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Abstract We study the CFT dual to five-dimensional
extremal rotating black holes, by investigating the two-
dimensional perspective of their near-horizon geometry.
From the two-dimensional point of view, we show that both
gauge fields, related to the two rotations, appear in the same
manner in the asymptotic symmetry and in the associated
central charge. We find that our results are in perfect agree-
ment with the generalization of the Kerr/CFT approach to
five-dimensional extremal rotating black holes.

1 Introduction

Five-dimensional black holes have been interesting ever
since the seminal work on computing the entropy of a 5D
black hole by Strominger and Vafa in the context of string
theory [1]. Recently by extending the Kerr/CFT [2] approach
to 5D extremal rotating black holes (ERBH) a wide class of
such solutions have been studied [3–11]. A common feature
of these studies is the appearance of two rotating coordinates
in the near-horizon geometry of most of these solutions as
well as an AdS2 part. It was proposed in some of these works
that there are two dual CFTs, each of which corresponds to
one of the rotations.

It was shown in [10] that these two CFTs are related to each
other by the SL(2,Z) transformation which is a symmetry in
the space of the moduli parameters of the near-horizon geom-
etry of the 5D black holes with two rotating coordinates. For
this propose the boundary conditions for the rotating coor-
dinates are in the same order such that the symmetry of the
rotating coordinates is preserved by boundary fluctuations.
This is not the case for the 5D black holes with only one
rotation, e.g. black ring.

In this note we show that the consistency of the boundary
conditions from the 2D point of view requires that the two
gauge fields should be treated on the same footing in the study
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of an asymptotic symmetry group. This leads to a chiral CFT,
with a central special central charge, corresponding to the
near-horizon geometry of 5D extremal double rotating black
holes.

Each of the rotating coordinates in 5D reduces to one of the
gauge fields from the 2D perspective. By introducing proper
boundary conditions for the gauge fields and for the bound-
ary energy-momentum tensor we calculate the correspond-
ing central charge of the dual CFT. This approach resem-
bles the quantum entropy function introduced by Ashoke
Sen [12], where all of the gauge fields are considered in the
same manner to study the thermodynamics of extremal black
holes.

By using the approach introduced by Castro and Larsen
[13], we reduce the near-horizon geometry of 5D extremal
double rotating black holes to a 2D theory and investigate
the properties of the boundary energy-momentum tensor of
the AdS2 metric. We show that the variation of the energy-
momentum tensor under diffeomorphism which should be
combined with gauge transformations [14] admits one central
charge. As an example we calculate the associated central
charge for the Myers–Perry black hole [15] and show the
agreement with known results in this case.

The remainder of this paper is organized as follows. In
Sect. 2 we briefly review the 5D extremal rotating black hole
and its CFT dual from the 5D point of view. In Sect. 3, fol-
lowing [13], we study the reduction of 5D extremal rotating
black hole to the AdS solution of 2D theory. Then we derive
the boundary terms of the 2D action and investigate the con-
sistency of the boundary conditions which are allowed for
2D theory. By using the notion of the Peierls bracket [16]
and the counter-term subtraction charge [17] we define the
associated charge and compute the central charge associated
to the variation of the boundary energy momentum tensor
in Sect. 4. In Sect. 5 we study the Myers–Perry black hole
with two rotations and we show the agreement of our results
with the previous calculations. Finally, Sect. 6 contains our
conclusions and a brief discussion.
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2 Review of 5D ERBH/CFT

This section is devoted to a review of the generalization of
Kerr/CFT approach for 5D extremal rotating black holes. The
reader who is familiar with the Kerr/CFT approach can skip
this section. We wil mention the main steps of the calculations
and will not discuss the details, which can be found in [10].

