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Abstract In this article, we construct a class of constant
curvature and spherically symmetric thin-shell Lorentzian
wormholes in F(R) theories of gravity and we analyze their
stability under perturbations preserving the symmetry. We
find that the junction conditions determine the equation of
state of the matter at the throat. As a particular case, we
consider configurations with mass and charge. We obtain
that stable static solutions are possible for suitable values of
the parameters of the model.

1 Introduction

Traversable Lorentzian wormholes are solutions of gravita-
tional theories which have a throat that connects two regions
of the same universe or two different universes [1,2]. In Gen-
eral Relativity, they are threaded by matter that violates the
null energy condition [1–5]; the amount of this exotic matter
can be made arbitrary small [6], but at the expense of large
pressures at the throat [7]. Traversable wormholes can be
constructed [2] by cutting and pasting two manifolds to form
a new one, with a shell at the joining surface correspond-
ing to the throat, where the flare-out condition is fulfilled.
These thin-shell wormholes have been extensively studied in
the literature because of their simplicity, which makes the
analysis of stability easier, and the exotic matter can be con-
fined to the shell. Wormholes with a continuous energy-stress
tensor at the throat usually also need a cut and paste pro-
cedure to confine the exotic matter or to obtain a suitable
asymptotic behavior. Stability studies of spherically sym-
metric thin-shell wormholes, with a linearized equation of
state at the throat, have been performed under radial pertur-
bations by several authors ([8–16] and references therein).
Plane and cylindrical thin-shell wormholes were also ana-
lyzed [16–24]. The Chaplygin gas and its generalizations
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were used to model the exotic matter supporting wormholes
[25–30]. The linearized stability of Schwarzschild thin-shell
wormholes with variable equations of state has been recently
considered [31].

Within the context of General Relativity, the observed
accelerated expansion of the universe during the matter dom-
inated epoch requires of the presence of dark energy. Instead
of this non-standard fluid, modifications of General Rela-
tivity were proposed in order to solve both the problems of
dark energy and dark matter, required by the concordance
(�CDM) model. One of the simplest possible modifications
corresponds to the so-called F(R) gravity [32–34], in which
the Einstein–Hilbert lagrangian is replaced by a function
F(R) of the Ricci scalar R. The F(R) theories can provide
an alternative for an unified picture of both inflation and the
accelerated expansion at later times. Besides the cosmologi-
cal aspects, it is of interest to study compact objects in these
alternative theories. Static and spherically symmetric black
hole solutions in F(R) have been found [35–37] in the last
decade. Traversable wormholes in F(R) were also studied
in recent years [38–41].

Thin shells in General Relativity are modeled by using the
well-known Darmois–Israel [42–44] formalism. The junc-
tion conditions allow to match two solutions onto a hyper-
surface under different conditions, for example the interior
and exterior solutions corresponding to stars, galaxies, etc.
They are also useful for the study of thin layers of matter
and in braneworld cosmology. In the last decade, the junc-
tion conditions have been generalized to F(R) theories of
gravity [45,46]. The junction conditions are more stringent
in F(R) gravity than in General Relativity. For non-linear
F(R), they always require continuity of the trace of the sec-
ond fundamental form at the matching hypersurface and, with
the exception of quadratic F(R), the continuity of the cur-
vature scalar R. Quadratic F(R) has some specific features:
the curvature scalar R can be discontinuous at the match-
ing hypersurface and, as a consequence, the shell will have,
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besides the standard energy-momentum tensor, an external
energy flux vector, an external scalar pressure (or tension) and
another energy-momentum contribution resembling classi-
cal dipole distributions [47,48]. The last one can be inter-
preted as a gravitational double layer. All these contribu-
tions should be present in order to make the whole energy-
momentum tensor divergence-free [47,48]. Recently, these
results were extended to the most general gravitational theory
with a Lagrangian quadratic in the curvature [49].

In the present work, we construct thin-shell wormholes
with spherical symmetry in F(R) theory with constant cur-
vature and we study their stability under radial perturbations.
The paper is organized as follows: in Sect. 2, the wormhole
construction is done; in Sect. 3, the stability of static con-
figurations is analyzed; in Sect. 4 the formalism is applied
to charged wormholes; finally, in Sect. 5 the conclusions are
presented. We adopt units in which G = c = 1, where G
and c denote the gravitational constant and the speed of light,
respectively.

