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Abstract Regularizing a volume preserving diffeomor-
phism (VPD) is equivalent to a long standing problem,
namely regularizing a Nambu–Poisson bracket. In this paper,
as a first step toward regularizing VPD, we find general com-
plete independent bases of VPD algebra. Especially, we find
a complete independent basis that gives simple structure con-
stants, where three area preserving diffeomorphism algebras
are manifest. This implies that an algebra that regularizes a
VPD algebra should include three u(N ) Lie algebras.

1 Introduction

The area preserving diffeomorphism (APD) algebra is reg-
ularized by the u(N ) Lie algebra. Actually, a large N limit
of structure constants of u(N ) Lie algebra in the ’t Hooft
basis reduces to those of the APD algebra defined on T 2

[1–4]. Because the APD algebra is generated by the Poisson
bracket, it is regularized by the Lie bracket of the u(N ) Lie
algebra. This structure induces the following: the Heisenberg
picture of quantum mechanics reduces to the canonical for-
malism of classical mechanics in the classical limit. Another
application is that one can show that BFSS matrix theory
and the IIB matrix model contain the lightcone supermem-
brane and the type IIB superstring, respectively, by using this
regularization [5–7].

On the other hand, regularizing the Nambu–Poisson
bracket is a long standing problem1 [14–37]. As in the case of
APD, the Nambu–Poisson bracket generates a volume pre-
serving diffeomorphism (VPD) algebra. In this paper, as a
first step toward regularizing the Nambu–Poisson bracket,
we search for several independent bases of the VPD algebra
and obtain simple structure constants.

1 For example, if the problem is solved, one should be possible to
show that a three algebra model of M-theory [8–13] contains the semi-
lightcone supermembrane.

a e-mail: msato@cc.hirosaki-u.ac.jp

2 General complete independent bases of VPD algebra

VPD is a diffeomorphism xi → yi (x) (i = 1, 2, 3) that sat-
isfies det∂i y j (x) = 1. Then the infinitesimal transformation
yi (x) = xi + δxi (x) satisfies

∂iδxi (x) = 0. (2.1)

Also δxi (x) = εi jk∂ j f (x)∂k g(x) satisfy this equation.
Transformations of a scalar field generated by these solu-
tions are given by

δZ(x) ≡ δxi (x)∂i Z(x)

= εi jk∂i f (x)∂ j g(x)∂k Z(x)

= { f (x), g(x), Z(x)}. (2.2)

This implies that the Nambu–Poisson bracket generates
VPD. The transformations

δ = δxi (x)∂i = εi jk∂i f (x)∂ j g(x)∂k (2.3)

form the VPD algebra.
The APD is a two-dimensional analog of the VPD. The

infinitesimal transformations

δ = δX I (Y )∂I = ε I J ∂I F(Y )∂J (2.4)

on T 2 (I, J = 1, 2), where

∂I δX I (X) = 0, (2.5)

are spanned by the generators

δ(A) = iei AY ε I J AI ∂J , (2.6)

which are obtained by substituting F(Y ) = ei AY into (2.4).
On the other hand, a complete independent basis of

VPD cannot be obtained by substituting f (x) = eiax and
g(x) = eibx into (2.3) because δxi (x) is a local vector in three
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dimensions. We need to solve (2.1). In the case of APD, (2.6)
are complete independent solutions of (2.5). On T 3, we make
a Fourier transformation, δxi (x) = ∑

a vi (a)eiax . Equation
(2.1) implies

aiv
i (a) = 0. (2.7)

An independent solution of (2.7) is given by

v̄1 = (−a2, a1, 0),

v̄2 = a × v̄1 = (−a1a3,−a2a3, a2
1 + a2

2), (2.8)

for a = (a1, a2, a3) (except a1 = a2 = 0), and

v̄
′
1 = (1, 0, 0),

v̄
′
2 = (0, 1, 0), (2.9)

for a = (0, 0, a3).
The corresponding VPD generators are given by

S1(a) = eiax v̄i
1∂i = eiax (−a2∂1 + a1∂2),

S2(a) = eiax v̄i
2∂i = eiax (−a1a3∂1 − a2a3∂2

+(a2
1 + a2

2)∂3), (2.10)

S′
1(0, 0, a3) = eia3x3

v̄
′i
1 ∂i = eia3x3

∂1,

S′
2(0, 0, a3) = eia3x3

v̄
′i
2 ∂i = eia3x3

∂2, (2.11)

which form the VPD algebra

[S1(a), S1(b)] = i(a1b2 − a2b1)S1(a + b),

[S2(a), S2(b)] = iαS1(a + b) + iβS2(a + b),

[S1(a), S2(b)] = iγ S1(a + b) + iδS2(a + b),

[S1(a), S′
1(0, 0, b3)] = −ia1S1(a + b),

[S2(a), S′
1(0, 0, b3)] = −ia2b3S1(a + b) − ia1S2(a + b),

[S1(a), S′
2(0, 0, b3)] = −ia2S1(a + b),

[S2(a), S′
2(0, 0, b3)] = ia1b3S1(a + b) − ia2S2(a + b),

[S′
1(0, 0, a3), S′

1(0, 0, b3)] = [S′
2(0, 0, a3), S′

2(0, 0, b3)]
= [S′

1(0, 0, a3), S′
2(0, 0, b3)] = 0, (2.12)

where

α = 1

(a1 + b1)2 + (a2 + b2)2 (a2b1 − a1b2)
((

a2
1 + a2

2

)
b2

3

+(
b2

1 + b2
2

)
a2

3 − 2a3b3(a1b1 + a2b2)
)
,

β = 1

(a1 + b1)2 + (a2 + b2)2

((
a2

1 + a2
2

)
b3((a1 + b1)b1

+(a2 + b2)b2)