The near-horizon geometry of 5D ERBH is given by [18–
20]1

ds2
5 = F(θ)ds2

AdS2
+ σ(θ)dθ2

+γi j (θ)(dxi + kirdt)(dx j + k jrdt). (1)

Possible boundary conditions for the fluctuations around this
geometry (1) are [10]

hμν ∼ O

⎛
⎜⎜⎜⎜⎝

r2 1/r2 1/r r r
1/r3 1/r2 1/r 1/r

1/r 1/r 1/r
1 1

1

⎞
⎟⎟⎟⎟⎠
, (2)

in the basis (t, r, θ, φ1, φ2). These boundary conditions are
consistent with the symmetry of the near-horizon geometry
which combine the φ1,2 coordinates with each other.

A general diffeomorphism preserving the boundary con-
ditions (2) is given by

ζ =
[

C + O
(

1

r3

)]
∂t + [rε(φ1, φ2)+ O(1)] ∂r

+ O
(

1

r

)
∂θ +

[
λ1(φ1, φ2)+ O

(
1

r2

)]
∂φ1

+
[
λ2(φ1, φ2)+ O

(
1

r2

)]
∂φ2 , (3)

where ε(φ1, φ2) and λ1,2(φ1, φ2) are arbitrary smooth peri-
odic functions of φ1 and φ2.

In [10] it was shown that the class of diffeomorphism
generators has basis

ζm = −e−imφ1∂φ1 − e−imφ2∂φ2

−2imr(e−imφ1 + e−imφ2)∂r , (4)

and they satisfy the Virasoro algebra [ζm, ζn]Lie = −i(m −
n)ζm+n . These generators correspond to a chiral CFT2.

Using the definition of diffeomorphism charges [21,22]
and following the Brown–Henneaux approach [23], it was
shown that there is a Virasoro algebra between the associated
charges with the central charge which is given by

c = 3(k1 + k2)

2π

∫
dθ dφ1 dφ2

√
σ(θ)γ (θ). (5)

1 The AdS2 radius has been absorbed in F(θ).

We want to emphasize that both of the k1,2, which correspond
to the angular momenta, contribute in the value of central
charge in (5).

In the next two sections we confirm this result from the 2D
perspective. For this propose we reduce the 5D near-horizon
geometry (1) to 2D theory by integrating out the angular coor-
dinates. The resulting solution has an AdS2 metric and two
gauge fields related to two angular momenta. We show that
the combination of the diffeomorphism and gauge transfor-
mations of both of the gauge fields is consistent for investigat-
ing the variation of the boundary energy-momentum tensor.
In Sect. 5 we show the agreement of 2D results with the 5D
results for Myers–Perry black holes.

3 2D view of 5D extremal rotating black holes

In this section, we want to study the 5D ERBH from the 2D
perspective. The next section is devoted to a calculation of
the conserved charges and central charge following Castro
and Larsen [13]. The steps and arguments are similar to [13],
so we do not give all the details. By using the reduction we
will show that both of the gauge fields in 2D, associated
to two rotating coordinates, play the same role in studying
the asymptotic symmetry and the AdS/CFT correspondence.
This is 2D evidence for the arguments reviewed in Sect. 2.

3.1 5D ERBH

We start with the general form of the near-horizon geometry
of 5D ERBH with two angular momenta and by reduction on
angular coordinates we obtain a 2D effective theory. As we
mentioned in (1), the near-horizon geometry of 5D ERBH
with two rotations is given by

ds2
5 = F(θ)ds2

AdS2
+ σ(θ)dθ2

+ γi j (θ)(dxi + kirdt)(dx j + k jrdt), (6)

where F(θ), σ(θ) and γi j (θ) are the functions of only θ and
xi , i = 1, 2 correspond to the rotating coordinates.

By integrating out the angular part, the two-dimensional
theory could be described by a general 2D metric

ds2 = gμνdxμdxν, (7)

and two gauge fields corresponding to the rotations,

Ai = Ai
μdxμ, i = 1, 2, (8)

with μ, ν = t, r . We also couple the size of the angular
coordinates to the scalar field ψ such that

ds2 = F(θ)ds2
2 + e−2ψ [σ(θ)dθ2

+ γi j (θ)(dxi + Ai )(dx j + A j )]. (9)
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Lowering and raising the indices are defined by gμν and
its inverse gμν , respectively. The associated gauge field
strengths are denoted by F i = dAi .