2 Wormhole construction

We start from the spherically symmetric geometry defined
by the metric

ds2 = −A(r)dt2+A(r)−1dr2+r2(dθ2+sin2 θdφ2), (1)

where r > 0 is the radial coordinate, 0 ≤ θ ≤ π , and
0 ≤ ϕ < 2π are the angular coordinates. We adopt this
metric in the construction of wormholes by using the thin-
shell formalism in F(R) gravity (R is the curvature scalar).
We choose a radius a and we cut two identical copies of the
region with r ≥ a:

M± = {Xα = (t, r, θ, ϕ)/r ≥ a}, (2)

and paste them at the hypersurface

� ≡ �± = {X/G(r) = r − a = 0}, (3)

to create a new geodesically complete manifoldM = M+∪
M−. For a given r , the area 4πr2 is minimal when r = a, so
the manifoldM represents a wormhole with two regions con-
nected by a throat of radius a, where the flare-out condition
is satisfied. A global radial coordinate can be defined on M
by using the proper radial distance: l = ± ∫ r

a

√
1/A(r)dr ,

the signs ± correspond, respectively, to M+ and M−, and
the throat is located in l = 0. We denote the unit normals to
� inM by n±

γ , the first fundamental form by hμν , the second
fundamental form (extrinsic curvature) by Kμν , and the jump
across the shell of any quantity ϒ by [ϒ] ≡ (ϒ+ − ϒ−)|� .

Besides the continuity of the first fundamental form hμν

across the shell, in F(R) theories there exists an additional
condition [46], which is [Kμ

μ] = 0. If F ′′′(R) �= 0 (the
prime applied to F(R) represents the derivative with respect
to R), a third condition is also required [46]: the continuity
of R across the surface �, i.e. [R] = 0. However, quadratic
F(R) = R + αR2, for which F ′′′(R) = 0, allows for the
discontinuity of R. In our construction [R] = 0 is automat-
ically fulfilled, because the geometries at both sides of the
throat are the same. The field equations on � in the case
F ′′′(R) �= 0 have the form [46]

κSμν =−F ′(R)[Kμν]+F ′′(R)[ηγ ∇γ R]hμν, nμSμν =0,

(4)

where κ = 8π and Sμν represents the energy-momentum
tensor at the shell. The field equations when F ′′′(R) = 0
read [46]

κSμν =−[Kμν ] + 2α([nγ ∇γ R]hμν − [RKμν ]), nμSμν =0,

(5)

along with

κTμ = −2α∇μ[R], nμTμ = 0, (6)

κT = 2α[R]K γ
γ , (7)

κTμν = 2α�μν, (8)

where �μν is a two-covariant symmetric tensor distribution

〈
�μν,�

〉 = −
∫

�

[R]hμνn
γ ∇γ �, (9)

for any test function �. In quadratic F(R), besides the stan-
dard energy-momentum tensor Sμν , the shell has an external
energy flux vector Tμ, an external scalar pressure/tension T ,
and a double layer energy-momentum contribution Tμν of
Dirac “delta prime” type, resembling classical dipole distri-
butions [46]. All of them are necessary in order to make the
complete energy-momentum tensor divergence-free, so that
it is locally conserved [46]. But all these contributions are
proportional to [R], so in our case they are all zero. Further-
more, for [R] = 0, by using that F ′(R) = 2αR and F ′′(R) =
2α, it is also easy to see that Eq. (5) reduces to Eq. (4). The
second term in the right hand side of Eq. (4) is zero because
we are going to apply the formalism to geometries where R =
R0 is a constant. Then, in the case of [R] = 0 and constant
curvature R = R0, we see that Eqs. (4) and (5) both reduce to

