification in the
Lounesto classification. However, in order to have an explicit
form for them it is necessary the use of the so-called inversion
theorem [24,25].

This paper is organized as follows: in the next section
the main steps of the framework which supports our analy-
sis shall be revisited, namely the standard Lounesto classi-
fication and the inversion theorem. In Sect. 3 we show the
existence of three new classes of mass dimension 1 spinors,
obtaining the algebraic form in each case accordingly. In the
last section we make our concluding remarks and present a
brief outlook.

2 The framework

In order to properly address the problem to be approached
and solved, it is pivotal to review some key aspects of the stan-
dard formalism, highlighting the structures to be studied and
generalized. To start, Lounesto’s spinor classification shall be
revisited, and subsequently the inversion theorem algorithm
shall be thereafter employed, accordingly.

2.1 The Lounesto’s spinors classification and
generalizations

Consider the Minkowski spacetime (M, ημν) and its tangent
bundle T M . Denoting sections of the exterior bundle by
sec Λ(T M), given a k-vector a ∈ sec Λk(T M), the rever-
sion is defined by ã = (−1)|k/2|a, while the grade involution
reads â = (−1)ka, where |k| stands for the integral part of
k. By extending the Minkowski metric from sec Λ1(T M) =
sec T ∗M to sec Λ(T M), and considering a1, a2 ∈ sec Λ(V ),
the left contraction is given by g(a�a1, a2) = g(a1, ã ∧ a2).

The well-known Clifford product for (the dual of) a vec-
tor field v ∈ sec Λ1(T M) and a multivector is prescribed

by va = v ∧ a + v�a, defining thus the spacetime Clif-
ford algebra C�1,3. The set {eμ} represents sections of the
frame bundle PSOe

1,3
(M) and {γ μ} can be further thought of

as being the dual basis {eμ}, namely, γ μ(eμ) = δ
μ
ν . Clas-

sical spinors are objects of the space that carries the usual
τ = (1/2, 0)⊕ (0, 1/2) representation of the Lorentz group,
which can be thought of as being sections of the vector bundle
PSpine1,3

(M) ×τ C
4.

Given a spinor field ψ ∈ secPSpine1,3
(M)×τ C

4, the bilin-
ear covariants are sections of the bundle Λ(T M) [1,24].
Indeed, the well-known Lounesto spinors classification is
based upon bilinear covariants and the underlying multivec-
tor structure. The physical nature of the classification focuses
on the bilinear covariants, which are physical observables,
characterizing types of fermionic particles. The observable
quantities are given by the following multivector structure:

σ = ψ†γ0ψ, ω = −ψ†γ0γ0123ψ,

Jμ = ψ†γ0γμψ, Kμ = ψ†γ0iγ0123γμψ,

Sμν = 1

2
ψ†γ0iγμνψ, (1)

where γ0123 := iγ5 = γ0γ1γ2γ3. The set {1, γI } (where
I ∈ {μ,μν,μνρ, 5} is a composed index) is a basis for
M (4,C) satisfying γμγν + γνγμ = 2ημν1.

The above bilinear covariants in the Dirac theory are
interpreted, respectively, as the mass of the particle (σ ), the
pseudo-scalar (ω) relevant for parity-coupling, the current of
probability (J), the direction of the electron spin (K), and the
probability density of the intrinsic electromagnetic moment
(S) associated to the electron. The most important bilinear
covariant for our goal here is J, although with a different
meaning. In fact, in the next section we shall set J = 0,
enabling the extension of the standard Lounesto classifica-
tion to this case.

A prominent requirement for Lounesto’s spinors classifi-
cation is that the bilinear covariants satisfy quadratic alge-
braic relations, namely, the so-called Fierz–Pauli–Kofink
(FPK) identities, which read

Jμ J
μ = σ 2 + ω2, Jμ J

μ = −KμK
μ,

JμK
μ = 0, J ∧ K = −(ω + σγ0123)S. (2)

It is worth to remark that the above identities are funda-
mental, not merely for the aims regarding the classification,
but, moreover, for asserting the inversion theorem, as we are
going to see in the next subsection.

