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Abstract Lee–Wick electrodynamics in the vicinity of a
conducting plate is investigated. The propagator for the gauge
field is calculated and the interaction between the plate and
a point-like electric charge is computed. The boundary con-
dition imposed on the vector field is taken to be the one that
makes, on the plate, the normal component of the dual field
strength to the plate vanish. It is shown that the image method
is not valid in Lee–Wick electrodynamics.

1 Introduction

The simplest higher-order derivative gauge theory is the so
called Lee–Wick electrodynamics [1–6], which is described
by the Maxwell Lagrangian augmented by a higher-order
derivative kinetic term. Since its proposal, the theory has
been standing out by its classical as well as its quantum
aspects, as it exhibits many interesting peculiarities. We can
mention, for instance, the fact that in this electrodynamics
the self-energy of a point charge is finite in 3 + 1 dimen-
sions [7–12], a Dirac string can produce a magnetic field
[7], it stem a finite theory closely related to the Pauli–Villars
regularization scheme [5,8,13–18] where the divergences of
the quantum electrodynamics are controllable [19–21] and
it exhibits classical dynamical stability [22]. These features
have made the model a widely studied subject in a variety
of scenarios, mainly regarding its extension to the Standard
Model [14,16,18,23–37].

In spite of all this interest, as far as the authors know,
there is a lack in the literature regarding Lee–Wick electro-
dynamics under the influence of boundary conditions. That
is a remarkable subject in any abelian gauge theory, since the
experimental apparatuses commonly used to test electromag-
netic phenomena are, usually, surrounded by conductors. In
addition, it is also important for the investigation of situa-
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tions where it is possible to find deviations from expected
physical results in comparison to Maxwell electrodynamics.
The presence of conductors can create suitable scenarios for
this kind of search.

In Ref. [38] the presence of conducting surfaces was inves-
tigated in the context of the Casimir effect for Lee–Wick elec-
trodynamics. In the work of Ref. [39], among other terms,
a Lee–Wick type contribution (called the Uehling term) was
inserted to compose an effective theory in order to calculate
radiative corrections to the Casimir effect. In this paper we
highlight that the real role of a conductor in this theory is not
such a common issue and requires more cautious attention.

As is well known, this electrodynamics exhibits two
modes, one massive and the other one massless. The prop-
agator can then be split up into the sum of two parts, the
first one being just the usual Maxwell propagator and the
second one the Proca propagator with an overall minus sign.
Despite the presence of these ghosts modes, as is the case of
Pauli–Villars regulators, the theory can be rendered unitary
provided that the Lee–Wick particles decay. This fact means
that the physical effects at tree level are trivial in most cases.

In this paper we show that this is not the case when the
presence of a conducting plate is taken into account. The
correction term that has to be added to the propagator in this
case is not a simple subtraction of the corresponding Maxwell
and Proca propagators coupled to the conductor. Due to this
fact, we show that the physical phenomena are no longer as
trivial as in the theory without the conducting surfaces.

Specifically, in Sect. 2 we compute the propagator for the
Lee–Wick gauge field in the presence of a conducting plane.
We employ quantum field theory methods in order to obtain
the functional generator for the gauge sector, since with this
functional one can find any physical quantity of interest of the
theory. In Sect. 3 we calculate the interaction between a per-
fectly conducting plate and a point-like charge. We also com-
pare the results with the standard Maxwell electrodynamics
and show that in the Lee–Wick model the image method is
no longer valid. In Sect. 4 we make a discussion regarding
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the two field formalism of Lee–Wick theory in the presence
of a conducting plate. That gives an alternative way to under-
stand why the image method is not valid in Lee–Wick theory.
Section 5 is devoted to our final comments.

2 Lee–Wick propagator in the presence of a conducting
plate

In this paper we work in a 3 + 1 dimensional Minkowski
spacetime with metric (+,−,−,−). The vector gauge field
is designated by Aμ and its corresponding field strength by
Fμν = ∂μAν − ∂ν Aμ.

The electromagnetic sector of the so called Lee–Wick
electrodynamics is described by the Lagrangian density [1–
5,7]

LLW = −1

4
FμνF

μν − 1

4m2 Fμν∂α∂αFμν

− (∂μAμ)2

2ξ
− JμA

μ, (1)

where m is a parameter that has mass dimension, Jμ is an
external source, and ξ is a gauge fixing parameter. It is impor-
tant to mention that there are other covariant gauge conditions
for this theory [40,41].

As discussed in many works [1–5,7], the Lagrangian (1)
exhibits gauge invariance and two distinct poles, in momenta
space, for the corresponding propagator; a massless one and
a massive one. This fact can be shown by considering that, in
the Feynman gauge where ξ = 1, the model (1) is equivalent
to

LLW → 1

2
Aμ

[
ημν

(
1 + ∂γ ∂γ

m2

)
∂α∂α − ∂γ ∂γ

m2 ∂μ∂ν

]
Aν,

(2)

so that the corresponding Feynman propagator is given by

Dμν(x, y) =
∫

d4 p

(2π)4

(
1

p2 − m2 − 1

p2

)

×
(
ημν − pμ pν

m2

)
e−i p(x−y) (3)

in the sense that[
ημν

(
1 + ∂γ ∂γ

m2

)
∂α∂α − ∂α∂α

m2 ∂μ∂ν

]
Dνβ(x, y)

= η
μ
βδ4(x − y), (4)

where it is implicit, from now on, that there is a small imag-
inary part for the momentum square, p2 → p2 + iε.

Maxwell and Lee–Wick electrodynamics yield different
dynamical equations for the gauge field, but the dynamical
equations for the charged particles and the Lorentz force are

the same in both theories, namely,
dpp
dt = qE + qv × B,

where q and pp are, respectively, the charge and the spatial
component of the particle momentum.