κSı̂ ĵ = −F ′(R0)[Kı̂ ĵ ], (10)

which is valid for any F(R) theory.
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At the surface � we use the coordinates ξ i = (τ, θ, ϕ),
with τ the proper time on the shell. We let the throat radius
be a function of the proper time: a(τ ). The first fundamental
form associated with the two sides of the shell is

h±
i j = gμν

∂Xμ

∂ξ i

∂Xν

∂ξ j

∣
∣
∣
∣
�

, (11)

and the second fundamental form reads

K±
i j = −n±

γ

(
∂2Xγ

∂ξ i∂ξ j
+ �

γ
αβ

∂Xα

∂ξ i

∂Xβ

∂ξ j

)∣
∣
∣
∣
�

, (12)

with

n±
γ = ±

{∣
∣
∣
∣g

αβ ∂G

∂Xα

∂G

∂Xβ

∣
∣
∣
∣

−1/2
∂G

∂Xγ

}∣
∣
∣
∣
∣
�

. (13)

For the metric (1) the unit normals (nγ nγ = 1) take the form

n±
γ = ±

(

−ȧ,

√
A(a) + ȧ2

A(a)
, 0, 0

)

, (14)

where the dot represents the derivative with respect to τ .
Adopting the orthonormal basis {eτ̂ = eτ , eθ̂

= a−1eθ , eϕ̂ =
(a sin θ)−1eϕ} at the shell, it is easy to obtain for the metric
(1) that the first fundamental form is h±

ı̂ ĵ = diag(−1, 1, 1),
and the second fundamental form is given by

K±
θ̂ θ̂

= K±
ϕ̂ϕ̂

= ±1

a

√
A(a) + ȧ2 (15)

and

K±
τ̂ τ̂

= ∓ A′(a) + 2ä

2
√
A(a) + ȧ2

, (16)

with the prime on A(r) representing the derivative with
respect to r . With the aid of Eqs. (15) and (16), the condition
[K ı̂

ı̂ ] = 0 can be written in the form

ä = − A′(a)

2
− 2

a

(
A(a) + ȧ2

)
. (17)

By replacing in Eq. (10) the surface stress-energy tensor
Sı̂ ĵ = diag(σ, p

θ̂
, pϕ̂ ), where σ is the surface energy density

and p
θ̂
, pϕ̂ are the transverse pressures, we find

σ = F ′(R0)

κ
√
A(a) + ȧ2

(
2ä + A′(a)

)
(18)

and

p = −2F ′(R0)

κa

√
A(a) + ȧ2, (19)

where p = p
θ̂

= pϕ̂ . Replacing Eq. (17) in Eq. (18) we have

σ = −4F ′(R0)

κa

√
A(a) + ȧ2, (20)

so if F ′(R0) > 0 we can see that σ < 0, which indicates that
the energy conditions are not satisfied, i.e. the matter at the
throat is exotic. In this case the pressure is also negative, i.e.
it is a tension. The inequality F ′(R) > 0 has an important
interpretation in F(R) gravity (see [36,37] and references
therein), because it implies that the effective Newton constant
Geff = G/F ′(R) is positive. From the quantum point of view,
F ′(R) > 0 prevents the graviton to be a ghost. So the energy
conditions can be fulfilled only at the cost of the presence of
ghosts. An interesting discussion of this topic in the case of
wormholes can be found in Ref. [41]. It is noteworthy that
Eqs. (19) and (20) force an equation of state of the form

p = σ

2
. (21)

By using this equation of state in combination with Eqs. (17),
(19), and (20) it is easy to verify the conservation equation:

d(σa2)

dτ
+ p

da2

dτ
= 0, (22)

where the first term represents the internal energy change of
the throat and the second one the work done by the internal
forces of the throat.

3 Stability of static configurations

In the case of static wormholes with radius a0, the condition
given by Eq. (17) takes the form

A′(a0) = −4
A(a0)

a0
, (23)

from which we have

a0A
′(a0) + 4A(a0) = 0. (24)

The surface energy density and the pressure in the static case
become, respectively,

σ0 = F ′(R0)

κ

A′(a0)√
A(a0)

= −4F ′(R0)

κa0

√
A(a0), (25)

and

p0 = −2F ′(R0)

κa0

√
A(a0). (26)

