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Abstract We study the metric perturbations in the context
of restricted f (R) gravity, in which a parameter for deviation
from the full diffeomorphisms of space-time is introduced.
We demonstrate that one can choose the parameter to remove
the induced anisotropic stress, which is present in the usual
f (R) gravity. Moreover, to prevent instability for the vec-
tor and tensor metric perturbations, some constraints on the
restricted f (R) gravity are obtained.

1 Introduction

Plank 2015 data show that the so-called R2 inflation model
for the early Universe is consistent with the observations [1].
Also, f (R/M2)-gravity, which is described by

S f =
∫

d4x
√−g

[
M2

P R

2
+λM4

P f

(
R

M2
P

)]
+ SMatter, (1)

where M2
P is the reduced Planck mass and λ is a dimension-

less constant, have been proposed for the late-time cosmol-
ogy to avoid the cosmological constant problem [2] (Also,
to see other work on this subject see Ref. [30] as the review
paper and references therein) [3]. Such observations and the-
oretical speculations provide motivations to investigate the
modified gravity theories in the context of cosmology.

Study of the metric perturbations provide a tool to char-
acterize the modified gravity theories. For example, if we
consider f (R/M2)-gravity in the perturbed Friedmann–
Robertson–Walker (FRW) Universe and using the Newtonian
gauge, which is defined by

ds2 =−(1 + 2Φ(t, x))dt2+a(t)2(1 + 2Ψ (t, x))dxidx jδi j ,

(2)
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we lead to Φ(t, x) �= Ψ (t, x), i.e. the induced anisotropic
stress arises. This effect can be used to distinguish the mod-
ified gravity theories from the observations [4].

One way to generalize (1) is to use other curvature invari-
ant quantities in four dimensions, such as R, RμνRμν, . . . [5–
21]. On other hand, in the cosmological context, the cosmic
microwave background shows that the FRW metric is the pre-
ferred coordinate system of the Universe. Thus, to describe
dynamics of the Universe, one can consider theories which
are invariant just under the spatial diffeomorphisms as have
been done in [22] and references therein. So, one can also
apply this idea to f (R/M2)-gravity and restrict the symme-
try of the action to just under the spatial diffeomorphisms.

In this paper we study the relation between the induced
anisotropic stress and the full diffeomorphisms symmetry
of f (R/M2)-gravity. As we will see, a systematic way to
obtain this relation is to construct restricted f (R/M2) from
the usual f (R/M2). The main motivation to report this work
comes from one of the interesting results of this attempt
that is given by Eq. 37. The result shows how the induced
anisotropic stress is related to the full diffeomorphisms sym-
metry. Note that, as we argued, in the cosmological con-
text the full diffeomorphism symmetry, is broken by using
FRW metric as the preferred coordinate. For this purpose we
impose the following transformation in 1, which breaks the
time diffeomorphisms of (1) but saves the symmetry under
the spatial diffeomorphisms,

R → RΥ ≡ R + (Υ − 1)Ξ , (3)

where Υ is a parameter and Ξ is a four-divergence term,
which is appear in the decomposition of the the Ricci scalar
in four dimensions as [28]

R = 3R + (Ki j Ki j − K 2) + Ξ , (4)

where 3R is the three-dimensional Ricci scalar which
is obtained from a three-dimensional metric hi j . Also
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K = hi j Ki j , where Ki j is the extrinsic curvature, which
is defined as

Ki j = 1

2N
(ḣi j − ∇i N j − ∇ j Ni ), (5)

where N and Ni are the lapse and shift, respectively.
To state Ξ in terms of the lapse and the shift, we use the

general formula in Ref. [28], in which one finds

Ξ = 2∇μ(nμK ) − 2

N
∇i∇ i N , (6)

where nμ can be represented as

nμ = (−N , 0, 0, 0). (7)

Note that although the last term in (4) is the four-
divergence term and for the Einstein–Hilbert action does not
affect field equations in 3 + 1 formalism, but without it R is
just invariant under the spatial diffeomorphisms.

