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Abstract We argue by explicit computations that, although
the area product, horizon radii product, entropy product, and
irreducible mass product of the event horizon and Cauchy
horizon are universal, the surface gravity product, the surface
temperature product and the Komar energy product of the
said horizons do not seem to be universal for Kerr–Newman
black hole spacetimes. We show the black hole mass formula
on the Cauchy horizon following the seminal work by Smarr
[Phys Rev Lett 30:71 (1973), Phys Rev D 7:289 (1973)] for
the outer horizon. We also prescribe the four laws of black
hole mechanics for the inner horizon. A new definition of the
extremal limit of a black hole is discussed.

1 Introduction

An intriguing feature of stationary axially symmetric black
holes is that the product of the horizon areas are often inde-
pendent of the mass of the black hole. Rather such products
depend on the charge and angular momentum of the black
hole. They may also be formulated in terms of the proper
radii of the Cauchy horizon and event horizon.

It is also known that every regular axisymmetric and sta-
tionary spacetime of an Einstein–Maxwell system with sur-
rounding matter has a regular Cauchy horizon (H−) inside
the event horizon (H+) if and only if the angular momentum
J and charge Q do not both vanish. In contrast, the Cauchy
horizon becomes singular and approaches a curvature singu-
larity in the limit J → 0, Q → 0 [3–5].

The presence of the Cauchy horizon implies that in
Boyer–Lindquist coordinates, the stationary and axisymmet-
ric Einstein–Maxwell electro-vacuum equations are hyper-
bolic in nature in the interior vicinity of H+. The two hori-
zons H+ and H− describe the future and past boundary of
this hyperbolic region. Remarkably, if the inner Cauchy hori-
zon exists (i.e. if J and Q do not vanish simultaneously), then
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the product of the area A± of the horizons H± for the KN
family are expressed by the relation [3–5]

A+A− = (8π)2
(

J 2 + Q4

4

)
, (1)

which is remarkably independent of the mass (M). J and
Q are the angular momentum and charge of the black hole,
respectively.

From the various string theoretic models and holographic
principle followed by observations it is suggested that the
product of certain Killing horizon areas is in fact independent
of the black hole mass. From the idea of statistical mechan-
ics based on microscopic models counting BPS states it is
determined that this product of areas is sometimes quantized.
Thus in the super-symmetric extremal limit, one obtains
[6–12]

A+A− = (8π�pl
2)2 N , N ∈ N, (2)

where �pl is the Planck length. When one moves away from
the extremality and super-symmetry, the area product is dis-
cretized [13] in terms of the Planck area and the fine structure
constant, i.e.

A+A− = (8π�pl
2)2

[
�(� + 1) + α2q2

4

]
, (3)

which implies that the quantization rules break down, only
because the fine structure constant (α) is not an integer. Here
� ∈ N and q ∈ Z.

The fact is that the Cauchy horizon is an “infinite
blueshift” region and classically unstable due to the linear
perturbation. Thus when an observer crosses the Cauchy hori-
zon r = r−, he/she observes all of the events which occur
at “Region-I” and also the electromagnetic and gravitational
field oscillations at infinite frequency are seen which actually
occur at finite frequency in “Region-I” [14].

Despite the above fact, the Cauchy horizon is an inter-
esting venue where we study the following features of the
charged rotating spacetimes and rotating spacetimes.
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• We prove in Sect. 2, like the area and entropy product,
that the surface gravity product, surface temperature or
black hole temperature product and the Komar energy
product of both inner horizon and outer horizon do not
show any global properties due to the mass dependence.
Such products are not universal in nature.

• We explicitly show in Sect. 3 that the black hole mass or
ADM mass can be expressed in terms of the area of the
Cauchy horizon (H−):

M2 = A−
16π

+ 4π J 2

A−
+ Q2

2
+ π Q4

A−
, (4)

and we prove that the mass can be expressed as a sum of
the surface energy, the rotational energy, and the electro-
magnetic energy of the Cauchy horizon (H−):

M = Es− + Er− + Eem−. (5)

• Also we find in Sect. 4 that the Christodoulou–Ruffini
[15] mass formula may be expressed in terms of the area
of the Cauchy horizon (H−):

M2 =
(

Mirr− + Q2

4Mirr−

)2

+ J 2

4(Mirr−)2 . (6)

• We further investigate the laws of black hole mechanics
for the inner horizon in Sect. 5.