The 5D Einstein Hilbert action is

S(5) = 1

16πG5

∫
d5x

√−g5 R(5). (10)

By using the ansatz (9), one can find the five-dimensional
Ricci scalar from a two-dimensional point of view,2

R(5) = 1

F(θ)

[
R(2) − 3e2ψ∇2e−2ψ

]

− e−2ψ

F(θ)2
γi j (θ)F i

μνF j,μν + H(θ)e2ψ, (11)

in which

H(θ) = 1

σ

{
1

2

(
d

dθ
ln

F

γ

)2

− 2

F

(
d2 F

dθ2

)

− 3

2γ
det

∣∣∣∣
d

dθ
γi j

∣∣∣∣+
(

d

dθ
ln Fγ

)(
d

dθ
ln σ

)

− 1

f

(
d

dθ
ln σ

)[
γφφ

(
d2γψψ

dθ2

)

+γψψ
(

d2γφφ

dθ2

)
− 2γφψ

(
d2γφψ

dθ2

)]}
, (12)

and the five-dimensional determinant is

√−g5 = e−3ψ
√

F(θ)2σ(θ)γ (θ)
√−g, (13)

where

γ (θ) ≡ det|γi j (θ)|. (14)

By integrating over the angular coordinates, the 2D effec-
tive action of ERBH can be derived as

S(2) = πα

4G5

∫
d2x

√−g

[
e−3ψ R(2) + βe−ψ

+8

3
∇μe− 3

2ψ∇μe− 3
2ψ − Mi jF i

μνF j,μνe−5ψ
]
, (15)

in which

α =
∫

dθ
√
σ(θ)γ (θ), (16)

β = 1

α

∫
dθ
√

F(θ)2σ(θ)γ (θ)H(θ), (17)

Mi j = 1

α

∫
dθ

√
F(θ)2σ(θ)γ (θ)

F(θ)2
γi j (θ). (18)

The action (15) might be considered as the generic dilaton
gravity in 2D with two gauge fields which was introduced in
[24,25].

2 We use indices, μ, ν for coordinates r, t , and the indices i, j for the
gauge fields.

3.2 Solutions

Since we are interested in solutions corresponding to the
geometry (6), we limit ourselves to the solutions with con-
stantψ and we try to solve the following equations of motion:

3R(2)e−2ψ − 5Mi jF i
μνF j,μνe−4ψ + β = 0, (19)

1

2

(
β − Mi jF i

ρτ F j,ρτ e−4ψ
)

gμν

+2Mi jF i
μρF j,ρ

ν e−4ψ = 0, (20)

∇μFi,μν = 0. (21)

The first and second equations can be simplified to

Mi jF i
μνF j,μν = −βe4ψ (22)

R(2) = −2βe2ψ. (23)

Assuming β > 0, which is natural for the reduction of an
extremal solution over angular coordinates, this solution is
locally AdS2 with radius

lAdS =
(

1

β

)1/2

e−ψ ≡ le−ψ. (24)

As one can see from (17) lAdS is dimensionless. It is because
we absorb the radius of the AdS2 part of the near-horizon
geometry (6) in F(θ).

Without losing generality, we work in the gauge

ds2 = e−2ψdρ2 + gtt dt2, Ai
μdxμ = Ai

t (ρ, t)dt. (25)

In this gauge, the general form of the solution of equations
of motion is given by

gtt = −1

4
e−2ψ

(
eρ/ l − f (t)e−ρ/ l

)2
(26)

Ai
t = λi

2l
eρ/ l

(
1 −√

f (t)e−ρ/ l
)2
, (27)

with the constraint

Mi jλ
iλ j = l2

2
. (28)

Note that the constants λi �= 0 are inherited from ki �= 0,
which means the near-horizon geometry of 5D ERBH (6) has
two non-zero angular momenta.