Let us urge the reader that our purpose is to find the relation
between the induced anisotropic stress and the diffeomor-
phism symmetry in f (R/M2)-gravity. It is important point
because If one wants to regard this attempt as a new model,
one must quest for the Hamiltonian consistency of the model.
To see this approach see Ref. [23]. Also, for a different moti-
vation to apply the above transformation in the context of
Horava–Lifshitz gravity, see Refs. [24–27].

The organization of this paper is as follows: in Sect. 2 we
briefly review the background cosmology of the restricted
f (R/M2)-gravity. Section 3 is devoted to a study of the
dynamics of the model with perturbed metric.

2 Background equations

In this section, we obtain general equations for the restricted
f (R/M2)-gravity for the unperturbed FRW metric back-
ground. Note that in all relations and results of this work,
if we take Υ = 1 the corresponding relations for the usual
f (R/M2)-gravity must be obtained.

By applying the transformation that is shown in (3), the
restricted version of any f (R/M2)-gravity is obtained from
(1) as

Sres =
∫

d4x
√−g

[
M2

P
R

2
+ λM4

P f

(
RΥ

M2
P

)]
+ SMatter.

(8)

We take the flat FRW metric as

ds2 = −N (t)2dt2 + a(t)2dxidx jδi j , (9)

where N = N (t) is the lapse and a = a(t) is the scale
factor that from which the Hubble parameter is defined as
H ≡ ȧ/a.

The energy-momentum tensor of the perfect fluid, Tμν , is
obtained by

Tμν = − 2√−g

δSMatter

δgμν
. (10)

The matter is in the form of a perfect fluid which is minimally
coupled to the metric. Without any non-minimal interaction
between gravity and the matter, we break the general dif-
feomorphism just in the gravitational sector of the action. In
Ref. [29] it has been shown that if one just breaks the general
diffeomorphism for the gravitational sector, the usual con-
servation of energy, ∇μTμν = 0, holds. So, by using this
equation for the FRW metric, it follows that

ρ̇ + 3H(ρ + p) = 0, (11)

where ρ ≡ −T 0
0 and pδ j

i ≡ T j
i are the density of energy

and momentum of the fluid, respectively.
Using the above metric and the general relations in the

ADM formalism, which are discussed in Ref. [28], one can
show that

RΥ = R + (Υ − 1)Ξ = A + Υ Ξ , (12)

where

Ξ = −6
H Ṅ

N 3 + 6
Ḣ

N
+ 18

H2

N 2 , A ≡ −6
H2

N 2 . (13)

It is easy to check that, by integration by parts, we have

∫
d4xa3NΞ = 0, (14)

which, as we argued, shows that Ξ is the four-divergence
term.

From Eqs. (8) and (13), it follows that

Sres =
∫

d4x
√−g

[
M2

P
R

2
+λM4

P f

(
A+Υ Ξ

M2
P

)]
+SMatter.

(15)

Using Eqs. (12) and (13) and then varying the action with
respect to the lapse, with some integration by parts and then
setting N = 1, we have

3H2 + λM2
P f + λ(6H2 − RΥ )F + 6λΥ H Ḟ = ρ

M2
P

,

(16)
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where

Rϒ = −6H2 + Υ (6Ḣ + 18H2), f ≡ f

(
RΥ

M2
P

)
,

F ≡ M2
P

d f

dRΥ
≡ f ′. (17)

Note that we have defined the prime as the derivative with
respect to the argument of f . So, F, f ′′, . . . are dimensionless
quantities.

Also, a useful equation is obtained by taking the time
derivative of Eq. (16) and then using Eq. (13) thus:

Ḣ(1 + 2λF) + λH(2 − 3Υ )Ḟ + Υ λF̈ = − (ρ + p)

2M2
P

.

(18)

The presence of the term which is proportional to F̈ shows
that in general we will deal with the fourth order differential
equations for the scale factor in this model. Similar to the
usual f (R/M2

P )-gravity if we neglect the matter or impose
some additional symmetry, like the de Sitter space-time, one
can reduce the order of the equations.