• We also point out that the product of Christodoulou’s
irreducible mass of the inner horizon (Cauchy horizon)
and the outer horizon (event horizon) are independent of
the mass, i.e.,

Mirr+Mirr− =
√

A+A−
16π

=
√

J 2 + Q4

4

4
. (7)

• We also shortly derive the identity Kχμ− = 2S−T− on
the Cauchy horizon in Sect. 6.

• The entropy of the Cauchy horizon may be expressed in
the form S− = E−

2T− as described in Sect. 7.

2 Charged rotating black hole

The complete gravitational collapse of a charged body always
produces a Kerr–Newman (KN) black hole [16], which is the
most general class among the classical black hole solutions.
It also is uniquely described by the electro-vacuum black hole
solutions of the Einstein–Maxwell system. It can be specified
by three parameters: the black hole mass M, the charge Q,
and the angular momentum per unit mass a = J/M. As long
as M2 ≥ Q2 + a2 the KN metric describes a black hole,

otherwise it has a naked ringlike singularity. It possesses two
horizons, namely the event horizon (H+) or outer horizon
and the Cauchy horizon (H−) or inner horizon. The proper
radii of event horizon and Cauchy horizon are

r± = M ±
√

M2 − a2 − Q2 and r+ > r−, (8)

whose product is

r+r− = a2 + Q2. (9)

It is speculated that it does not depend on the mass but
depends on the charge and the Kerr parameter [17].

Then the areas [18,19] of the two horizons (H±) are

A± =
∫ ∫ √

gθθ gφφ = 4π(r2± + a2). (10)

The angular velocities of H± are

�± = a

r2± + a2
. (11)

The semiclassical Bekenstein–Hawking entropy of H±
reads (in units in which G = h̄ = c = 1)

S± = A±
4

= π(r2± + a2). (12)

The surface gravity of H± is

κ± = r± − r∓
2(r2± + a2)

and κ+ > κ−, (13)

and the black hole temperature or Hawking temperature of
H± reads

T± = κ±
2π

= r± − r∓
4π(r2± + a2)

. (14)

It should be noted that the event horizon is hotter than the
Cauchy horizon i.e. T+ > T−.

The Komar [20] energy for H± is given by (as we will
discuss elaborately in Sect. 7)

E± = 2S±T± = ±
√

M2 − a2 − Q2. (15)

Finally the horizon Killing vector fields may be defined
for H±:

χ±a = (∂t )
a + �±(∂φ)a . (16)

If, in addition, the black hole is non-extremal (i.e., if there
exists a trapped surface interior of the outer horizon) then the
following relations hold:

A+ >

√
(8π)2

(
J 2 + Q4

4

)
> A−. (17)

Also the entropy product is

S+S− = (2π)2
(

J 2 + Q4

4

)
. (18)
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It is also independent of mass (M). The entropy of the non-
extremal case satisfies the following inequality:

S+ >

√
(2π)2

(
J 2 + Q4

4

)
> S−. (19)

Similarly we can compute the product of surface gravities
of H±:

κ+κ− = − (r+ − r−)2

4(r2+ + a2)(r2− + a2)
= − M2 − a2 − Q2

(r2+ + a2)(r2− + a2)
.

(20)

The product of the surface temperatures of H± reads

T+T− = − (r+ − r−)2

(4π)2(r2+ + a2)(r2− + a2)

= − M2 − a2 − Q2

(2π)2(r2+ + a2)(r2− + a2)
, (21)

and the product of the Komar energies of H± is

E+E− = (2S+T+)(2S−T−) = −(M2 − a2 − Q2). (22)

It seems that these products are not universal.
In case of pure Einstein gravity (without Maxwell field)

the above relations are reduced to the following. For the
proper radii product of H±:

r+r− = a2. (23)

For the area product of H±:

A+A− = (8π J )2 . (24)

For the entropy product of H±:

S+S− = (2π J )2 . (25)

For the surface gravity product of H±:

κ+κ− = − (r+ − r−)2

4(r2+ + a2)(r2− + a2)
=− M2 − a2

(r2+ + a2)(r2− + a2)
.