For the study of the stability of static solutions under per-
turbations preserving the symmetry, we extend the method
developed for General Relativity [8] to F(R) gravity. Using
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that ä = (1/2)d(ȧ2)/da and defining u = ȧ2, Eq. (17) can
be written in the form

u′(a) + 4

a
u = −A′(a) − 4

a
A(a). (27)

By integrating Eq. (27) is possible to determine the dynamics
of the throat,

ȧ2 = −V (a), (28)

where

V (a) = A(a) − a4
0

a4 A(a0) (29)

can be interpreted as a potential. The same result can be
found by introducing the equation of state (21) in the con-
servation equation (22) and integrating it to obtain σ(a) =
σ(a0)a3

0/a3; then replacing σ(a) in Eq. (20) to finally obtain
ȧ2 as a function of a. It is easy to check that V (a0) = 0 and,
with the help of Eq. (23), that also V ′(a0) = 0. The second
derivative of the potential, evaluated at a0 has the form

V ′′(a0) = A′′(a0) − 20

a2
0

A(a0). (30)

Then we can determine that the configuration with radius a0

is stable under radial perturbations if and only if V ′′(a0) > 0.

4 Wormholes with charge

Now we analyze an example of application of the formalism
introduced in the previous sections. We begin with the action
given by

S = 1

2κ

∫
d4x

√|g|(F(R) − FμνFμν), (31)

where g = det(gμν), Fμν = ∂μAν − ∂νAμ is the electro-
magnetic tensor, and F(R) = R + f (R) is the function that
defines the theory under consideration ( f (R) is any suitable
function of R). The field equations (in the metric formalism)
obtained from the action (31), considering an electromag-
netic potential Aμ = (V(r), 0, 0, 0), have the spherically
symmetric solution in the form given by Eq. (1), where the
metric function [36,37] is

A(r) = 1 − 2M

r
+ Q2

F ′(R0)r2 − R0r2

12
, (32)

with M the mass, and Q the charge. This solution has con-
stant curvature R0 and V(r) = Q/r . The value of R0 can
be understood in terms of an effective cosmological constant
�eff = R0/4. It is worth noticing that the squared charge Q2

is corrected by a factor 1/F ′(R0) with respect to the Gen-
eral Relativity case. The geometry is singular at r = 0; the
position of the horizons, determined by the zeros of A(r), are

0.4 0.2 0.0 0.2 0.4
0.98

0.99

1.00

1.01

1.02

R0M 2

Qc

M F ’ R0

Fig. 1 Critical charge Qc in terms of the constant curvature R0 and
the mass M : if |Q| < Qc the original manifold presents an inner and
an event horizon, which fuse into one when |Q| = Qc; both horizons
disappear if |Q| > Qc

given by the positive solutions of a fourth degree polynomial
if R0 �= 0, or of a quadratic function if R0 = 0. In the case
R0 > 0, for small values of |Q| there are three horizons: the
inner ri , the event rh and the cosmological rc ones; when
the charge is large enough, i.e. |Q| = Qc, the inner and the
event horizons fuse into one; finally if |Q| > Qc there is a
naked singularity at the origin and only one horizon in rc.
When R0 ≤ 0, for small values of |Q| there are two hori-
zons: the inner ri and the event rh ones; when the charge is
|Q| = Qc, the inner and the event horizons fuse into one;
finally if |Q| > Qc there is a naked singularity and no hori-
zons. The critical value of the charge Qc is plotted in Fig. 1.

In our wormhole construction, the radius a of the throat
is taken large enough to avoid the presence of the inner and
the event horizons, and the singularity; when corresponds
it is also smaller than the cosmological horizon. If a static
solution exists for a given set of parameters, the throat radius
a0 should satisfy Eq. (24), which for the particular metric
function given by Eq. (32) adopts the form

R0

2
a4

0 − 4a2
0 + 6Ma0 − 2Q2

F ′(R0)
= 0. (33)

From Eqs. (25) and (26), the energy density and the pressure
in this case are

σ0 = −4F ′(R0)

κa0

√

1 − 2M

a0
+ Q2

F ′(R0)a2
0

− R0a2
0

12
, (34)

and

p0 = −2F ′(R0)

κa0

√

1 − 2M

a0
+ Q2

F ′(R0)a2
0

− R0a2
0

12
. (35)