Within the Lounesto classification scheme, a non-
vanishing J is crucial, since it enables one to define the so-
called boomerang [1], which has an ample geometrical mean-
ing in asserting that there are precisely six different classes of
spinors. This is a prominent consequence of the definition of a
boomerang [1]. As far as the boomerang is concerned, it is not
possible to exhibit more than six types of spinors, according
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to the bilinear covariants. Indeed, Lounesto’s spinor classifi-
cation splits regular and singular spinors. The regular spinors
are those which have at least one of the bilinear covariants
σ and ω non-null. On the other hand, singular spinors corre-
spond to σ = 0 = ω, and in this case the Fierz identities are
in general replaced by the more general conditions [24]:

Z2 = 4σ Z , ZγμZ = 4JμZ , Zγ0123Z = −4ωZ

Ziγμν Z = 4Sμν Z , Ziγ0123γμZ = 4KμZ . (3)

When an arbitrary spinor ξ satisfies ˜ξ∗ψ �= 0 and
belongs to C ⊗ C �1,3—or equivalently when ξ†γ0ψ �= 0 ∈
M (4,C)—it is possible to recover the original spinor ψ from
its aggregate Z given by

Z = σ + J + iS + iKγ0123 + ωγ0123 (4)

and the spinor ξ by the so-called Takahashi algorithm [25]
likewise. In fact, the spinor ψ and the multivector Zξ differ
solely by a multiplicative constant, and can be thus written
as

ψ = 1

2
√

ξ†γ0Zξ
e−iθZξ, (5)

where e−iθ = 2(ξ†γ0Zξ)−1/2ξ†γ0ψ ∈ U(1). For more
details see, e.g., [24]. Equivalently to Eq. (5), we shall use
hereupon the notation ψ � Zξ to say that both sides of this
equivalence are in the same equivalence class with respect to
the quotient by C. Moreover, when σ, ω, J,S,K satisfy the
Fierz identities, then the complex multivector operator Z is
named a Fierz aggregate. When γ0Z†γ0 = Z, thus Z is said
to be a boomerang [1].

The Takahashi algorithm reveals the importance of the
aggregate. Moreover, the inversion theorem (to be regarded in
the next subsection) is inspired on this spinor representation
(5). More significantly here, the aggregate plays a central role
within the Lounesto classification since, in order to complete
the classification itself,Z has to be promoted to a boomerang,
satisfying

Z2 = 4σZ. (6)

Obviously, for the regular spinors case the above condition is
satisfied and Z is automatically a boomerang. However, for
singular spinors it is not so straightforward. Indeed, for singu-
lar spinors we must envisage the geometric structure under-
lying the multivector. From the geometric point of view the
following relations between the bilinear covariants must be
fulfilled in order to ensure that the aggregate be a boomerang:
J must be parallel to K and both are in the plane formed by
the bivector S. Hence, using Eq. (4) and taking into account
that we are dealing with singular spinors, it is straightforward
to see that the aggregate can be recast in the form

Z = J(1 + is + ihγ0123), (7)

where s is a space-like vector orthogonal to J, and h is a
real number. The multivector as expressed in Eq. (7) is a
boomerang [19]. By inspecting the condition (6) we see that
for singular spinors Z2 = 0. However, in order for the FPK
identities to hold it is also necessary that both conditions1

J2 = 0 and (s + hγ0123)
2 = −1 must be satisfied. These

considerations are important in order to constrain the possible
spinor classes.

Now, let us make explicit that from (5) one can see that dif-
ferent bilinear covariants combinations may lead to different
spinors, taking into account the constraints coming from the
FPK identities. Altogether, the algebraic constraints reduce
the possibilities to six different spinor classes, namely:

1. σ �= 0, ω �= 0;
2. σ �= 0, ω = 0;
3. σ = 0, ω �= 0;
4. σ = 0 = ω, K �= 0, S �= 0;
5. σ = 0 = ω, K = 0, S �= 0;
6. σ = 0 = ω, K �= 0, S = 0.