In this section we consider general aspects of Lee–Wick
electrodynamics in the presence of a conducting plate. This
is a non-trivial task since its inception, because we have to
establish what is a conductor in this model. To answer this
question we resort to the behavior of the electromagnetic
field in the presence of a conductor, according to the Maxwell
theory.

A conducting surface in the Maxwell electrodynamics
imposes a boundary condition on the gauge field in such
a way that the Lorentz force on the surface vanishes. It is
achieved by taking as zero the component of the dual field
strength, normal to the surface. That is, if nμ is the nor-
mal four-vector to the conducting surface, we must have
nμF∗

μν = 0 along it, where F∗μν = (1/2)εμναβFαβ is
the dual to the field strength, with εμναβ standing for the
Levi-Civita tensor (ε0123 = 1). Once in Lee–Wick electro-
dynamics the Lorentz force is the same as in Maxwell theory,
the condition which makes the Lorentz force vanish in both
theories must be exactly the same.

Here we consider the presence of a single perfectly con-
ducting plate. Without loss of generality we take a coordi-
nate system where the plate is perpendicular to the x3 axis,
lying on the plane x3 = a, so its normal four-vector is
nμ = η

μ
3 = (0, 0, 0, 1) and the boundary condition for the

gauge field Aμ reads

F∗
3ν(x)|x3=a = 0 (5)

where the sub-index indicates that the boundary conditions
are taken on the plane x3 = a.

We shall compute the functional generator for the vector
field submitted to the boundary conditions (5) following the
procedure proposed in Ref. [42], that is, carrying out the
functional integral

ZC [Jμ] =
∫

DAC ei
∫

d4x(LLW−JμAμ) (6)

where the sub-index C means that the integral is restricted
only to field configurations which satisfy the conditions (5).
This restriction is achieved with the insertion of a delta func-
tional that is non-vanishing only for field configurations that
satisfy the conditions (5) and integrating in all field configu-
rations, that is,

ZC [Jμ] =
∫

DAδ[F∗
3ν(x)|x3=a] ei

∫
d4x(LLW−JμAμ). (7)

Now we use the functional Fourier representation

δ[F∗
3ν(x)|x3=a]

=
∫

DB exp

[
i
∫

d4xδ(x3 − a)Bν(x‖)F∗ ν
3 (x)

]
(8)
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where Bν(x‖) is an auxiliary vector field and the notation
x‖ = (x0, x1, x2) is used for the coordinates parallel to the
plate.

The auxiliary field Bν(x) exhibits gauge symmetry,

Bν(x‖) → Bν(x‖) + ∂ν‖Λ(k)(x‖), (9)

which requires a cautious treatment of the integral (8). In the
appendix we show that

δ[F∗
3ν(x)|x3=a]

= N
∫

DB exp

(
−i

∫
d4xδ(x3 − a)Aβ(x)ε ναβ

3 ∂αBν(x)

)

× exp

(
i

2γ

∫
d4xd4yδ(x3 − a)Bμ(x‖)

× ∂2Q(x, y)

∂xμ
‖ ∂yν‖

δ(y3 − a)Bν(y‖)
)

, (10)

where γ is a gauge fixing term, N is a constant which does
not depend on the fields, and Q(x, y) is an arbitrary function
that shall be chosen conveniently.

Substituting (10) into (7) we get

ZC [J ] = N
∫

DADB ei
∫

d4x(LLW−JμAμ)

× exp

(
−i

∫
d4xδ(x3 − a)Aβ(x)ε ναβ

3 ∂αBν(x)

)

× exp

(
i

2γ

∫
d4xd4y δ(x3 − a)Bμ(x‖)

× ∂2Q(x, y)

∂xμ
‖ ∂yν‖

δ(y3 − a)Bν(y‖)
)

. (11)

In the first exponential we have only the Aμ field and in the
third one only the presence of Bμ. The second exponential
contains a coupling between A and B.

In order to decouple the fields A and B we perform the
translation

Aβ(x) → Aβ(x)

+
∫

d4yDβ
α(x, y)δ(x3 − a)ε

νγα
3 ∂γ Bν(x), (12)

what brings the integral (11) into the form

ZC [J ] = N ZLW[J ]Z̄ [J ] (13)

where ZLW[J ] is the standard Lee–Wick functional generator

ZLW[J ] =
∫

DA ei
∫

d4x(LLW−JμAμ)

= ZLW[0] exp

[
− i

2

∫
d4xd4y Jμ(x)Dμν(x, y)J

ν(y)

]
,

(14)

which can be calculated using the standard methods of quan-
tum field theory [7], and Z̄ [J ] is a contribution that does not
involve Aμ,

Z̄ [J ] =
∫

DB exp

[
i
∫

d4xδ(x3 − a)I ν(x)Bν(x‖)
]

× exp

[
i
∫

d4xd4yδ(x3 − a)δ(y3 − a)Bν(x‖)Bπ (y‖)

×
(

1

2
ε ναλ

3 ε
πγρ

3 (∂α∂γ Dλρ(x, y)) + 1

2γ

∂2Q(x, y)

∂x‖ν∂y‖π

)]

(15)

where we defined

I ν(x) = −
∫

d4yε ναρ
3

(
∂

∂xα
Dρλ(x, y)

)
Jλ(y) (16)

Notice that the integral (15) is Gaussian, so that it can be
calculated exactly. For this task it is convenient to make the
following choice:

Q(x, y) =
∫

d4 p

(2π)4

(
1

p2 − m2 − 1

p2

)
e−ik(x−y), (17)

and work in the gauge where γ = 1. Substituting (17) and
(16) into (15), using the fact that

∫
dp3

2π

1

p2 − m2 ei p
3x3 = − i

2Γ
eiΓ |x3|

∫
dp3

2π

1

p2 ei p
3x3 = − i

2L
ei L|x3|a (18)

where Γ =
√
p2‖ − m2 and L =

√
p2‖ (see the appendix),

defining the parallel momentum to the plate p‖ =
(p0, p1, p2, 0) and the parallel metric