3 Cosmological perturbations

In this section, to obtain equations for the perturbed FRW
space-time, we will use the Arnowitt–Deser–Misner (ADM)
formalism. For this goal, the general formula that is discussed
in Ref. [28] will be used. If one takes Υ = 1 in all relations
and results, they must approach the corresponding results for
the usual f (R/M2

P ) gravity. Our notations in this work are
similar to those that have been used for the usual f (R/M2

P )

gravity by De Felice and Tsujikawa [30], which based on
Ref. [31].

In the ADM formalism, a metric can be decomposed thus
[28]:

ds2 = −N 2dt2 + hi j (dx
i + Nidt)(dx j + N jdt). (19)

From (3) and (6), we have

RΥ = 3R + Ki j Ki j − K 2 + 2Υ ∇μ(nμK ) − 2Υ

N
∇i∇ i N .

(20)

Note that the covariant derivative in the last term of Eq. 20
is taken with respect to hi j [28].

As for the perfect fluid, we will use the following param-
eterization for the perturbed energy-momentum tensor:

δT 0
0 = −δρ, δT i

0 = −(ρ + p)∂iv, δT j
i = δ pδ j

i , (21)

where v is the potential for the spatial velocity of the fluid.
We will write our equations in the Newtonian gauge,

which is defined by Ni = 0. Also, the equations will be

written in Fourier space for which the Fourier components
of a general perturbation U (t, x) are given by

U =
∫

d3xU (t, x)e−ik.x. (22)

Furthermore, F and Ḟ can be decomposed into homogeneous
and perturbed parts:

F = F̄ + δF, Ḟ = ˙̄F + ˙δF, (23)

where ¯over any quantity shows the unperturbed part of the
quantity.

3.1 The scalar metric perturbations

It is convenient to parameterize the scalar metric perturba-
tions in the Newtonian gauge as follows:

N = eΦ(t,x), hi j = a2e−2Ψ (t,x)δi j . (24)

From (20) and the above definitions, it follows that

RΥ |scalar = 3R + 6(3Υ − 1)e−2Φ(t,x)(H − Ψ̇ (t, x))2

+ 6Υ e−2Φ(t,x)(Ḣ − Ψ̈ (t, x))

− 6Υ Φ̇(t, x)e−2Φ(t,x)(H − Ψ̇ (t, x))

− 2Υ
e2Ψ (t,x)

a2 ∂2Φ(t, x)

+ 2Υ
e2Ψ (t,x)

a2 ∂iΦ(t, x)∂iΨ (t, x)

− 2Υ
e2Ψ (t,x)

a2 ∂iΦ(t, x)∂iΦ(t, x). (25)

If we take Φ(t, x) = Ψ (t, x) = 0 in the above relation, it
follows that 3R is vanished and the value of RΥ is reduced
to Eq. (17).

It is easy to show that the linearized part of the above
relation, δRΥ |scalar, takes the following form (in terms of the
Fourier components):

δRΥ |scalar = −4k2

a2 Ψ + 2Υ k2

a2 Φ − 12(3Υ − 1)H2Φ

−12Υ ḢΦ − 6Υ HΦ̇ − 6Υ Ψ̈ − 12(3Υ − 1)H Ψ̇ . (26)

Since the fluid is minimally coupled to the gravity, from
∇μTμν = 0 (which at the background level results in Eq.
(11), we can obtain two equations. They are the same as the
corresponding equations for the usual f (R/M2) gravity,

˙δρ + 3H(δρ + δ p) = k2

a2 δq + 3(ρ + p)Ψ̇ , and (27)

and

δ̇q + 3Hδq + δ p + (ρ + p)Φ = 0. (28)

where δq ≡ −(ρ + p)v.
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For the other equations, we must obtain the second order
action by inserting (19) into the action. As we pointed out,
we have used the Newtonian gauge. So, to vary the action
with respect to the shift, it is sufficient to consider the terms
which are proportional to NiΨ and NiΦ. For example if we
define δNi as the variation with respect to the shift, for SMatter

we have

δNi SMatter = −1

2

∫
d4x

√−gTμνδNi gμν

= −1

2

∫
d4xa3T 0iδNi + O(N 2

i ). (29)