It is convenient to describe this solution in the Fefferman–
Graham coordinate expansion. The asymptotic behavior of
the metric, scalar, and gauge fields are given, respectively, by

g(0)t t = −1

4
e−2ψ(0)e2ρ/ l ,

Ai(0)
t = λi

2l
eρ/ l ,

ψ(0) = constant.

(29)

The result is similar to the reduction of the four-dimensional
extremal Kerr black hole studied in [13,26].
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3.3 Boundary terms

In this section, following the standard procedure for AdS/CFT
we determine the normalized boundary action which is for-
mally given by

Sboundary = SGHY + Scounter. (30)

The first term is the Gibbons–Hawking–York term, namely

SGHY = 2πα

4G5

∫

∂M
dt

√−h e−3ψK (31)

where h and K are, respectively, the determinant of the
induced metric and the extrinsic curvature on the boundary
∂M. It is easy to show that for solution (27) the extrinsic
curvature is

K = 1

2
gtt nμ∂μgtt = 1

l
eψ. (32)

As discussed in [13,26] the local form of the counter-term is
given by

Scounter = 2πα

4G5

∫

∂M
dt

√−h

×
[
m1e−2ψ + m2e−4ψMi jAi

aA j,a
]
, (33)

in which the constants m1 and m2 will be determined by
vanishing of the variation of the action on-shell.

On the other hand, the variation of the action is given by

δS =
∫

∂M

[
πabδhab + πψδψ + πa

i δAi
a

]
+ Bulk terms,

(34)

with

π t t = πα

4G5

(
m1e−2ψhtt + m2e−4ψhtt Mi jAi

μA j,μ

−2m2e−4ψMi jAi,tA j,t
)
, (35)

πψ=2πα

4G5

(
−3e−3ψK−2m1e−2ψ − 4m2e−4ψMi jAi

aA j,a
)
,

(36)

π t
i = πα

4G5

(
−4e−5ψMi j nμF j,μt + 4m2e−3ψMi jA j,t

)
.

(37)

Using the asymptotic behavior of the fields (29) and the
extrinsic curvature (32), the above expansions for conjugate
momenta are reduced to

π t t = πα

4G5

(
m1 + m2

2

)
e−2ψ(0)htt

(0),

πψ = −2πα

4G5

(
3

l
+ 2m1 − 2m2

)
e−2ψ(0) ,

π t
i = 2πα

4G5
(−1 + m2l)Mi jλ

j e−4ψ(0)htt
(0)e

ρ/ l .

(38)

One can fix the constants m1,2 by imposing vanishing bound-
ary momenta (38), which leads to two conditions,

m1 = − 1

2l
, m2 = 1

l
. (39)

Note that, although there were two unknown constants m1,2,
we had three equations; therefore, finding a solution shows
the consistency of our calculations. In this way the full action
of reduced solution is given by

S = πα

4G5

∫

M
d2x

√−g

[
e−3ψ R(2)

+βe−ψ + 4

3
∇μe− 3

2ψ∇μe− 3
2ψ − Mi jF i

μνF j,μνe−5ψ
]

+ πα

2G5

∫

∂M
dt

√−h

[
e−3ψK − 1

2l
e−2ψ

+1

l
e−4ψMi jAi

aA j,a
]
. (40)

3.4 Consistency of boundary conditions

As discussed in [14,26], for the AdS solution with a gauge
field the combination of diffeomorphism and gauge transfor-
mation should be consistent with the gauge conditions. In
this section we show that for the solution (27), i.e. the AdS
metric with two gauge fields, the consistency requires that
the gauge transformations of both of the gauge fields should
be included in addition to the diffeomorphism. For this pur-
pose we first determine the diffeomorphism of the metric and
its consequences for the gauge fields. Then we find the com-
pensating gauge transformations leaving the gauge fields in
the gauge condition (25).