−(
b2

1 + b2
2

)
a3((a1 + b1)a1 + (a2 + b2)a2)

)
,

γ = 1

a1 + b1

(
1

(a1 + b1)2 + (a2 + b2)2

(
b2

1 + b2
2

)
(a1b2

−a2b1)(a2 + b2)(a3 + b3)

−b2b3(a1b2 − a2b1) − a1
( − b3(a1b1 + a2b2)

+a3
(
b2

1 + b2
2

)))
,

δ = 1

(a1 + b1)2 + (a2 + b2)2

(
b2

1 + b2
2

)
(a1b2 − a2b1).

(2.13)

This algebra has a complicated form because the bases (2.10)
and (2.11) are complicated.

General independent solutions of (2.7) are given by

vi
1 = εi jka j lk(a),

vi
2 = εi jka j mk(a), (2.14)

where a, l(a), and m(a) are all independent for all a. The
corresponding generators are given by

T1(a) := eia·x det(la∂),

T2(a) := eia·x det(ma∂), (2.15)

where det(abc) := εi jkai b j ck .
If we choose l = (0, 0, 1) and m = (−a2, a1, 0) for a =

(a1, a2, a3) (except a1 = a2 = 0), (2.14) and (2.15) represent
(2.8) and (2.10), respectively. If we choose l = (0,− 1

a3
, 0)

and m = ( 1
a3

, 0, 0) for a = (0, 0, a3), (2.14) and (2.15)
represent (2.9) and (2.11), respectively.

3 Simple structure constants of VPD algebra

In this section, we search for a complete independent basis
that gives more simple structure constants. Although (2.15)
for constant l and m are not independent in a part of the
region of a where a is on a plane spanned by l and m, we
can calculate the commutation relations among (2.15) for
constant l and m, and then obtain simple relations:

[T1(a), T1(b)] = idet(lab)T1(a + b), (3.1)

[T2(a), T2(b)] = idet(mab)T2(a + b), (3.2)

[T1(a), T2(b)] = i
1

det(lm(a + b))
(det(mab)det(lma)

×T1(a + b) + det(lab)det(lmb)T2(a + b)). (3.3)

For example, if we choose l = (0, 0, 1) and m = (1, 0, 0),
we obtain v1 = (−a2, a1, 0), v2 = (0,−a3, a2), and the
corresponding generators

U1(a) = eiax (−a2∂1 + a1∂2),

U2(a) = eiax (−a3∂2 + a2∂3). (3.4)

In this case, for a2 = 0, v1 = (0, a1, 0) and v2 = (0,−a3, 0)

are dependent, and thus U1(a) and U2(a) are.
Then we choose a step function, m = (1, 0, 0) for a2 �= 0

and m = (0, 1, 0) for a2 = 0. When m = (0, 1, 0) we have
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v3 = (a3, 0,−a1) and

U3(a) = eiax (a3∂1 − a1∂3), (3.5)

which is independent of U1(a) and U2(a) for a2 = 0. After
considering v1 = 0 when a1 = a2 = 0, we have a complete
set of independent generators,

U1(a)(except a1 = a2 = 0),

U2(a)(except a2 = 0),

U2(0, 0, a3),

U3(a1, 0, a3). (3.6)

In fact, for each a there are two independent generators:

U1(a) and U2(a) for a2 �= 0,

U1(a) and U3(a) for a2 = 0 and a1 �= 0,

U2(a) and U3(a) for a2 = a1 = 0. (3.7)

Then we obtain the simple structure constants of the VPD
algebra,

[U1(a), U1(b)] = i(a1b2 − a2b1)U1(a + b), (3.8)

[U2(a), U2(b)] = i(a2b3 − a3b2)U2(a + b), (3.9)

[U3(a1, 0, a3), U3(b1, 0, b3)]
= i(a3b1 − a1b3)U3(a1 + b1, 0, a3 + b3), (3.10)

[U1(a), U2(b)] = i
1

a2 + b2
(a2(a2b3 − a3b2)U1(a + b)

+b2(a1b2 − a2b1)U2(a + b)), (3.11)

[U1(a), U3(b1, 0, b3)] = i((−a1b3 + a3b1 + b1b3)

×U1(a + b) + b2
1U2(a + b)), (3.12)

[U1(a), U3(b1, 0, b3)] = i(−b2
3U1(a + b)

+(a3b1 − b3a1 − b1b3)U2(a + b)). (3.13)

From (3.8), (3.9), and (3.10), one can see three APD algebras
corresponding to the (x1, x2), (x2, x3), and (x3, x1) planes.

4 Conclusion and discussion

In this paper, we found general complete independent bases
of the VPD algebra. Especially, we found a complete inde-
pendent basis that gives simple structure constants where the
three APD algebras are manifest. This implies that an alge-
bra that regularizes a VPD algebra should include three u(N )

Lie algebras.
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