(26)

For the temperature product of H±:

T+T− = − (r+ − r−)2

(4π)2(r2+ + a2)(r2− + a2)

= − M2 − a2

(2π)2(r2+ + a2)(r2− + a2)
. (27)

For the Komar energy product of H±:

E+E− = (2S+T+)(2S−T−) = −(M2 − a2). (28)

So the product of the area and entropy of the two hori-
zons are proportional to the square of the spin parameter J .
Surface gravity product, surface temperature product, and
Komar energy product depend on the mass. Thus we may

conclude that they are not universal except the area product
and entropy product.

3 Smarr formula for Cauchy horizon (H−)

In the original paper by Larry Smarr [1,2] the area for the
charged rotating black hole is described by the following
relation:

A = 4π
(

2M2 − Q2 + 2
√

M4 − J 2 − M2 Q2
)

. (29)

It is indeed constant over the exterior horizon. We suggest
here that there are two horizons, so correspondingly both
areas must be constant i.e. the area can be expressed as

A± = 4π
(

2M2 − Q2 ± 2
√

M4 − J 2 − M2 Q2
)

. (30)

Inverting the above relation one can obtain the black hole
mass or ADM mass, which can be expressed in terms of the
areas of both horizons H±,

M2 = A±
16π

+ 4π J 2

A±
+ Q2

2
+ π Q4

A±
. (31)

It is remarkable that the mass can be expressed in terms of
both the area of H+ and of H−. Now what happens with
the mass differential? It is indeed expressed as three physical
invariants of both H+ and H−,

dM = T±dA± + �±dJ + �±dQ, (32)

where

T± = 1

M

(
1

32π
− 2π J 2

A2±
− π Q4

2A2±

)
(33)

�± = 4π J

MA±
(34)

�± = 1

M

(
Q

2
+ 2π Q3

A±

)
, (35)

where

T± = Effective surface tension for H+ and H−

�± = Angular velocity for H±

�± = Electromagnetic potentials for H±.

The effective surface tension may be rewritten as

T± = 1

M

(
1

32π
− 2π J 2

A2±
− π Q4

2A2±

)
(36)

= 1

32πM

(
1 − 16π2(4J 2 + Q4)

A2±

)
(37)

= 1

16πM

(
1 − (2M2 − Q2)

r2± + a2

)
(38)

123



2887 Page 4 of 8 Eur. Phys. J. C (2014) 74:2887

= ±
√

M2 − a2 − Q2

8π(r2± + a2)
(39)

= r± − M
8π(r2± + a2)

= κ±
8π

(40)

where κ± are the surface gravities of H± as previously
defined.

Thus the mass can be expressed in terms of these quantities
both for H± in the simple bilinear form

M = 2T±A± + 2J�± + �±Q. (41)

This has been derived from the homogeneous function of
degree 1

2 in (A±, J, Q2). Remarkably, T±, �± and �± can
be defined and are constant on H+ and H− for any stationary,
axially symmetric spacetime. Since dM is a total differential,
one may choose freely any path of integration in (A±, J, Q)

space. Thus the surface energy Es± for H+ and H− can be
defined by

Es± =
A±∫
0

T (Ã±, 0, 0)dÃ±; (42)

the rotational energy for H+ and H− can be defined by

Er± =
J∫

0

�±(A±, J̃ , 0)d J̃ , A± fixed; (43)

and the electromagnetic energies for H+ and H− are

Eem± =
Q∫

0

�±(A±, J, Q̃)dQ̃, A±, J fixed. (44)

We may rewrite Eq. (41) as

M = κ±
4π

A± + 2J�± + �±Q, (45)

or

M − 2J�± − �±Q = κ±
4π

A±, (46)

or

M − 2J�± − �±Q = T±
2

A±, (47)

or

M
2

= T±S± + J�± + �±Q

2
. (48)

This is recognized as a generalized Smarr–Gibbs–Duhem
relation for H±. Here ‘+’ indicates the event horizon, which
was already discussed in the literature [21]. We derive the
above relation here for the Cauchy horizon only and for the
record we also mention here the two horizons.