The general diffeomorphism transforms the metric as

δεgμν = ∇μεν + ∇νεμ. (41)

The gauge condition (25) has fixed the gρρ and gtρ com-
ponents of the metric to zero and by using the Fefferman–
Graham form we have fixed the asymptotic value of the gtt

(29). Thus one can find the associated diffeomorphism which
preserves these conditions by requiring the following condi-
tions:

δεgρρ = 0, δεgtρ = 0, δεgtt = 0.O(e2ρ/ l). (42)

One can show that these conditions are satisfied if

ερ=−l∂tζ(t), εt =ζ(t)+ 2l2
(

e2ρ/ l − f (t)
)−1

∂2
t ζ(t),

(43)

where ζ(t) is an arbitrary function of coordinate t . It is
straightforward to find the transformation of the boundary
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metric under the diffeomorphism (43), namely,

δεhtt = e−2ψ
(

1 − f (t)e−2ρ/ l
)

×
[

1

2
∂t f (t)ζ(t)+ f (t)∂tζ(t)− l2∂3

t ζ(t)

]
. (44)

The general transformation of the gauge fields Ai
μ defined

by

δεAi
μ = ελ∇λAi

μ + Ai
λ∇μελ (45)

also leads to the following transformation: under the same
diffeomorphism,

δεAi
ρ = −2λi e−ρ/ l

(
1 +√

f (t)e−ρ/ l
)−2

∂2
t ζ(t). (46)

To restore the gauge condition A(i)
ρ = 0 (25) one should com-

pensate for the diffeomorphism with a gauge transformations
for each of the gauge fields as

A(i)
μ → A(i)

μ + ∂μ�
(i), (47)

with gauge functions

�i = −2lλi e−ρ/ l
(

1 +√
f (t)e−ρ/ l

)−1
∂2

t ζ(t). (48)

Therefore, the combination of the allowed diffeomorphism
(43) and the two gauge transformations (47) satisfy the gauge
condition (25),3

δ
ε+�i ′ Ai ′

ρ = δεAi
ρ + ∂ρ�

i
ρ = 0. (49)

One can easily show that under the combination of the trans-
formations the variations of the gauge fields are

δ
ε+�i ′ Ai ′

t = λi

l

[
e−ρ/ l

(
1

2
∂t f (t)ζ(t)

+ f (t)∂tζ(t)− l2∂3
t ζ(t)

)
− ∂t

(
ζ(t)

√
f (t)

) ]
. (50)

Let us emphasize that the gauge condition (25) can be satis-
fied if and only if the gauge transformations of both of the
gauge fields (50) compensate for the diffeomorphism (43)
and one cannot turn off one of them consistently.

From the 5D point of view this means that the rotat-
ing coordinates must play the same role in the asymptotic
behavior of the metric. In other words, this implies that the
boundary conditions of rotating coordinates, which deter-
mine the fluctuations of the associated components of the
metric, should be of the same order. This is in precise agree-
ment with the result of [10], which is reviewed in Sect. 2.

3 There is no summation over primed indices, in our notation.

4 Conserved charges and central charge

Now we want to investigate the asymptotic symmetries by
employing the associated conserved charges. Since we are
interested in the boundary energy-momentum tensor of a
solution there are some subtleties we meet with as we define
the associated conserved charges.

As shown in [17], the generators of the asymptotic symme-
tries are determined via the counter-term subtraction method
(CTSM). These charges can differ from those defined usu-
ally. This method is based on the Peierls bracket [16], which
has a covariant construction and is equivalent to the Pois-
son bracket on the space of observables. The charge calcu-
lated in this way is called the counter-term subtraction charge
(CTSC), which is given by

Qξ = −δG,ξ S, (51)

where ξ is an infinitesimal transformation parameter and G
is a regular function such that near the past boundary G = 0
and near the future boundary G = 1.

As we already mentioned, we focus on the boundary fields
and the boundary energy-momentum tensor. So, we need to
determine the associated transformations. Using the induced
transformation of an arbitrary boundary field, � is defined
by4

δG,ξ� ≡ (δGξ − Gδξ )�. (52)

We will study diffeomorphism and gauge transformation
charges in the following subsections.

