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Abstract It is well known that the SU(2) Reissner–
Nordström black-hole solutions of the Einstein–Yang–Mills
theory are characterized by an infinite set of unstable (imagi-
nary) eigenvalues {ωn(TBH)}n=∞

n=0 (here TBH is the black-hole
temperature). In this paper we analyze the excited instabil-
ity spectrum of these magnetically charged black holes. The
numerical results suggest the existence of a universal behav-
ior for these black-hole excited eigenvalues. In particular, we
show that unstable eigenvalues in the regime ωn � TBH are
characterized, to a very good degree of accuracy, by the sim-
ple universal relation ωn(r+ − r−) = constant, where r± are
the horizon radii of the black hole.

1 Introduction

The familiar U(1) Reissner–Nordström spacetime is well
known to describe a stable black-hole solution of the coupled
Einstein–Maxwell equations [1,2] and the coupled Einstein–
Maxwell-scalar equations [3–5]. Yasskin [6] has proved
that the Einstein–Yang–Mills theory also admits an explicit
black-hole solution which is described by the magnetically
charged SU(2) Reissner–Nordström spacetime. However, the
SU(2) Reissner–Nordström black-hole solution of the cou-
pled Einstein–Yang–Mills equations is known to be unstable
[7–10]. In fact, it was proved in [11,12] that the magnetically
charged Reissner–Nordström black-hole spacetime is char-
acterized by an infinite family of unstable (growing in time)
perturbation modes.

The recent numerical work of Rinne [13] has revealed that
these unstable SU(2) Reissner–Nordström black-hole space-
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times play the role of approximate1 codimension-two inter-
mediate attractors (that is, nonlinear critical solutions [14])
in the dynamical gravitational collapse of the Yang–Mills
field.2 In particular, this interesting numerical study [13] has
explicitly demonstrated that, during a near-critical evolution
of the Yang–Mills field, the time spent in the vicinity of an
unstable SU(2) Reissner–Nordström black-hole solution is
characterized by the critical scaling law3

τ = const − γ ln |p − p∗|. (1)

Interestingly, the critical exponents of the scaling law (1) are
directly related to the characteristic instability eigenvalues
of the corresponding SU(2) Reissner–Nordström black holes
[13]:

γ = 1/ωinstability. (2)

It is therefore of physical interest to explore the instability
spectrum {ωn}n=∞

n=0 of the SU(2) Reissner–Nordström black
holes. Indeed, Rinne [13] has recently computed numerically
the characteristic unstable eigenvalues of these magnetically
charged black-hole solutions of the Einstein–Yang–Mills the-
ory.4

1 As emphasized in [13], the magnetically charged Reissner–
Nordström black-hole spacetime is only an approximate intermediate
attractor because it is characterized by an infinite set of unstable (grow-
ing in time) modes.
2 This fact refers to type I and type III critical behaviors, see [13] for
details.
3 Here |p − p∗| is a measure for the distance of the initial data from
the threshold (critical) solution [14].
4 As emphasized above, the magnetically charged Reissner–Nordström
black-hole solution of the Einstein–Yang–Mills theory is characterized
by an infinite family of unstable perturbation modes [11,12]. Reference
[13] provides, for the first time, detailed numerical results for the first
three instability eigenvalues.
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In the present paper we shall analyze these numerically
computed black-hole eigenvalues in an attempt to identify a
possible hidden pattern which characterizes the black-hole
instability spectrum. As we shall show below, the numerical
results indeed suggest the existence of a universal behavior
for these black-hole unstable eigenvalues.

2 Description of the system

The Reissner–Nordström black-hole solution of the Einstein–
Yang–Mills theory with unit magnetic charge is described by
the line element [6]

ds2 = −
(

1 − 2m

r

)
dt2

+
(

1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (3)

where the mass function m = m(r) is given by5

m(r) = M − 1

2r
. (4)

The black-hole temperature is given by

TBH = r+ − r−
4πr2+

, (5)

where

r± = M ±
√
M2 − 1 (6)

are the (outer and inner) horizons of the black hole.
Linearized perturbations ξ(r)e−iωt 6 of the magnetically

charged black-hole spacetime are governed by the Schröd-
inger-like wave equation [15]

{
d2

dx2 + ω2 + 1

r2

[
1 − 2m(r)

r

]}
ξ = 0, (7)

where the “tortoise” radial coordinate x is defined by the
relation7

dx/dr = [1 − 2m(r)/r ]−1. (8)

Well-behaved (spatially bounded) perturbation modes are
characterized by the boundary conditions

ξ(x → −∞) ∼ e|ω|x → 0 (9)

5 We use natural units in which G = c = h̄ = 1.
6 Note that unstable (growing in time) modes are characterized by
�ω > 0.
7 Note that the near-horizon limit r → r+ corresponds to x → −∞,
whereas the large-r limit r → ∞ corresponds to x → ∞.

and

ξ(x → ∞) ∼ xe−|ω|x → 0, (10)

where ω = i |ω|. As shown in [9,11,12], these boundary
conditions single out a discrete set of unstable (�ω > 0)
black-hole eigenvalues {ωn(r+)}n=∞

n=0 .

3 Numerical evidence for universality in the excited
instability spectrum

Most recently, Rinne [13] computed numerically the first
three instability eigenvalues which characterize the SU(2)
Reissner–Nordström black-hole solutions of the coupled
Einstein–Yang–Mills equations. We have examined these
numerically computed eigenvalues in an attempt to reveal
a possible hidden pattern which characterizes the black-hole
instability spectrum.