Now we define a new parameter set (η±, β±, ε±) which
is related to the quantities (A±, J, Q) to study the intrinsic

geometry for the Cauchy horizon (H−) of a charged rotating
black hole; it is given by

η± =
√

r2± + a2 =
√

A±
4π

, (49)

β± = a√
r2± + a2

= a

η±
, (50)

ε± = Q

η±
. (51)

Therefore the integrated mass formula for H± is found to be

M = η±(1 + ε±2)

2
√

1 − β±2
, (52)

Es± = η±
2

, (53)

Er± = η±
2

[
1√

1 − β±2
− 1

]
, (54)

Eem± = η±ε±2

2
√

1 − β±2
, (55)

with

M = Es± + Er± + Eem±. (56)

Interestingly mass can be expressed as a sum of surface
energy, rotational energy, and electromagnetic energy of the
two horizons H±. We have already seen the above discussion
in [2] for the event horizon. We derive here the above relation
for the Cauchy horizon only and for the sake of completeness
we mention both cases.

4 Christodoulou’s irreducible mass for Cauchy horizon

Besides the black hole event horizon, there exists a sec-
ond horizon inside the black hole—the Cauchy horizon or
inner horizon (H−). It is defined as the future boundary of
the domain of dependence of the (H+). What happens with
the Christodoulou–Ruffini [15] mass formula for the Cauchy
horizon? This is an important issue, which we will discuss
now. The irreducible mass is defined as

Mirr± =
√

r2± + a2

2
=

√
A±
16π

, (57)

where + indicates H+ and − indicates H−. The area and
angular velocity can be expressed in terms of Mirr±:

A± = 16π(Mirr±)2 = 4πρ2± (58)

and

�± = a

r2± + a2
= a

4(Mirr±)2 . (59)
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Interestingly, the products of the irreducible mass of H± are
universal.

Mirr+Mirr− =
√

A+A−
16π

(60)

=
√

J 2 + Q4

4

4
. (61)

The rest mass of a rotating charged black hole is defined
by the Christodoulou–Ruffini mass formula in terms of its
irreducible mass and its angular momentum (J ) and charge
(Q) by the formula

M2 =
(

Mirr± + Q2

4Mirr±

)2

+ J 2

4(Mirr±)2 . (62)

=
(

Mirr± + Q2

2ρ±

)2

+
(

J

ρ ±

)2

(63)

= (mr±)2 + (p±)2 (64)

= (γ±mr±)2, (65)

where p± = J
ρ± is an effective momentum and the effective

rest mass mr± can be defined as

mr± = Mirr± + Q2

2ρ±
= Mirr± + Q2

4Mirr±
. (66)

Also the corresponding gamma factor is given by

γ± = 1√
1 − v2±

= 1√
1 − a2

4(Mirr±)2

. (67)

It may be noted that (v±)2 is a strange product of the angu-
lar velocity and angular momentum (the conjugate momen-
tum variable) divided by the mass of the black hole,

(v±)2 = a�± = J

M
�±. (68)

One may compare various formulas for the black hole quan-
tities and certain formulas from mechanics and electromag-
netism by rewriting the formula either in Mirr± or ρ± in
geometric units, which corresponds to a mass or length vari-
able.

A reversible process is characterized by an unchanged
irreducible mass, whereas an irreversible process is charac-
terized by an increase in irreducible mass of a black hole.
It should be noted that there exists no process which will
decrease the Mirr for a Cauchy horizon.

This mass decomposes into an irreducible mass Mirr and
a rotational energy M−Mirr for a Kerr black hole as shown
by Christodoulou [22]. For a Kerr–Newman black hole the
mass can be written as both for H+ and H− in the small
angular momentum limit, and one has

M = Mirr± + Q2

4Mirr±
+ K±, (69)

where

K± = 1

2

(
Mirr± + Q2

4Mirr±

)
(v±)2 . (70)

This looks like the expression for the kinetic energy in clas-
sical mechanics. The effective speed v± is given by

v± = p±
M = J

Mρ±
= a

ρ±
= a

2Mirr±
= ρ±�±, (71)

where ρ± =
√

r2± + a2 = 2Mirr±. Thus Eq. (70) reduces to

K± = 1

2
mr± (v±)2 = J 2

2I±
= 1

2
I±�±2, (72)

where I± = mr± (ρ±)2 plays the role of a moment of inertia
in this limit. The above discussion for event horizon can be
found in [23]. We have derived the above formula here for
Cauchy horizon only.