4.1 Diffeomorphism charge

Under a general diffeomorphism transformation xμ → xμ+
εμ the variation of the full action is given by

δεS = 1

2

∫
dt

√−hT abδεγab+
∫

dt
√−h J a

i δεAi
a+(e.o.m)

(53)

where

Ttt = − πα

4G5

(
1

l
e−2ψhtt + 2

l
e−4ψMi jAi

tA j
t

)
, (54)

Ji,t = πα

G5
Mi j

(
−nμF j

μt e
−ψ + 1

l
A j

t

)
e−4ψ, (55)

δεγab = ∇aεb + ∇bεa, (56)

δεAi
a = εb∇bAi

a + Ai
a∇aε

b. (57)

4 For details one can see [17].
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For an induced transformation (52) the variation of the
full action is simplified:

δG,εS =
∫

dt
√−hT abεa∇bG +

∫
dt

√−h J a
i Ai

bε
b∇aG

= √−hhtt (Ttt + Ji,tAi
t )ε

t

−
∫

dt
√−h∇a

[
(T ab + J a

i Ai,b)εb

]
G

= √−hhtt (Ttt + Ji,tAi
t )ε

t , (58)

where in the last step we used the definition of the Noether
charge associated to the Peierls bracket. Using the definition
CTSC (51) the associated charge is given by

Qε = −√−hhtt (Ttt + Ji,tAi
t ). (59)

As we can see, the energy-momentum tensor and both of the
gauge fields appear in the diffeomorphism generator. One
should note that, although the energy-momentum tensor Ttt

and the U (1) currents Ji,t diverge as ρ → ∞, the above
combination is asymptotically finite, namely

Ttt + Ji,tAi
t = πα

4G5
e−4ψ

(
f (t)

l
+ O(e−ρ/ l)

)
. (60)

Note that for the extremal solution where f (t) = 0 all non-
extremal excitations will vanish. This is a consistency con-
dition, since it implies that the excitations considered above
keep the solution in the extremal limit [2].

4.2 Gauge transformation charges

Again one can explore the variation of the action under a
gauge transformation δ�Ai

a = ∂a�
i by using the CTSM,

which is given by

δG,�i S =
∫

dt
√−hJi ′�

i ′∂aG

= √−hJ t
i ′�

i ′ −
∫

dt∂a(
√−hJ t

i ′�
i ′)G, (61)

where

J a
i = πα

G5l
e−4ψMi jA j,a . (62)

Similar to (58), the second term in (61) vanishes, and by
definition the charges of the gauge transformations are given
by

Q�i = −√−hJ t
i = − πα

G5l
e−4ψ

√−hhtt Mi jA j
t . (63)

Using the asymptotic behavior of the gauge fields and metric
(29) it is easy to show that

Q�i = πα

G5l
e−3ψMi jλ

j
(

1 − 2
√

f (t)e−ρ/ l + O(e−2ρ/ l)
)
.

(64)

For the near-horizon of extremal solutions the gauge trans-
formation charges are given by

Q�i = πα

G5l
Mi jλ

j . (65)

For the 4D extremal Kerr solution it was shown that this
charge equals the angular momentum in the 4D point of view
[13].

4.3 Central charge

Now we can explore the combination of the physical gener-
ators. Moreover, we can derive the central charge associated
to the asymptotic transformations constructed in Sects. 4.1
and 4.2.

The combined generator is given by

Q(ε+�1+�2) = Qεε + Q�i�
i . (66)

To study the transformations of this charge, it is natural to
relate the transformation parameters, ε and�i , to each other
to treat the combined charge as a charge with one transfor-
mation parameter. The asymptotic behaviors of the transfor-
mation parameters are given by

εt = ζ(t)+ 2l2e−2ρ/ l∂2
t ζ(t)+ · · · , (67)

�i = −2lλi e−ρ/ l∂2
t ζ(t)+ · · · , (68)

and up to leading order one can write5

�i = lAi
a∂ρε

a + · · · . (69)

Thus, the gauge transformation part of the combined charge
(66) becomes

Q�i�i = √−hhttAt,iJ i
t ε

t + · · · . (70)

By employing Eq. (69), it is easy to see that the zeroth order
of εt does not appear in (70) and the first term is e−2ρ/ l .