The spinors types-(1), (2), and (3), are called Dirac spinor
fields (regular spinors). The spinor field (4) is called flag-
dipole [26], while the spinor field (5) is named flag-pole [27].
Majorana [28] and Elko [16,19] spinors are elements of the
flag-pole class. Finally, the type (6) dipole spinors are exem-
plified by Weyl spinors. Note that there are only six different
spinor fields. To see that, notice that for the regular case,
since J �= 0, it follows that S �= 0 and K �= 0 as impositions
from the identities (2). On the other hand, for the singular
case, the geometry asserts that J(s+ hγ0123) = S+Kγ0213.
Hence, as far as J �= 0, we have already considered all the
possibilities.

As is clear from the above reasoning, J �= 0 is much
more a matter of taste. There is instead algebraic necessity
of demonstrating the existence of six different classes. In
fact, however, a non-vanishing J is indispensable only for the
regular spinor case. As mentioned, the above classification
makes use of this constraint in all the cases, since the very
idea of the classification was to categorize spinors which
could be related to Dirac particles in some respect. As far as
we leave this (physical) concept, more spinors can be found.

By taking J = 0, we cannot describe Dirac particles any-
more. Therefore, the spinors arising from this consideration
must be merely ruled by the Klein–Gordon dynamics and,
therefore, they must have mass dimension 1. We finalize by
stressing that the resulting spinors (see Sect. 3) have to be
singular, as in the contrary case they would violate the FPK
identities and, besides, the geometrical aspects underlying
the algebraic structure need to be reconsidered.

1 We remark that J must be different from zero in the Lounesto classi-
fication.
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2.2 The inversion theorem

It is well known, in the quantum mechanical context, that
all the physical observables are represented by quadratic
quantities of the wave function, for example the probabil-
ity density. In the specific case of the Dirac particle, rep-
resented by a four-component spinor wave function ψ , we
can write sixteen real quadratic forms, called bilinear covari-
ants ρi = ˜ψΓiψ . The bilinear covariants are represented in
the set of Eq. (1). The bilinear covariants are not individual
quantities [25], since their structure depends on the spinor
itself. Crawford makes use of the FPK identities to define
the inversion theorem, which asserts that the general form of
an arbitrary spinor may be expressed in terms of the bilinear
covariants as

ψ = e−iϕ
(

Σ − iΠγ5 + Jμγ μ−Kμγ5γ
μ + 1

2
Sμνσ

μν

)

ξ,

= e−iϕRiΓiξ, (8)

where the set {ϕ, Ri }, contains real functions, and ξ is an
arbitrary constant spinor. It is clear that even if we choose
a specific spinor ξ , we have the freedom to choose a set
{ϕ, Ri }, since the function ψ contains only eight independent
functions. Another important assertion, taken into account by
Crawford, is that the set of functions Ri must always satisfy
the corresponding equations from the FPK identities. A proof
for this statement can be found in Ref. [24].

It is important to stress that the alluded inversion is not
unique, since we can choose an arbitrary phase ϕ, and the
constant spinor ξ . Thus, concerning the inversion program,
it is fairly important to bear in mind that it is useful within the
formal algebraic context. In the next section, we shall apply
the inversion theorem in order to recover mass dimension 1
spinors coming from a suitable modification of Lounesto’s
scheme.

3 Algebraic construction of new spinors

After briefly revisiting the equivalence among the classical,
algebraic, and operator spinor formulations in what follows,
we shall be able to analyze the possible constructions for
the new mass dimension 1 spinors. Let us hence start by
expressing an arbitrary multivector in C �1,3 as (henceforth
eμeνeλ = eμνλ)

Γ = α + αμeμ + αμνeμν + αμνσ eμνσ + α0123e0123. (9)

Given the isomorphismC �1,3 � M (2,H), whereH denotes
the quaternionic ring, and a primitive idempotent f = 1

2 (1+
e0) is taken to define a minimal left ideal C �1,3 f . This is
relevant, in particular, to attain a spinor representation of
C �1,3. The most general multivector in C �1,3 f reads

ζ = (β1 + β2e23 + β3e31 + β4e12) f

+(β5 + β6e23 + β7e31 + β8e12)e0123 f. (10)

Since the identification ζ = Γ f ∈ C�1,3 f holds, it implies
the following equivalence between their respective compo-
nents:

β1 = α + α0, β2 = α23 + α023, β3 = −α13 − α013,

β4 =α12 + α012, β5 =−α123 + α0123, β6 = α1 − α01,

β7 = α2 − α02, β8 = α3 − α03. (11)

By denoting i = e2e3, j = e3e1, and k = e1e2, it is clear
that the set {1, i, j, k} is a basis for the quaternion algebra H.
The two quaternions appear as coefficients in (10), namely,

q1 = β1 + β2e23 + β3e31 + β4e12,

q2 = β5 + β6e23 + β7e31 + β8e12 ∈ H , (12)

where H = f C�1,3 f = spanR{1, e23, e31, e12} commutes
with f and e0123. This yields the equality q1 f +q2e0123 f =
f q1 + e0123 f q2, evincing that the left ideal C�1,3 f is in
fact a right module over K with a basis { f, e0123 f }. More-
over, the orthonormal basis {eμ} has an immediate standard
representation,

e0 =
(

1 0
0 −1

)

, e1 =
(

0 i

i 0

)

, e2 =
(

0 j

j 0

)

,

e3 =
(

0 k

k 0

)

,

which consequently induces representations for the idempo-
tent f and the multivector e0123 f :

[ f ] =
(

1 0
0 0

)

and [e0123 f ] =
(

0 0
1 0

)

.

Therefore, a general element Γ ∈ C �1,3 can be expressed as
(

q1 q2

q3 q4

)

∈ M (2,H) (13)

where q1 = α+α0 + (α23 +α023)i− (α13 +α013)j+ (α12 +
α012)k, q2 = (α0123 − α123) + (α1 − α01)i+ (α2 − α02)j+
(α3 − α03)k, q3 = −(α123 + α0123) + (α1 + α01)i + (α2 +
α02)j + (α3 + α03)k and q4 = (α − α0) + (α23 − α023)i +
(α013 − α13)j + (α12 − α012)k.

A multivector Ψ in the even subalgebra C�+
1,3 is named

spinor operator; it reads

Ψ = α + αμνeμν + α0123e0123 . (14)

From the point of view of Eq. (13) it yields

[Ψ ] =
(

q1 −q2

q2 q1

)

=
(

α + α23i − α13j + α12k −α0123+α01i+α02j+α03k

α0123−α01i−α02j−α03k α+α23i−α13j+α12k

)

.
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The isomorphisms C �1,3
1
2 (1 + e0) � C �+

1,3 � H
2 � C

4

among vector spaces, respectively, evince the correspon-
dence among the algebraic, the operatorial, and the classical
definitions of a spinor in Minkowski spacetime. Indeed, the
spinor space H

2 carries the (1/2, 0) ⊕ (0, 1/2) (or (1/2, 0)

or (0, 1/2)) representations of the Lorentz group, and it is
isomorphic both to the minimal left ideal C �1,3

1
2 (1 + e0),

which is equivalent to the algebraic spinor, and to the even
subalgebra C �+

1,3, which corresponds to the space of spinor
operators [29,30]. Thus the Dirac spinor is expressed equiv-
alently as
(

q1 −q2

q2 q1

)

[ f ] =
(

q1 0
q2 0

)

∼=
(

q1

q2

)

=
(

α + α23i − α13j + α12k

α0123 − α01i − α02j − α03k

)

∈ C�1,3 f � H
2. (15)

Now by employing the usual representation

1 
→
(

1 0
0 1

)

, i 
→
(

i 0
0 −i

)

, j 
→
(

0 1
−1 0

)

,

k 
→
(

0 i
i 0

)

,

in 2 ×2 complex matrices, the spinor operator Ψ in (14) can
be viewed furthermore as a 4 × 4 matrix, as follows:
⎛

⎜

⎜

⎝

α+α23i −α13+α12i −α0123+α01i α02+α03i
α13+α12i c−α23i −α02+α03i −α0123−α01i

α0123−α01i −α02−α03i α+α23i −α13+α12i
α02−α03i α0123+α01i α13+α12i α−α23i

⎞

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎝

ψ1 −ψ∗
2 −ψ3 ψ∗

4
ψ2 ψ∗

1 −ψ4 −ψ∗
3

ψ3 −ψ∗
4 ψ1 −ψ∗

2
ψ4 ψ∗

3 ψ2 ψ∗
1

⎞

⎟

⎟

⎠

. (16)