η
μν
‖ = ημν − η

μ
3η

ν
3 (19)

and carrying out some manipulations, one can write Eq. (15)
in the form

Z̄ [J ] = Z̄ [0] exp

[
− i

2

∫
d4xd4y Jμ(x)D̄μν(x, y)J

ν(y)

]

(20)

where we defined the function

D̄μν(x, y) =
∫

d3 p‖
(2π)3 − i

2

(
η

μν
‖ − pμ

‖ pν‖
p2‖

)
1

1
L − 1

Γ

× exp[−i p‖(x‖ − y‖)]
(

1

L
ei L|x3−a| − 1

Γ
eiΓ |x3−a|

)

×
(

1

L
ei L|y3−a| − 1

Γ
eiΓ |y3−a|

)
. (21)
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Substituting (14) and (20) into (13) we have the functional
generator of the Lee–Wick gauge field in the presence of a
conducting plate

Z [J ]C = Z [0] exp

[
− i

2

∫
d4xd4y Jμ(x)(Dμν(x, y)

+ D̄μν(x, y))J
ν(y)

]
. (22)

Notice that, from the above expression (22), one can iden-
tify the propagator of the theory in the presence of a conduct-
ing plate as

Dμν
C (x, y) = Dμν(x, y) + D̄μν(x, y). (23)

As a matter of checking we point out that the gauge field
propagator under the boundary conditions (23) is really a
Green function for the problem, in the sense that it is the
inverse of the Lee–Wick operator, obtained from Eq. (2),
that is,[
ημν

(
1 + ∂γ ∂γ

m2

)
∂α∂α − ∂γ ∂γ

m2 ∂μ∂ν

]
Dμν
C (x, y)

= δ4(x − y). (24)

The above equation can be verified directly by using
Eqs. (23), (4), and (21).

Moreover, any field configuration obtained from (23) sat-
isfies the boundary condition (5). It can be checked by cal-
culating the field generated by an arbitrary source

Aμ(x) =
∫

d4yDμν
C (x, y)Jν(y). (25)

In terms of the gauge field A, the boundary conditions (5)
read ε3ναβ∂αAμ(x)|x3=0 = 0, so, by using (25) it can be
shown that the propagator must satisfy

ε3ναβ ∂Dμν
C (x, y)

∂xα

∣∣∣∣
x3=0

= 0. (26)

With the aid of Eqs. (23), (4), and (21) it can be shown that
the condition (26) is really satisfied.

At this point some comments are in order. The propagator
(23) is composed by the sum of the free Lee–Wick propagator
(3) with the correction (21) which accounts for the presence
of the conducting plate. As exposed in the appendix, in the
limit when m = ∞ the propagator (23) reduces to the same
one as that found with Maxwell electrodynamics in the pres-
ence of a conducting plate.

The free Lee–Wick propagator (3) is made up by the
Maxwell propagator minus the Proca one. This fact makes
most results of theory to be the composition of the corre-
sponding ones obtained in the Maxwell and in the Proca the-
ory. When the boundary condition (5) is involved this is no
longer valid and the propagator (23) is not compound by the
corresponding ones of the Maxwell and Proca theories with
boundary conditions. This result suggests that the boundary

conditions mix up the modes of the Lee–Wick field with and
without mass (the photon and its Lee–Wick partner). Due to
this fact, some physical phenomena of Lee–Wick electrody-
namics in the vicinity of a conducting plate are not trivial and
deserve investigation.

3 Particle–plate interaction

In this section we consider the interaction between a point-
like charge and a conducting plane. By using the arguments
discussed in references [7,43–45], we can show that the inter-
action energy between a conducting surface and an external
source Jμ(x) for the gauge field is given by the integral

E = 1

2T

∫
d4x d4y Jμ(x)D̄μν(x, y)Jν(y) (27)

In our case we take the source corresponding to a point-
like steady charge placed at position b.

Jμ(x) = qημ0δ3(x − b). (28)

Substituting (28) into (27), using the Fourier representa-
tion (23), carrying out the integrals in d3x, d3y, dx0, dk0 and
dy0 and making some simple manipulations we obtain,

EPC = −q2

4

∫
d2p‖
(2π)2

√
p2‖ + m2

√
p2‖√

p2‖ + m2 −
√

p2‖

×
⎛
⎝exp (−

√
p2‖ R)√

p2‖
−

exp (−
√

p2‖ + m2 R)√
p2‖ + m2

⎞
⎠

2

, (29)

where we defined R = |a −b|, which stands for the distance
between the plate and the charge. The sub-index PC means
the interaction energy between the plate and a charge.

Expression (29) can be simplified by using polar coordi-
nates, integrating out in the solid angle and performing the
change of integration variable p = |p‖|/m,

EPC = − q2

23π
m

∫ ∞

0
dp p2[(p2 + 1) + p(p2 + 1)1/2]

×
(

e−2pmR

p2 − 2
e−pmRe−

√
p2+1mR

p(p2 + 1)1/2 + e−2
√

p2+1mR

p2 + 1

)
.

(30)

Each contribution in the integral (30) can be calculated
exactly. For the first contribution we have∫ ∞

0
dp [(p2 + 1) + p(p2 + 1)1/2] exp (−2pmR)

= 1 + 2(mR)2

4(mR)3 + π

4mR
[Y0(2mR) − SH0(2mR)]

+ π

4(mR)2 [SH1(2mR) − Y1(2mR)], (31)
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where Y and SH stand for the Bessel function of the second
kind and the Struve function, respectively.