Now we are able to study the transformations of the com-
bined charge given in (66). First we calculate the transfor-
mation of the diffeomorphism part of the combined charge,
Ttt + Jt,iAi

t , which is asymptotically given by

δε+�1+�2(Ttt + Jt,iAi
t ) = 2(Ttt + Jt,iAi

t )∂tζ(t)

+∂t (Ttt + Jt,iAi
t )ζ(t)+ O(e−ρ/ l). (71)

On the other hand, the variation of the gauge transformation
part of the combined charge (66) is asymptotically

δε+�1+�2(Jt,iAi
t ) = ∂t (Jt,iAi

t )ζ(t)− παle−4ψ

2G5
∂3

t ζ(t).

(72)

It seems that the weight of this part is zero but, as discussed
in [13], we do not worry about this fact. As mentioned above

5 There are some subtleties in this relation which are discussed in [13].
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for this part of the combined charge, the asymptotic behavior
is εt ∼ e−2ρ/ l and it has effectively weight two.

Since the AdS2 radius lAdS is dimensionless in the stan-
dard normalization of the transformation of the energy-
momentum tensor, the central charge is obtained via

δTab = 2Tab∂tζ(t)+ ζ(t)∂t Tab − c

12
∂3

t ζ(t). (73)

Thus one can read off the associated central charge by plug-
ging (24), (71), and (72) into (73), which is namely given
by

c = 6πα

G5
√
β

e−4ψ. (74)

This is the associated central charge for a chiral CFT dual to
the AdS2 geometry in the presence two gauge fields.

4.4 Levels

For completeness, we can find the level k of the U (1) gauge
transformation which is defined by

δ� Jt = k

2
∂t�. (75)

For the currents (55) associated to the gauge transformation
of the U (1) charges one can derive the level by

δ
�i ′ J i ′

t = παl

G5
e−4ψ∂t�

i . (76)

By using (24) it is easy to show that the levels are determined
by

ki = πα

G5
√
β

e−4ψ. (77)

Thus, the two gauge fields have the same level, namely

k1 = k2 = c/6. (78)

This relation between the central charge and the level of the
R-currents is similar to the results of [13,26].

5 Myers–Perry black hole

As an example of our results we study the Myers–Perry
black holes, which are a simple 5D solution with two angu-
lar momenta in the near-horizon geometry. The near-horizon
geometry of the Myers–Perry black holes are of the form (6).
Without loss of generality we assume that 0 < a < b, where
a and b are the two parameters of the Myers–Perry black hole
which are related to the two angular momenta. The parame-
ters and functions of the metric (6) for this solution are given
by Myers and Perry [15]

F(θ) = σ(θ)

4
, σ (θ) = ab + a2 cos2 θ + b2 sin2 θ, (79)

ki ∂

∂xi
= 2

√
ab

a(a + b)2
∂

∂φ
+ 2

√
ab

b(a + b)2
∂

∂ψ
, (80)

fφφ(θ) = (a + b)2

σ(θ)2
a sin2 θ(a + b sin2 θ), (81)

fψψ(θ) = (a + b)2

σ(θ)2
b cos2 θ(b + a cos2 θ), (82)

fφψ(θ) = (a + b)2

σ(θ)2
ab sin2 θ cos2 θ. (83)

Considering these expansions one can calculate the
parameters (16) and (17) appeared in the central charge (74)
and the levels (77) as

α = 2(a + b)2
√

ab, β = 4ab

(a + b)2
. (84)