The spinor ψ lives in the left (minimal) ideal (C⊗C�1,3) f ,
where f = 1

4 (1 + e0)(1 + ie12) is an idempotent that equals
diag(1, 0, 0, 0) in the Dirac representation, making eμ 
→
γμ ∈ M (4,C). Hence it follows that

ψ �

⎛

⎜

⎜

⎝

ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0

⎞

⎟

⎟

⎠

∈ (C ⊗ C�1,3) f, or

⎛

⎜

⎜

⎝

ψ1

ψ2

ψ3

ψ4

⎞

⎟

⎟

⎠

∈ C
4,

illustrating the usual prescription between the multivector ψ

and the classical Dirac spinor field.
In this context, the posed conundrum is thus reduced to

the calculation of the spinor operator (14), finding ψ [1,31].
Prior to accomplishing it, however, it is necessary to define
the bilinear covariants in terms of the spinor operator Ψ [29]:

σ = 〈Ψ ˜Ψ 〉0, ω = −〈Ψ e5 ˜Ψ 〉0, J = Ψ e0 ˜Ψ ,

S = Ψ e1e2 ˜Ψ , K = Ψ e3 ˜Ψ , (17)

where e5 = e0e1e2e3 and 〈 · 〉0 denotes the scalar part of
the multivector taken into account.

It is important to highlight that the bilinear covariants in
(1) provide 16 independent quantities. On the other hand, it
is also possible to express the spinor as a function of such
bilinear covariants with an arbitrary phase (see Sect. 2.2),
according to the Takahashi theorem [25]. Thus, keeping in
mind that the spinor exhibits only 8 degrees of freedom and
the bilinear covariants have 16 degrees of freedom, it is nec-
essary to use the Fierz identities. Such identities reduce the
degrees of freedom to 7, being the extra degree of freedom
associated to a phase factor.2 Taking into account Eq. (15),
it is usual, in order to reduce the degrees of freedom of Ψ , to
define the following relation:

α exp(e12θ) ∼= 1

4

(

Ψ +e0Ψ e0+e21Ψ e12+e210Ψ e012
)

, (18)

where α is a constant and θ is an arbitrary phase. To find the
constant α, we use the complex conjugate of Eq. (18), which
for the algebra here considered is equivalent to the reversion.
It yields the following expression:

α exp(e21θ)∼= 1

4

(

˜Ψ +e0 ˜Ψ e0 + e12 ˜Ψ e21 + e012 ˜Ψ e210
)

, (19)

and by multiplying Eqs. (18) and (19) we obtain

α2 = 1

16

(

σ + e5ω + Je0 + Se21 − e0123Ke210 + Je0 + σ

+ e5ω − e0e0123Ke21 + e0Se210 − e21(σ + e5ω)e21

+ e21S − e21e0123Ke0 − e21Je210 − e210e0123K

+ e210Se0 − e210Je21 − e210(σ + e5ω)e210
)

.

Making use of eμeν + eνeμ = 2ημν , it yields

α = 1

2

(

σ + e5ω + Je0 − Ke3 − Se12
)1/2

. (20)

The final step to determine Ψ in terms of α and its bilinear
covariants is to multiply Eq. (19), from which we get

Ψ α exp(e21θ) ∼= 1

4

(

Ψ ˜Ψ + Ψ e0 ˜Ψ e0 + Ψ e12 ˜Ψ e21

+Ψ e012 ˜Ψ e210
)

. (21)

By using the relations (17), the expression for Ψ is given by

Ψ = 1

4α

(

σ + e5ω + Je0 − Ke3 − Se12
)

exp(e12θ).

Through Eq. (14), it is possible to define the algebraic
spinor ψ by

2 For completeness, by considering Pauli spinors we have 4 degrees of
freedom, while the Fierz identities take account of 3 of them. Again,
the extra degree of freedom is associated to a phase [31].
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ψ = 1

4α

(

σ + e5ω + Je0 − Ke3 − Se12
)

exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

(22)

By means of Eq. (22) it is possible to recover the algebraic
spinor from its bilinear covariants via the inversion theorem
setup. Having completed the above program for the general
case, the application to new mass dimension 1 spinors follows
straightforwardly.