When the Penrose process [24,25] is taken into account,
this leads to the following exact differential relationship
between mass and angular momentum, which is also char-
acterized by reversible transformations, as described by
Christodoulou and Ruffini:

dM = adJ + r±QdQ

r2± + a2
. (73)

After integration we obtain the Christodoulou and Ruffini
mass formula (62), when the following condition is satisfied:

J 2

4(Mirr±)2 + Q4

16(Mirr±)4 ≤ 1. (74)

5 The four laws of black hole mechanics on the event
horizon (H+) and Cauchy horizon (H−)

Following the remarkable discovery by Carter et al. [26],
we reformulate the black hole thermodynamics both for the
event horizon and the Cauchy horizon, which is analogous
to the classical laws of thermodynamics as follows:

• The Zeroth Law: The surface gravity, κ± of a stationary
black hole is constant over both the event horizon (H+)
and the Cauchy horizon (H−), respectively.

• The First Law: Any perturbation of a stationary black
holes, a change of mass (change of energy), is related to a
change of mass, angular momentum, and electric charge
by

dM = κ±
8π

dA± + �±dJ + �±dQ. (75)

It can be seen that κ±
8π

is analogous to the temperature
of H± in the same way as A± is analogous to entropy.
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It should be noted that κ±
8π

and A± are distinct from the
temperature and entropy of the black hole.
The above expression κ±

8π
can be derived from Eq. (35) in

the following way.
The effective surface tension can be rewritten as

T± = κ±
8π

= ∂M
∂A±

(76)

and

�± = 4π J

MA±
= ∂M

∂ J
(77)

�± = 1

M

(
Q

2
+ 2π Q3

A±

)
= ∂M

∂ Q
. (78)

• The Second Law: The area A± of both event horizon (H+)

and Cauchy horizon (H−) never decreases, i.e.

dA± = 4A±
r± − r∓

(dM − �±.dJ − �±dQ) ≥ 0 (79)

or

dMirr± = 2Mirr±
r±−r∓

(dM−�±.dJ−�±dQ)≥0. (80)

The change in irreducible mass of both event horizon (H+)

and Cauchy horizon (H−) can never be negative.
It follows immediately from the above equation that

dM > �±.dJ + �±dQ. (81)

• The Third Law: It is impossible by any mechanism, no
matter how idealized, to reduce κ±, the surface gravity
of both the event horizon (H+) and the Cauchy horizon
(H−), to zero by a finite sequence of operations.

6 Komar conserved quantity =
2 × entropy on H± × temperature on H±
or Kχμ± = 2S±T±

It is well known [27] that on the H+ the Komar conserved
quantity (Kχμ+) corresponding to a null Killing vector
χμ+ is equal to twice the product of the entropy (S+)
on H+ and the temperature (T+) on H+. Here we shall
derive a similar expression to the one that holds on H−.
Thus we have to prove the identity Kχμ− = 2S−T− on the
H−.

Due to the stationarity and axially symmetric nature of the
Kerr–Newman spacetime, the spacetime has two Killing vec-
tors. These two vectors are ξμ

(t) = (1, 0, 0, 0) and ξμ
(φ) =

(0, 0, 0, 1), which corresponds to timelike and spacelike in

the asymptotic limit. Thus we can define a Killing vector on
both (H±) which is a combination of these two vectors. We
have

χμ± = ξμ
(t) + �±ξμ

(φ) = (1, 0, 0,�±). (82)

It should be noted that on the (H±), χμχμ|r=r± = 0; then ξμ

becomes a null Killing vector. Now we can define a Komar
conserved quantity on H±, which corresponds to the Killing
vectors being given by

Kχμ± = Kξμ
(t) + �±Kξμ

(φ)
, (83)

where Kχμ± is the Komar conserved quantity corresponding
to the timelike Killing vector defined by

Kξμ
(t) = − 1

8π

∫
∂�

∗dσ, (84)

whose one form is given by

σ = ξ(t)μdxμ = gtμdxμ = gtt dt + gtφdφ, (85)

and ∗dσ is the dual to the two-form dσ . d� is an appropriate
boundary surface of a spatial three-volume (�).