For the third contribution to (30) we carry out the change
in the integration variable u = √

p2 + 1, as follows:
∫ ∞

0
dp p2[1 + p(p2 + 1)−1/2] exp

(
−2

√
p2 + 1mR

)

=
∫ ∞

1
du[u(u2 − 1)1/2 + u2 − 1] exp (−2umR)

= K0(2mR)

2mR
+ K1(2mR)

2(mR)2 + exp (−2mR)

4(mR)3 (1 + 2mR),

(32)

where K stands for the Bessel function.
The second contribution to (30) is calculated with the

change of variable u = p + (p2 + 1)1/2,

∫ ∞

0
dp − 2p[(p2 + 1)1/2 + p] exp

[
−(p +

√
p2 + 1)mR

]

= −2
∫ ∞

1
du

u4 − 1

4u2 exp (−umR)

= exp (−mR)

(
1

2
− 1

2mR
− 1

(mR)2 − 1

(mR)3

)

−1

2
(mR)Ei(1,mR) (33)

where Ei is the exponential integral function,

Ei(1, x) =
∫ ∞

1
du

e−ux

x
, x > 0. (34)

Substituting (31), (32), and (33) in (30) we have the inter-
action energy between a perfect conductor and a point-like
steady charge,

EPC = − q2

24π

1

R
(1 + Δ(mR)) (35)

where we defined the function,

Δ(mR) = mR

[
K0(2mR)

mR
+ K1(2mR)

(mR)2

+exp (−2mR)

2(mR)3 + exp (−2mR)

(mR)2 − (mR)Ei(1,mR)

+ 1

2(mR)3 + π

2mR
[Y0(2mR) − SH0(2mR)]

+ π

2(mR)2 [SH1(2mR) − Y1(2mR)]

+ exp (−mR)

(
1 − 1

mR
− 2

(mR)2 − 2

(mR)3

)]
. (36)

The result (35) is exact, but hard to be interpreted. The
first term on the right hand side is the plate-charge interac-
tion obtained in Maxwell electrodynamics, where the image
method is valid, and does not involve the mass parameter
m. The second term falls when mR increases. Once m is a

large quantity, for not so small distances R, this term is much
smaller than the Coulombian one.

The interacting force between the plate and the charge is
then given by

FPC = −∂EPC

∂R

= − q2

4π

1

(2R)2 [1 + Δ(mR) − mRΔ′(mR)], (37)

where the prime denotes derivative of Δ with respect to its
argument. Notice that the force (37) is the usual Coulombian
interaction between the charge and its image, placed a dis-
tance 2R apart, and a correction termm-dependent. The term
inside brackets on the right hand side of Eq. (37) is always
positive, so the expression (37) is always negative, which
means that the force is attractive.

Let us compare the force (37) with the one obtained in
Lee–Wick electrodynamics in 3+1 dimensions for the inter-
action between two opposite charges, q and −q, placed at a
distance 2R apart,

FCC = − q2

4π

1

(2R)2 [1 − exp(−2mR) − 2mR exp(−2mR)].
(38)

Equation (38) can be obtained with the results of reference
[7]. Specifically, from Eq. (16) of reference [7] one can write
the interaction energy between two opposite charges (q and
−q). So that, taking the gradient of this energy (with an over-
all minus sign) with respect to the distance of the charges and
setting it equal to 2R, we are taken to the result (38).

In the limit where R → 0, both forces (37) and (38) are
finite, namely,

lim
R→0

FPC = − q2

16π

3

2
m2, lim

R→0
FCC = − q2

16π
2m2. (39)

It is interesting to notice that the image method is not
valid for Lee–Wick electrodynamics for the conducting plate
condition (5). This fact can be seen from the interacting force
between the plate and the charge (37). The deviation from
the image method behavior can be seen from the difference
between (37) and (38) normalized by the Coulombian force,
for convenience,

δ(mR) = |FPC | − |FCC |
[q2/(4π)] [1/(2R)2] . (40)

The results of our numerical analysis suggest that the
behavior of δ(mR) exhibits the same shape as the one
observed in Fig. 1 up to mR → ∞, with δ going to zero
monotonically, with negative values, as mR → ∞.

In the limit mR → ∞ we have δ → 0. In the interval
0 < mR ≈< 0.85 we have δ > 0 and the modulus of
plate-charge interaction intensity is greater than the modulus
of charge–image interaction. For mR >≈ 0.85 δ < 0, and
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Fig. 1 Plot for δ(mR)

the charge–image interaction dominates, in modulus. In most
situations the modulus of the force between the plate and the
charge is lower than the modulus of the force between the
charge and its image, as one can see from Fig. 1. It is also
interesting to notice that the discrepancy between the plate-
charge interaction force and the charge–image interaction
exhibits a maximum aroundmR ∼= 0, 48, a minimum around
mR ∼= 3.85, and a zero around mR ∼= 0.85.

Once m must be a large quantity, only for very small val-
ues of the distance R the force between the plate and the
charge would have a stronger intensity than it would be if
the image method were valid. So, it is relevant to consider
if the maxima, minima, and zero of the function δ can be
really measured. Let us focus on the zero of δ, which occurs
at R0 ∼= 0.85/m. In recent work [46–48] there are some
estimates for lower bounds of Lee–Wick mass. The lowest
estimates give, in order of magnitude, m ∼ 10 GeV. Work-
ing in themks system, we can estimate in order of magnitude
R0 ∼= 10−16, which is much smaller than the Compton wave-
length λC ∼= 10−12. In this scale many other effects might be
taken into account, as the vacuum polarization, finite conduc-
tivity, rugosity, finite thickness of the plate, and many others.
So the behavior of the function δ next to the plate observed
in Fig. 1 is not feasible to reproduce in a laboratory.

In addition, for experimental setups, the distance scale rel-
evant to investigate the interaction between classical objects
are of micrometer order. So, taking the estimate of m ∼
10 GeV, we have mR ∼= 1011 in mks, which is in the range
where the function δ goes to zero with negative values.