In Table 1 we present the first excited instability eigenval-
ues {ω1(r+)} of the magnetically charged SU(2) Reissner–
Nordström black holes. In particular, we display the dimen-
sionless ratio ω1(r+)/πTBH, where the black-hole tempera-
ture TBH is given by (5). We also display the ratio between
the dimensionless quantity ω1(r+) × (r+ − r−) for generic
SU(2) Reissner–Nordström black holes and the correspond-
ing quantity ω1(r+ = 10) × (10 − 1/10) for the weakly

Table 1 The instability eigenvalues of SU(2) Reissner–Nordström
black holes. The data shown refers to the first excited eigenvalues
{ω1(r+)} of these magnetically charged black holes. We display the
dimensionless ratio ω1(r+)/πTBH, where TBH is the black-hole tem-
perature. Also shown is the ratio between the dimensionless quantity
ω1(r+)× (r+ −r−) for generic SU(2) Reissner–Nordström black holes
and the corresponding quantity ω1(r+ = 10) × (10 − 1/10) for the
weakly magnetized Reissner–Nordström black hole with r+ = 10 (see
footnote 8). One finds that the instability eigenvalues in the regime
ω1(r+)/πTBH � 0.1 are characterized, to a good degree of accuracy,
by the universal relation ω1(r+ − r−) = constant

r+ ω1(r+)/πTBH
ω1(r+)×(r+−r−)

ω1(r+=10)×(10−1/10)

9.0 9.86 × 10−2 0.999

8.0 9.91 × 10−2 0.999

7.0 9.99 × 10−2 0.998

6.0 1.01 × 10−1 0.996

5.0 1.04 × 10−1 0.993

4.0 1.08 × 10−1 0.987

3.0 1.18 × 10−1 0.973

2.0 1.58 × 10−1 0.925

1.5 2.57 × 10−1 0.824

1.2 6.04 × 10−1 0.586
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Table 2 The instability eigenvalues of SU(2) Reissner–Nordström
black holes. The data shown refers to the second excited eigenvalues
{ω2(r+)} of these magnetically charged black holes. We display the
dimensionless ratio ω2(r+)/πTBH, where TBH is the black-hole tem-
perature. Also shown is the ratio between the dimensionless quantity
ω2(r+)× (r+ −r−) for generic SU(2) Reissner–Nordström black holes
and the corresponding quantity ω2(r+ = 10) × (10 − 1/10) for the
weakly magnetized Reissner–Nordström black hole with r+ = 10 (see
footnote 8). One finds that the instability eigenvalues in the regime
ω2(r+)/TBH � 1 are characterized, to a good degree of accuracy, by
the universal relation ω2(r+ − r−) = constant

r+ ω2(r+)/πTBH
ω2(r+)×(r+−r−)

ω2(r+=10)×(10−1/10)

9.0 2.90 × 10−3 1.011

8.0 2.95 × 10−3 1.021

7.0 3.00 × 10−3 1.029

6.0 3.06 × 10−3 1.034

5.0 3.15 × 10−3 1.038

4.0 3.31 × 10−3 1.040

3.0 3.68 × 10−3 1.041

2.0 5.17 × 10−3 1.039

1.5 9.37 × 10−3 1.034

1.2 3.03 × 10−2 1.011

magnetized Reissner–Nordström black hole with r+ = 10.8

Remarkably, the numerical data presented in Table 1 reveals
that the black-hole instability eigenvalues in the regime
ω1(r+)/TBH � 1 are characterized, to a good degree of
accuracy, by the universal relation9

ω1(r+ − r−) = λ1; λ1 = constant. (11)

In order to support this intriguing finding, we display in
Table 2 the second excited instability eigenvalues {ω2(r+)}
of the SU(2) Reissner–Nordström black holes. Remarkably,
the numerical data presented in Table 2 provide compelling
evidence for the validity of the suggested universal behav-
ior of the black-hole instability eigenvalues in the regime
ω2(r+)/TBH � 1. In particular, one finds10

ω2(r+ − r−) = λ2; λ2 = constant. (12)

4 Summary

The U(1) Reissner–Nordström black holes are known to
be stable within the framework of the coupled Einstein–
Maxwell theory [1–5]. This stability property of the black

8 The weakly-magnetized SU(2) Reissner–Nordström black hole with
horizon radius r+ = 10 is the largest black-hole solution studied numer-
ically in [13].
9 It is worth emphasizing that, in the regime ω1(r+)/TBH � 1, the
value of λ1 is almost independent of the black-hole horizon radius r+.
10 It is worth emphasizing that, in the regime ω2(r+)/TBH � 1, the
value of λ2 is almost independent of the black-hole horizon radius r+.

holes manifests itself in the form of an infinite spectrum
of damped quasi-normal resonances [16,17]. To the best of
our knowledge, for generic U(1) Reissner–Nordström black
holes, there is no simple universal formula which describes
the infinite family of these damped black-hole quasi-normal
resonances.

On the other hand, the SU(2) Reissner–Nordström black
holes are known to be unstable within the framework of the
coupled Einstein–Yang–Mills theory [7–10]. This instabil-
ity property of the magnetically charged black holes mani-
fests itself in the form of an infinite spectrum of exponen-
tially growing black-hole resonances [11,12]. In this paper
we have provided compelling numerical evidence that the
infinite family of these unstable black-hole resonances can
be described, to a very good degree of accuracy, by the simple
universal formula

ωn(r+ − r−) = constantn for ωn � TBH. (13)

We believe that it would be highly interesting to find an ana-
lytical explanation for this numerically suggested universal
behavior.
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