Using this point, and also using the following relations:

nμ = (e−Φ(t,x),−Nie−Φ(t,x)), �i
i j = −3∂ jΨ (t, x), (30)

after some integration by parts, we are lead to

S=−M2
P

∫
d4x2a[HΦ(t, x) + Ψ̇ (t, x)]∂i Ni (1 + 2λF̄)

− 4λM2
P

∫
d4xaHNi∂iδF−2λΥ M2

P

∫
d4xa[Ni∂i ˙δF

− ∂iΦ(t, x)Ni
˙̄F − 3HNi∂iδF] + SMatter. (31)

Thus, variation with respect to the shift and then using the
Fourier components of the perturbations yield

(HΦ + Ψ̇ )(1 + 2λF̄) = λ[Υ ˙δF − Υ Φ ˙̄F+(2 − 3Υ )HδF

− 1

2M2
P

δq. (32)

Now to vary the action with respect to Φ(t, x), we can set
Ni = 0 in the action and then expand the action to the sec-
ond order in Φ(t, x) and Ψ (t, x). This procedure, after some
integration by parts and using Eq. 16, leads to

δΦ Sres =
∫

d4xa3M2
PδΦ(t, x)

[(
− 12Φ(t, x)H2

+ 4

a2 ∂2Ψ (t, x) − 12H Ψ̇ (t, x)
)(

1

2
+ λF̄

)

+ λ

(
(12 − 18Υ )H2 − 6Υ Ḣ − 2Υ

a2 ∂2
)

δF

− λ ˙̄F(12Υ HΦ(t, x) + 6Υ Ψ̇ (t, x)) + 6λΥ H ˙δF
− δΦ SMatter

]
. (33)

Thus, variation with respect to Φ(t, x) and then using the
Fourier space leads to

λ

[
(6 − 9Υ )H2 − 3Υ Ḣ+ Υ

a2 k
2
]

δF−3Υ λ ˙̄F(2HΦ+Ψ̇ )

+3λΥ H ˙δF− δρ

2M2
P

=
(

3ΦH2+ k2

a2 Ψ +3H Ψ̇

)
(1+2λF̄)

(34)

For reasons that will become clear, we will obtain δ p in two
ways. In the first way, using Eqs. (27), (34), and also Eq. (18)
to eliminate (ρ + p) in these formula, we are led to

δ p

2M2
P

= λ(2Ψ̇ + 4HΦ + Υ Φ̇) ˙̄F − 2λH ˙δF

+ 2λΥ Φ ¨̄F − λΥ ¨δF
+ λ

[
(3Υ −2)Ḣ+(9Υ −6)H2+ 2k2

3a2 (1−2Υ )

]
δF

+
[
Φ̇H + 2ḢΦ + Ψ̈ + 3ΦH2 + 3H Ψ̇

+ k2

3a2 (Ψ − Φ)

]
(1 + 2λF̄). (35)

Also, to obtain the above equation, we have used the fact that

ṘΥ δF = δRΥ
˙̄F .

The other relation for δ p is obtained by using Eqs. (28)
and (32). Again, after using Eq. (18) to eliminate (ρ + p),
we have

δ p

2M2
P

= λ(2Ψ̇ + 4H� + Υ Φ̇) ˙̄F − 2λH ˙δF + 2λΥ Φ ¨̄F

− λΥ ¨δF + λ[(3Υ − 2)Ḣ + (9Υ − 6)H2]δF
+[Φ̇H + 2ḢΦ+Ψ̈ +3ΦH2+3H Ψ̇ ](1+2λF̄).