The estimate of m ∼ 10 GeV is among the lowest ones.
Other estimates [48] suggest a lower bound for m in order
of ∼TeV, which makes the phenomena related to the Lee–
Wick theory in the presence of a conducting plate even more
negligible.

4 The two field formalism

We showed that when we consider the Lee–Wick field in
the presence of a conducting surface, the gauge field must be

submitted to the boundary conditions (5) and the correspond-
ing propagator (23) cannot be decomposed as the Maxwell
propagator minus the Proca one, each one submitted to the
conditions (5) separately. As an immediate consequence, the
image method is not valid for the Lee–Wick field.

In order to understand why this decomposition is no longer
valid in the presence of a conducting plate, let us review
how we can describe the Lee–Wick Lagrangian (1) without
boundary conditions (without the presence of conductor) as
the Maxwell Lagrangian minus the Proca one. Following a
path integral approach, we can establish Lee–Wick theory by
a functional generator with an alternative Lagrangian of two
coupled fields, Aμ and Sμ, as follows:

Z2[J ] =
∫

DADS exp

[
i
∫

d4x
1

2

(
∂μA

μ∂νS
ν

−∂γ Aμ∂γ Sμ − m2

4
AμAμ − m2

4
SμSμ

+m2

2
AμSμ

)
− JμAμ

]
. (41)

It is important to notice that the external source couples
strictly to the Aμ field, and not to the Sμ field.

Integrating out the functional (41) on S and preforming
some manipulations, we are taken to

Z2[J ] = ZS[0]ZLW[J ], (42)

where ZLW[J ] is the standard functional generator for the
Lee–Wick theory defined in (14) and

ZS[0] =
∫

DS exp

(
i

2

∫
d4x − m2

4
SμS

μ

)
(43)

is the generating functional for Sμ without any external
source. Once ZS[0] does not depend on the external source,
it can be absorbed into a renormalization overall multiplica-
tive constant and has no physical effect. So, from Eq. (42),
we can write

Z2[J ] = ZLW[J ]. (44)

It proves that without the presence of a conducting plate
the two field functional (41) is completely equivalent to
(14), the functional generator obtained from the Lee–Wick
Lagrangian (1) with a single field.

Now we perform, in the functional generator (41), the
following change in the integrating field variables:

Aμ = Uμ + Vμ, Sμ = Uμ − Vμ

Uμ = 1

2
(Aμ + Sμ), Vμ = 1

2
(Aμ − Sμ). (45)

The Jacobian of the transformation (45) is a (divergent)
constant which does not depend on the fields, thus it does
not affect the functional generator because its contribution
can be absorbed into an overall multiplicative constant. So
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DADS ∼= DUDV and the functional (41), after some manip-
ulations, reads

Z2[J ] =
∫

DU exp

(
i
∫

d4x − 1

4
UμνU

μν − JμU
μ

)

×
∫

DV exp

(
i
∫

d4x
1

4
VμνV

μν − m2

2
VμVμ − JμV

μ

)
,

(46)

where we defined

Uμν = ∂μU ν − ∂νUμ, Vμν = ∂μV ν − ∂νVμ. (47)

Notice that (46) can be decomposed as the product of
a Maxwell functional generator for the U field with a
Proca functional generator with an overall minus sign in the
Lagrangian for the V field. The external source Jμ couples to
both fields, U and V . It proves that (41), and so (14), is com-
pletely equivalent to a Maxwell functional generator minus a
Proca functional generator with an overall minus sign in the
Lagrangian.

Now, let us consider the two field theory (41) in the pres-
ence of a conducting plate. The Lorentz force must vanish on
the plate, as discussed in Sect. 2. Once only the Aμ field cou-
ples to the external source Jμ, the conditions which make
the Lorentz force on the plate vanish is given by Eq. (5);
it is imposed only on the Aμ field. In this case we have
to restrict the functional integral over field configurations
which satisfy (5). This constraint over the field configura-
tion can be attained by inserting the delta functional (8) in
the integral (41), in the same manner as we have done in
Sect. 2,

Z2,C [J ] =
∫

DADS δ[F∗
3ν(x)|x3=a]

× exp

[
i
∫

d4x
1

2

(
∂μA

μ∂νS
ν − ∂γ Aμ∂γ Sμ

−m2

4
AμAμ − m2

4
SμSμ + m2

2
AμSμ

)
− JμAμ

]
, (48)

where Z2,C [J ] stands for the two field functional generator
in the presence of a conducting plate.

It is important to point out that in Eq. (48) the integral is
performed over all A-field configurations. The constraint (5)
is attained by the delta functional δ[F∗

3ν(x)|x3=a]. There is
no constraint on the S-field.

Integrating out the functional (48) on the S variable, and
performing some manipulations, we are taken to

Z2,C [J ] = ZS[0]ZC [J ], (49)

where ZC [J ], defined in (22), is the Lee–Wick functional
generator with boundary conditions (5) and ZS[0] is the func-
tional generator (43) for the field S with no boundary con-
ditions and no external source. As discussed previously, in

this case ZS[0] has no physical effect and we can write from
Eq. (49)

Z2,C [J ] = ZC [J ]. (50)

It proves that the boundary conditions can be imposed in both
approaches, namely, the one with two fields, the other with
one single field. The physical results are the same in both
cases.