Then, if one expects that the term in the metric (32) corre-
sponding to the charge has the same sign as in General Rela-
tivity, the presence of exotic matter at the throat is required.
As mentioned above, the inequality F ′(R0) > 0 implies a
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positive effective gravitational constant and the absence of
ghosts. So in what follows we assume that F ′(R0) > 0. Using
Eq. (29), the potential is

V (a) = 1 − 2M

a
+ Q2

F ′(R0)a2 − a2R0

12
− a4

0

a4

×
(

1 − 2M

a0
+ Q2

F ′(R0)a2
0

− a2
0 R0

12

)

, (36)

from which we verify that V (a0) = 0 and V ′(a0) = 0, and
we obtain that

V ′′(a0) = 3

2
R0 − 20

a2
0

+ 36M

a3
0

− 14Q2

F ′(R0)a4
0

. (37)

As stated above, V ′′(a0) > 0 is the condition for stability
under radial perturbations.

The results are presented graphically in Fig. 2, in which
we have chosen the most representative figures. The stable
solutions are shown with solid lines, while the dotted lines
correspond to unstable configurations. The regions shaded
in gray have no physical meaning, because they correspond
to the zones inside the event horizon or the cosmological
horizon of the original manifold which are removed in the
construction of the wormholes. The results present important
changes around the value of Qc/M , where Qc is the criti-
cal charge, corresponding to the value of charge from which
the original metric used for the construction loses the inner
and the event horizons. The solutions show a behavior which
strongly depends on the values of R0M2. However, the dif-
ferent values of F ′(R0) affect the results only in the form of
an “effective charge” Q/

√
F ′(R0). Depending on the sign of

R0, we have

• For R0 ≤ 0, no static solutions are present if |Q| ≤ Qc.
As the charge grows, i.e. |Q| > Qc, two static solutions

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

5

6

Q

M F ’ R0

a0

M
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Fig. 2 Stability of wormholes in F(R) theories for different values of
the constant curvature R0. Solid curves represent static stable solutions
with throat radius a0, while dotted lines correspond to unstable ones;

M and Q are the ADM mass and charge, respectively. Gray zones are
non-physical. Note that two plots have a different scale in the vertical
axis

123



132 Page 6 of 6 Eur. Phys. J. C (2016) 76 :132

appear: one stable and the other unstable. Then the static
solutions fuse into one; finally for larger values of charge
they disappear.

• For R0 > 0, when |Q| > Qc there exist two static solu-
tions (one stable and the other unstable) with a similar
behavior as in the R0 < 0 case, but also a third static
solution with a larger value of a0/M is always present.
This third solution is unstable for any value of the charge.

In any case, we see that stable static solutions are always
obtained if appropriate values of mass and charge are taken
for a given function F(R) and constant curvature R0.

5 Conclusions

We have constructed a class of spherically symmetric worm-
holes by using the thin-shell formalism in F(R) theories; the
surface that joins the two equal copies of a solution with con-
stant curvature R0 corresponds to the throat. We have shown
that the matter at the throat should satisfy the equation of
state p = σ/2. The condition F ′(R0) > 0, required to have
a positive effective gravitational constant and a non-ghost
graviton, results in exotic matter at the throat. We also have
obtained the condition for the stability of static configurations
under perturbations preserving the symmetry. In particular,
we have applied the formalism to wormholes with mass M
and charge Q. As we have assumed that F ′(R0) > 0, the
term associated with the charge has the same sign as in Gen-
eral Relativity, and the matter at the throat is exotic. We have
found that stable solutions are possible for appropriate values
of the parameters, for both positive and non-positive R0. In
the first case, one static solution is always also present, being
always unstable for any value of the charge; for large values
of |Q|/(M√

F ′(R0)) two static solutions are also present
within a short range of charge, one of them is stable, while
the other is unstable. In the second case, a large value of
|Q|/(M√

F ′(R0)) is required to have two static solutions
for a short range of charge, one of them is stable and the
other is unstable. The qualitative aspects of the results do not
depend on the particular form of the function F(R), each
theory only manifests itself through the constant F ′(R0), in
the form of an effective charge Q/F ′(R0).
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