(36)

The right-hand side of Eqs. (35) and (36) are the same if

(Ψ − Φ)(1 + 2λF̄) = 2λ(2Υ − 1)δF. (37)

As we pointed out if we take Υ = 1 in the above equations,
they must approach the corresponding relations for the usual
f (R/M2

P ) gravity. Note that, if we consider the perfect fluid,
we have four independent variables in the model and only
four of the above equations are independent.

Equation (37) reveals an advantage of our formalism. One
of the features in almost all modified gravity theories is the
existence of the induced anisotropic stress, which shows itself
by Φ �= Ψ . As is clear from Eq. (37) one can choose Υ = 1/2
to eliminate the anisotropic stress in our model.

3.2 The tensor metric perturbations

The tensor metric perturbations, γi j , are characterized by

ds2 = −dt2 + a2[δi j + γi j ]dxidx j , (38)

where ∂iγi j = γ i
i = 0. From the above definition and the

tracelessness condition on γi j , it turns out that the terms in
(20) which are proportional to Υ do not contribute to the
tensor metric perturbations. So, the study of this sector is
very similar to the usual f (R/M2) gravity. The second order
action for this sector becomes
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δS|tensor = M2
P

8

∫
d4x[1 + 2λF][aγi j∂

2γi j + a3γ̇ 2
i j ].

(39)

Varying (39) with respect to γi j and using the following
Fourier representation:

γi j =
∫

d3k

(2π)3/2

∑
s=±

εsi j (k)γ
s
k (t)ei

−→
k .

−→x , (40)

where εi i = kiεi j = 0 and εsi j (k)ε
s′
i j (k) = 2δs′ , lead to

γ̈ s
k + γ̇ s

k
d

dt
ln[a3(1 + 2λF)] +

(
k

a

)2

γ s
k = 0. (41)

The second term in Eq. (41) must be positive to act as a
dissipative force. Otherwise, γ s

k grows without bound and
we will be confronted with an instability in this sector. Also,
similar to the discussion for the usual f (R/M2

p)-gravity in
Ref. [30], to avoid the ghost instability, we must impose the
following condition:

1 + 2λF > 0. (42)

Thus, from the above discussion and Eq. (43), we have

λF ′ > 0. (43)

Again, the above conditions are similar to the corresponding
relation in the usual f (R/M2

p)-gravity.

3.3 The vector metric perturbations

As regards the perfect fluid, we consider the following form
for the perturbed stress tensor in the vector sector:

δT 0
i |vector = δqVi . (44)

So, from ∇μT
μ
ν = 0 it follows that

˙δqVi + 3HδqVi = 0. (45)

As for the metric perturbations, the favorite gauge in this
sector is the so-called vector gauge, which is defined by

ds2 = −dt2 + 2aSidx
idt + a2δi jdx

idx j , (46)

where ∂i Si = 0. Again, from the above definition and the
condition on Si , it turns out that the terms in (20) which are
proportional to Υ do not have any effect in this sector. Also,
the second order action takes the following form:

δS|vector = −M2
p

2

∫
d4xaSi∂

2Si (1 + 2λF)

− 2
∫

d4xa2Siδq
V
i . (47)

Thus, in Fourier space the equation for Si is

M2
pk

2(1 + 2λF)
Si
a

= 2δqVi . (48)

Also, from Eq. (47), to avoid the ghost instability in the vec-
tor metric perturbations, it is sufficient to take the condition
which we have in Eq. (43).

4 Summary

We have studied the consequences of the systematic way
to break the time diffeomorphisms of the usual f (R/M2

P )

gravity. By investigating the cosmological perturbation of
the restricted f (R/M2

P ) gravity, we have shown that one can
relate this symmetry to the induced anisotropic stress that
arises in the usual case of f (R/M2

P ). We have shown that
one can choose Υ , which is defined in (3), to eliminate the
induced anisotropic stress. So, even if one is not interested
in the phenomenological consequences of the model, this
work provides a tool to address the modified gravity within
the dynamics of the metric perturbations of the usual case of
f (R/M2

P ). Also, we have obtained some constraints on the
model by demanding the absence of the ghost instability in
the tensor and vector metric perturbations.
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