Now we perform the change of integrating variables (45)
in the two field functional with a conducting plate (48), in
order to know how the boundary conditions (5) are imple-
mented in terms of the fields U and V . For this task we
substitute Eq. (10) in (48), similarly to what we have done in
Sect. 2, and we use the definitions (45), which leads to

Z2,C [J ] =
∫

DUDVDB

× exp

(
−i

∫
d4xδ(x3 − a)ε

ναβ
3 Uβ(x)∂αBν(x‖)

)

× exp

(
−i

∫
d4xδ(x3 − a)ε

ναβ
3 Vβ(x)∂αBν(x‖)

)

× exp

⎛
⎝ i

2γ

∫
d3x‖d3y‖Bμ(x‖)

∂2Q(x, y)

∂xμ
‖ ∂yν‖

∣∣∣∣x3=a
y3=a

Bν(y‖)

⎞
⎠

× exp

(
i
∫

d4x
1

4
VμνV

μν − m2

2
VμVμ − JμV

μ

)

× exp

(
i
∫

d4x − 1

4
UμνU

μν − JμU
μ

)
, (51)

where Q(x, y) is an arbitrary function we will choose con-
veniently and γ is a gauge parameter.

From now on, we shall work in the gauge where γ = 1.
Before we start to solve the functional integral (51), it is

important to notice that it exhibits just one single auxiliary
field B coupled to both fields, U and V .

The first and second exponentials in (51) couple, respec-
tively, the fields U and V to the auxiliary field Bμ. We can
decouple these fields in the same way as we have done in
Sect. 2, with the translations

Uβ(x) → Uβ(x)

+
∫

d4yD(M)
βα (x, y)δ(y3 − a)ε

νγα
3 ∂γ Bν(y‖)

Vβ(x) → Vβ(x)

−
∫

d4yD(P)
βα (x, y)δ(y3 − a)ε

νγα
3 ∂γ Bν(y‖), (52)

where we defined the Maxwell and Proca propagators,
respectively, as follows:

D(M)
βα (x, y) =

∫
d4 p

(2π)4 − 1

p2 ημνe−i p(x−y)
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D(P)
βα (x, y) =

∫
d4 p

(2π)4

1

m2 − p2

(
ημν − pμ pν

m2

)
e−i p(x−y).

(53)

With these considerations we can rewrite the functional
generator (51), after some manipulations, in the form

Z2,C [J ] = Z̄2,C [J ]
×

∫
DU exp

(
i
∫

d4x − 1

4
UμνU

μν − JμU
μ

)

×
∫

DV exp

(
i
∫

d4x
1

4
VμνV

μν − m2

2
VμVμ − JμV

μ

)

(54)

where we defined

Z̄2,C [J ] =
∫

DB exp

[
i

2

∫
d4xd4y

(
∂2Q(x, y)

∂x‖ρ∂y‖β

−ε
ρτμ

3 ε
βγα

3
∂2[D(M)

μα (x, y) − D(P)
μα (x, y)]

∂xτ‖ ∂yγ
‖

)

×δ(x3 − a)δ(y3 − a)Bρ(x‖)Bβ(y‖)
]

× exp

[
i
∫

d4xδ(x3 − a)Bν(x‖)

×
(∫

d4yε νγα
3 Jμ(x)

∂

∂xγ
(D(M)μν(x, y)

−D(P)μν(x, y))

)]
. (55)

Choosing the function Q(x, y) as the one defined in
Eq. (17), using definitions (53), and solving the functional
integral in Eq. (55), which is quadratic in Bμ, it can be shown
that Z̄2,C [J ] gives the same result found in Eq. (20) for Z̄ (up
to an overall multiplicative constant which does not depend
on J ), it is,

Z̄2,C [J ] ∼ Z̄ [J ]
= Z̄2,C [0]e− i

2

∫
d4xd4y Jμ(x)D̄μν(x,y)J ν (y). (56)

Substituting (56) in (54) and integrating out onU and V it
can be shown that the two field functional generator with the
presence of conducting plate (54) is equal to the right hand
side of (22), namely

Z2,C [J ] = Z2,C [0] exp

[
− i

2

∫
d4xd4y Jμ(x)(Dμν(x, y)

+ D̄μν(x, y))J
ν(y)

]
. (57)

It proves again that, with the boundary conditions (5), the
two field formalism leads to the same results as the ones
obtained from the formalism with just one single field.

The wrong boundary condition

In spite of not being the true boundary condition imposed
on the fields by the presence of a conducting surface, we
could ask what kind of theory we would have by imposing,
to each field Aμ and Sμ, a boundary condition similar to (5).
Before we answer this question, we point out, once more,
that the matter source J couples just with the A field, so is
this field which produces the Lorentz force on the charged
particles. On a conducting surface, the Lorentz force must
vanish, which is attained by imposing boundary conditions
only on the A-field and not on the S-field.

In order to impose the conditions (5) to the fields Aμ and
Sμ, we must insert two delta functionals inside the integral
(41), as follows:

Z2,NC [J ] =
∫

DADSδ[F∗
3ν(x)|x3=a]δ[S∗

3ν(x)|x3=a]

× exp

[
i
∫

d4x
1

2

(
∂μA

μ∂νS
ν − ∂γ Aμ∂γ Sμ

+m2

2
AμSμ − m2

4
AμAμ − m2

4
SμSμ

)
− JμAμ

]
, (58)

where S∗
μν = εμναβ∂αSβ and the sub-index NC stands for

boundary conditions which do not represent a conducting
surface.

Each delta functional in (58) has an integral representation
like the one in Eq. (10), namely,

δ[F∗
3ν(x)|x3=a]

= N
∫

DB exp

(
−i

∫
d4xδ(x3 − a)Aβ(x)ε ναβ

3 ∂αBν(x‖)
)

× exp

⎛
⎝ i

2γA

∫
d3‖xd3y‖Bμ(x‖)

∂2QA(x, y)

∂xμ
‖ ∂yν‖

∣∣∣∣x3=a
y3=a

Bν(y‖)

⎞
⎠ ,

δ[S∗
3ν(x)|x3=a]

= N
∫

DC exp

(
−i

∫
d4xδ(x3 − a)Sβ(x)ε ναβ

3 ∂αCν(x‖)
)

× exp

⎛
⎝ i

2γS

∫
d4x‖d4y‖Cμ(x‖)

∂2QS(x, y)

∂xμ
‖ ∂yν‖

∣∣∣∣x3=a
y3=a

Cν(y‖)

⎞
⎠ ,

(59)

where γA and γS are gauge parameters and QA(x, y) and
QS(x, y) are arbitrary functions we shall choose conve-
niently.