As remarked in Sect. 2, the Lounesto classification is based
upon the FPK identities. As far as these relations are satis-
fied, novel possibilities involving spinors can be considered.
We propose a classification of new spinors, arising from con-
sidering that the bilinear covariant J is always null and the
aggregate associated (Z) is no longer a boomerang as well.
On the other hand, the bilinear covariants still satisfy the
identities (2). As emphasized by the previous analysis, this
last requirement is important, since we shall express the new
algebraic spinors functional form.

The consideration that the bilinear covariants must satisfy
the FPK identities with J = 0 reveals the existence of three
new spinors. We shall finalize this section by evincing their
bilinears and their algebraic structure.
Case 1: σ = 0 = ω, J = 0, K �= 0 and S �= 0. It can be
verified that all the FPK identities (2) are satisfied. Moreover,
the aggregate (not a boomerang) associated with this spinor
reads

Z = i(S + Ke0123). (23)

Finally, considering this particular arrangement of the bilin-
ear covariants, the spinor operator is given by

Ψ ∼= 1

2
√−K3 − S21

(−Ke3 − Se21) exp(e12θ),

and the algebraic spinor turns out to be

ψ = 1

2
√−K3 − S21

(−Ke3 − Se21) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

The next cases follow in straightforward analogy.
Case 2: σ = 0 = ω, J = 0, K = 0 and S �= 0. Here, the
FPK identities are also satisfied and the aggregate associated
is simply given by

Z = iS. (24)

The spinor operator reads

Ψ ∼= 1

2
√−S21

(−Se21) exp(e12θ),

and the algebraic spinor can be written as

ψ = 1

2
√−S21

(−Se21) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

Case 3: σ = 0 = ω, J = 0, K �= 0, and S = 0, again the
FPK identities hold, and the associated spinor operator has
the following form:

Ψ ∼= 1

2
√−K3

(−Ke3) exp(e12θ),

leading to the following algebraic spinor:

ψ = 1√−K3
(−Ke3) exp(e12θ)

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

.

The cases we have shown demonstrate the existence of three
new classes of spinors not cataloged previously, which in par-
ticular, present mass dimension 1 in Minkowski spacetime.
These spinors have the specific bilinear covariant J equal to
zero. Since for spinors respecting the Dirac dynamics J is
the conserved current, here we must be dealing with spinors
obeying only the Klein–Gordon equation. Notice that it is a
natural consequence, since a given spinor in this context is
nothing but a section of the bundle comprised by SL(2,C)

and C
4. Thus, it must respect relativistic dynamics. From the

mathematical point of view, instead, J �= 0 is also a necessary
condition to promote the Fierz aggregate to a more mean-
ingful quantity (in the geometrical context), the boomerang
which, in turn, is essential in reducing the number of differ-
ent spinor classes to six in the Lounesto classification. In the
consideration of J = 0 the classification itself is rebuilt and
new spinors arise.

4 Concluding remarks and outlook

We have shown the existence of three new spinors of mass
dimension 1, via the inversion theorem and a consistent mod-
ification of the Lounesto spinor field classification. This has
been achieved considering the specific bilinear covariant J
to be equal to zero. Physically, it means that the new spinors
cannot respect the Dirac dynamics, only the Klein–Gordon
one, enabling thus the canonical mass dimension to be equal
to 1.

A word of caution may be added to these final remarks. As
remarked along in the text, the adopted procedure is consis-
tent; and bearing in mind the precedent opened by previous
mass dimension 1 spinors (the Elkos), the spinors found may
have several physically relevant aspects to be explored [21].
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This is, in fact, our belief concerning the generalization pre-
sented here. However, one must take into account that the
classification and the algebraic functional form do not say
much about the emergence of these spinors in nature. As it
is, the quantities described in the cases 1, 2, and 3 of the
previous section are mathematically well-defined structures
whose associated physical field would have interesting prop-
erties. The possibility of a physical manifestation of such
spinors is currently under investigation.
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