One can see from (16) that the parameter α is proportional to
the area of the horizon which is essentially the Wald entropy
of the black hole. So it is natural to study the symmetries
of the rotating coordinates, which do not affect the entropy.
For general study of this argument one can see [10]. The
geometry of the Myers–Perry black hole (83) has a symmetry
under a ↔ b compensating for θ → π/2 − θ . Thus after
integrating over angular coordinates one would expect that
the central charge (74) has this symmetry. Using (74), (78),
and (84) the central charge and levels are given by

c = 3

2
π(a + b)3, kφ = kψ = 1

4
π(a + b)3 (85)

This is a sum of two central charges derived in [4]. It is easy
to show that, for Myers–Perry black holes, this is in perfect
agreement with the results obtained from five-dimensional
point of view reviewed in Sect. 2 and is given in Eq. (5).

6 Conclusion and discussion

In this paper we studied the near-horizon geometry of the
5D extremal rotating black holes from the 2D point of view
by reducing the theory over the angular part of the coordi-
nates following [13]. We showed that the consistency of the
boundary conditions implies that both of the gauge fields,
which correspond to two angular momenta in 5D, appear
in the same manner. By studying the variation of the bound-
ary energy-momentum tensor we calculate the central charge
of the CFT dual to the reduced solution which has a AdS2

geometry.
Although we did not trace the power of the fluctuations of

the 5D metric due to the process of reduction, we showed that
for consistent boundary conditions the results are in agree-
ment with the calculations of 5D viewpoint [10]. The advan-
tage of the consistency is that they compensate for the vari-
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ations of both of the gauge fields with the diffeomorphism
variation studied in Sect. 3.4. It is interesting to study the
relation between consistency of boundary conditions from
5D and 2D point of views which are given in (2) and (42),
respectively.

Finally, we conclude that from a 2D point of view that
the consistency of the boundary conditions respects the sym-
metry of the near-horizon geometry discussed in [10] in the
Kerr/CFT approach. Since the parameter α appearing in the
central charge (74) is proportional to the Wald entropy (16),
it is natural to study the effect of the symmetry of the near-
horizon geometry. The symmetry of the rotating coordinates
in the 5D point of view inherited by Mi j , see (18), and its
determinant. The result of this symmetry in the 5D perspec-
tive was investigated in [10], but it is not realized in the
Myers–Perry black holes studied in Sect. 5.

The reduction of extremal black holes in higher dimen-
sions to 2D is also the basic argument of Sen’s quantum
entropy function [12]. This reduction produce an AdS2 met-
ric, some scalar fields and a number of gauge fields associated
to the angular momenta in higher dimensions. In [12] it was
shown that the thermodynamics of such solutions are deter-
mined from quantum entropy function which is defined by

dhor(
−→q ) =

〈
exp

[
−iqi

∮
dθ Ai

θ

]〉finite

AdS2

, (86)

in the euclidean frame. Here
∮

dθ Ai
θ denotes the integral

of i th gauge field along the boundary of AdS2 and qi is the
i th electric charge. It is clear that all of the gauge fields play
the same role in the thermodynamics of the reduced extremal
solution. So, it is natural to expect that there is one CFT which
is corresponded to the near-horizon geometry of an ERBH.
This was discussed for 5D ERBH in [10] by employing the
Kerr/CFT approach and here we confirm the results from 2D
point of view. It is worth to study the relation between these
approaches and Sen’s quantum entropy function.

Although we have not studied higher-dimensional extremal
black holes we expect that one can apply this formalism in
those cases and after the reduction on angular coordinates,
all of the gauge fields play the same role from 2D perspective
and there is only one CFT corresponding to the near-horizon
geometry of extremal black holes.

Recently it was proposed a systematic method for deriving
the order of the boundary conditions of the metric for topo-
logically massive gravity [27]. Another interesting question
is the extension of this method to higher dimensions and
compare our results with this extension.

In this paper we limited ourself to the solutions of 5D
Einstein gravity but one can generalize this method to the
solutions of other gravity theory e.g. supergravity. As a sim-
ple example with only one rotating coordinate one can study

supersymmetric black ring [28]. Microscopic description of
this solution is studied using other methods in [3,29,30].
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