At this point one comment is in order. When we insert the
integrals (59) into (58) we shall have two auxiliary fields, B
and C . In Eq. (51) we have just one auxiliary field.

Using the gauges where γA = γS = 1/2, taking the func-
tions QA(x, y) = QS(x, y) equal to the one of Eq. (17),
substituting Eqs. (59) in (58), and performing the change of

123



Eur. Phys. J. C (2015) 75 :339 Page 9 of 11 339

field variables (45) and

B+ = B + C, B− = B − C

B = 1

2
(B+ + B−), C = 1

2
(B+ − B−), (60)

whose Jacobian does not depend on any field, we have

Z2,NC [J ] = ZM,C [J ]Z−P,C [J ] (61)

where

ZM,C [J ] =
∫

DU exp

(
i
∫

d4x − 1

4
UμνU

μν − JμU
μ

)

×
∫

DB+ exp

(
−i

∫
d4xδ(x3 − a)Uβ(x)ε ναβ

3 ∂αB+ν(x‖)
)

× exp

⎛
⎝ i

2

∫
d3‖xd3y‖Bμ

+(x‖)
∂2Q(x, y)

∂xμ
‖ ∂yν‖

∣∣∣∣x3=a
y3=a

Bν+(y‖)

⎞
⎠

(62)

is the functional generator for the Maxwell fieldU submitted
to the boundary conditionU∗

3μ = 0 on the conducting surface

x3 = 0 and

Z−P,C [J ]
=

∫
DV exp

(
i
∫

d4x
1

4
VμνV

μν − m2

2
VμVμ − JμV

μ

)

×
∫

DB− exp

(
−i

∫
d4xδ(x3 − a)Vβ(x)ε ναβ

3 ∂αB−ν(x‖)
)

× exp

⎛
⎝ i

2

∫
d3‖xd3y‖Bμ

−(x‖)
∂2Q(x, y)

∂xμ
‖ ∂yν‖

∣∣∣∣x3=a
y3=a

Bν−(y‖)

⎞
⎠

(63)

is the functional generator for the Proca field V , with an over-
all minus sign in the Lagrangian, submitted to the boundary
condition V ∗

3μ = 0 on the conducting surface x3 = 0.
Both integrals (62) and (63) can be calculated following

the same procedure as employed in the previous sections.
Working in the Lorenz gauge for the Maxwell field, the results
are

ZM,C [J ] = exp

(
i

2

∫
d4xd4y Jμ(x)(Dμν

M (x, y)

+ D̄μν
M (x, y))Jν(y)

)

Z−P,C [J ] = exp

(
i

2

∫
d4xd4y Jμ(x)(−Dμν

P (x, y)

− D̄μν
P (x, y))Jν(y)

)
(64)

where Dμν
P (x, y) and Dμν

M (x, y) stand for the free (with-
out boundary conditions) Proca and Maxwell propagators,
respectively,

Dμν
P (x, y) =

∫
d4 p

(2π)4

−1

p2 − m2

(
ημν − pμ pν

m2

)
e−i p(x−y)

Dμν
M (x, y) =

∫
d4 p

(2π)4

−1

p2 ημνe−i p(x−y) (65)

and we defined the functions

D̄μν
P (x, y) =

∫
d3 p‖
(2π)3 − i

2Γ

(
η

μν
‖ − pμ

‖ pμ
‖

p2‖

)

×eiΓ |x3−a|eiΓ |y3−a|e−i p‖(x‖−y‖)

D̄μν
M (x, y) =

∫
d3 p‖
(2π)3 − i

2L

(
η

μν
‖ − pμ

‖ pμ
‖

p2‖

)

×ei L|x3−a|ei L|y3−a|e−i p‖(x‖−y‖), (66)

which give the corrections for the above propagators due to
the boundary conditions V ∗

3μ = 0 andU∗
3μ = 0, respectively.

Substituting (64) in (61) we finally have

Z2,NC [J ]
= exp

[
− i

2

∫
d4xd4y Jμ(x)[(Dμν

M (x, y) + D̄μν
M (x, y))

− (Dμν
P (x, y) + D̄μν

P (x, y))]Jν(y)
]

. (67)

From (67) one can identify the propagator of the model
as composed by the Maxwell propagator in the presence of a
conducting plane minus a Proca propagator (with an overall
minus sign) submitted to the condition V ∗

3μ = 0 on the con-
ducting plane. In this case, it is not difficult to show that the
image method is valid and all physical phenomena of the the-
ory, with the wrong boundary conditions, can be decomposed
as the corresponding ones obtained in the Maxwell Theory in
the presence of a conducting plate minus the ones obtained
in the Proca theory, with the condition V ∗

3μ = 0 on the plate.

5 Conclusions and final remarks

In this paper we developed Lee–Wick electrodynamics in the
presence of a single perfectly conducting plate. The boundary
condition imposed on the gauge field is the one which makes,
on the plate, the dual field strength normal to the plate vanish.
That is justified because it is the condition which makes the
Lorentz force on a given electric charge placed on the plate
vanish, which is in accordance with the notion of a perfect
conductor. Using functional methods of quantum field the-
ory, we calculated the gauge field propagator and showed that
it is not the composition of the Maxwell propagator minus
the Proca one, both in the presence of a conducting plate.
This fact makes the physical phenomena in Lee–Wick elec-
trodynamics unusual, even classically.

With the obtained propagator any quantity, quantum or
classical, related to the gauge field in Lee–Wick electrody-

123



339 Page 10 of 11 Eur. Phys. J. C (2015) 75 :339

namics could be computed. We calculated the interaction
energy between a stationary point charge and a conducting
plate. The counterpart of this result in Maxwell or Proca
electrodynamics is the plate-charge interaction, which leads
to the well known image method. From our results it is shown
that in Lee–Wick electrodynamics the image method is not
valid anymore.

We made a discussion regarding the two field formalism
for Lee–Wick electrodynamics, in the presence of a conduct-
ing plate, and showed that the physical results are the same
as the ones obtained from the one field formalism. We also
discussed, in the two field formalism, what the boundary
conditions would be which make the theory equivalent to the
Maxwell electrodynamics with the presence of the conduct-
ing plate minus the Proca Theory with boundary conditions.
We showed that this boundary conditions are not the true
ones imposed by a conducting surface.

Lee–Wick electrodynamics in the presence of two con-
ducting parallel plates can be developed with the same meth-
ods employed in this paper. It is another interesting situation
where we can study true quantum phenomena, as the Casimir
effect, for instance [49].
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Appendix A: Delta functional

In this appendix we obtain expression (10). First, due to the
gauge invariance (9), we have to extract the infinite gauge
volume from the integral (8). For this task we follow the
Faddeev–Popov trick, fixing the covariant gauge

F[Bμ(x‖)] = ∂ν‖ Bν(x‖) = f (x‖), (68)

where f (x‖) is an arbitrary function. The corresponding
Faddeev–Popov determinant does not depend on the field
B(k)

ν (x‖) and, therefore, does not contribute to the integral.
In this way, we can write (8) in the form

δ[nμF
∗μν

(x)|a] ∼
∫

DBδ[F[Bν(x‖)] − f (x‖)]

× exp

[
i
∫

d4xδ(x3 − a)Bν(x)F
∗ ν

3 (x)

]
. (69)

Now we integrate by parts the argument of the exponential
and use the ’t Hooft trick, multiplying both sides of (69) by

a convergent functional of f (x‖) and integrating over f (x‖),
as follows:

δ[nμF
∗μν

(x)|a] = N
∫

D f
∫

DB δ[F[Bν(x‖)] − f (x‖)]

× exp

[
−i

∫
d4xδ(x3 − a)Aβ(x)nμεμναβ∂αBν(x)

]

× exp

[
i

2γ

∫
d4xd4yδ(x3− a) f (x‖)Q(x, y) f (y‖)δ(y3− a)

]
,

(70)

where Q(x, y) is an arbitrary function, N is a constant and
γ is an arbitrary gauge constant.

Performing the functional integral in f and two integration
by parts in Eq. (70) we are taken to Eq. (10).

Appendix B: Integrals (18)

In this appendix we compute the integrals (18). For this task,
it is enough to find just the first of Eq. (18) because the second
one is a special case of the first one, with m = 0.

Using the fact that there is a small negative imaginary part
for the momentum square, as discussed just below Eq. (4),
we have

∫
dp3

2π

1

p2 − m2 ei p
3x3 = lim

ε→0

∫
dp3

2π

1

p2‖ − (p3)2 + iε
ei p

3x3

∼= − lim
ε→0

∫
dp3

2π

1

(p3)2 − L2 − iε
ei p

3x3
. (71)

Now, we solve the integral in the second line of the above
equation by using the residue theorem and take the limit
ε → 0. The result is the first of Eq. (18).

Appendix C: The limit m → ∞

In this appendix we calculate the limit m → ∞ of the
propagator (23). Once the parameter m is present only in
D̄μν(x, y), it is enough to consider only this term. First we
note that the correction to the propagator (21) can be written
as

D̄μν(x, y) = OμνI(x, y), (72)

where we defined the differential operator O = η
μν
‖ ∂λ‖∂λ‖ −

∂
μ
‖ ∂ν‖ and the integral

I =
∫

d3 p‖
(2π)3

i

2

1

p2‖

1
1
L − 1

Γ

e−i p‖(x‖−y‖)

×
(

ei L|x3−a|

L
− eiΓ |x3−a|

Γ

) (
ei L|y3−a|

L
− eiΓ |y3−a|

Γ

)
.

(73)
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Now we make a Wick rotation only in the parallel coor-
dinates, in the integral (73), with k4 = −i p0, k1 = p1,
k2 = p2, X4 = i x0, X1 = x1, and X2 = x2, and
define the Euclidean 3-vectors k = (k1, k2, k4), X =
(X1, X2, X4) (and similarly for yμ

‖ ), which leads to

I =
∫

d3k
(2π)3

e−ik4(X4−Y 4)

2k2

eik
1(X1−Y 1)eik

2(X2−Y 2)

1
i
√

k2
− 1

i
√

k2+m2

×
(

1

i
√

k2
e−√

k2|x3−a| − 1

i
√

k2 + m2
e−√

k2+m2|x3−a|
)

×
(

1

i
√

k2
e−√

k2|y3−a| − 1

i
√

k2 + m2
e−√

k2+m2|y3−a|
)

.

(74)

Taking the limit m → ∞ in the above expression,

lim
m→∞ I =

∫
d3k

(2π)3

1

2k2 e−ik4(X4−Y 4)

×eik
1(X1−Y 1)eik

2(X2−Y 2) e−√
k2|x3−a|e−√

k2|y3−a|

i
√

k2
. (75)

Performing an inverse Wick rotation back to Minkowski
space on Eq. (75), substituting the result into Eq. (72) and
acting with the operator Oμν , we obtain

lim
m→∞ D̄μν(x, y) =

∫
d3 p‖
(2π)3 − i

2

(
η

μν
‖ − pμ

‖ pν‖
p2‖

)

×e−i p‖(x‖−y‖) ei L(|x3−a|+|y3−a|)

L
, (76)

which is the propagator for the Maxwell field in the presence
of a perfectly conducting plate placed at position x3 = a
[42].
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