Similarly we can define the Komar conserved quantity
on H± corresponding to the spacelike Killing vector, given
by

Kξμ
(φ)

= − 1

8π

∫
∂�

∗dη, (86)

where the spacelike Killing one-form is defined as

η = ξ(φ)μdxμ = gμφdxμ = gtφdt + gφφdφ. (87)

After some computations we find

Kχμ± = M − 2M a2

r2± + a2
− Q2r±

r2± + a2
. (88)

Using the expressions �± and r±, we simplify the above
equation rewriting it in the compact form

Kχμ± = ±
√

M2 − a2 − Q2 = r± − r∓
2

(89)

= 2[π(r2± + a2)] r± − r∓
4π(r2± + a2)

(90)

= A±κ±
4π

= 2

(A±
4

) (
κ±
2π

)
(91)

= 2S±T±. (92)

Thus we have obtained on the H± the Komar conserved
charge corresponding to the null Killing vector, which is
twice the product of the entropy and the surface tempera-
ture of the Kerr–Newman black hole. We can connect this
quantity with a similar relation which has been derived in
the previous section on the H±. We have

E± = 2S±T±, (93)
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where E± is the Noether charge of the diffeomorphism sym-
metry on H±. It should be noted that the above relation has
been derived particularly for a static local Killing horizon
[28], which may or may not be a black hole event horizon.
However, a Kerr–Newman spacetime is stationary and there-
fore, whether it is valid for any stationary spacetime is not
clear, but we have explicitly computed a similar relation on
the Cauchy horizon H−. Introducing the scalar potential on
the H±, we have thus got

�± = Qr±
r2± + a2

. (94)

Equation (88) can be rewritten in the form

Kχμ± = M − 2J�± − �±Q. (95)

Again from Eq. (41) we have

M − 2J�± − �±Q = A±κ±
4π

(96)

= A±T±
2

. (97)

This is the well-known Smarr formula on H±. In the lit-
erature we have seen the above discussion of the event hori-
zon only. We extend the above relations, particularly for the
Cauchy horizon. For the sake of completeness we also com-
pute all the relations for the event horizon.

7 Generalized Smarr formula for mass on the Cauchy
horizon

In this section we will derive for a stationary state black hole
spacetime that the entropy can be expressed as S± = E±

2T±
on the H±, where T± is the Hawking temperature on H±
and E± is shown to be the Komar energy on the H±. We also
derive the generalized Smarr formula for a mass on H±. This
is compatible with the relation in Eq. (97). We already know
from [29] that the Komar energy for a Kerr–Newman black
hole in a compact form on the H+ is

2S+T+ = E+ =
√

M2 − a2 − Q2 (98)

= M − Q2

r+
− 2J�+

(
1 − Q2

2Mr+

)
(99)

= M − 2J�+ − QV+, (100)

where V+ = Q
r+ − J Q�+

Mr+ . Similarly we can easily obtain on
the Cauchy horizon the Komar energy for a Kerr–Newman
black hole:

2S−T− = E− = −
√

M2 − a2 − Q2. (101)

Remarkably the energy is negative, which also reveals that
the Killing vector field is negative inside H+. Thus the energy
is negative on H− due to this fact.

In fact we can rewrite Eq. (101) as

2S−T− = E− = −
√

M2 − a2 − Q2

= M − 2J�− − QV−, (102)

where V− = Q
r− − J Q�−

Mr− .
Thus Eqs. (98) and (102) can be written on both the hori-

zons (H±) in a compact form as

2S±T± = E± = ±
√

M2 − a2 − Q2

= M − 2J�± − QV±. (103)

8 Degenerate black hole or extremal black hole

Thus one may define an extremal black hole as a black hole
where the radii of event horizon and Cauchy horizon are
converging i.e.,

r+ = r−, (104)

or, where the areas of the two horizons are merging, i.e.,

A+ = A−, (105)

or, when the entropies of the two horizon are coincident, i.e.,

S+ = S−, (106)

or, when the surface gravities of both horizons are equal, i.e.,

κ+ = κ−, (107)

or, when the temperatures of both horizons are the same, i.e.,

T+ = T−, (108)

or, when the angular velocity of both horizons are coincident,
i.e.,

�+ = �−, (109)

or, when the irreducible masses of both horizons are equal,
i.e.,

Mirr+ = Mirr−. (110)

If any one of the above properties are satisfied then a black
hole is said to be an extremal black hole. Thus one gets the
area in the extremal limit:

A+ = A− = 8π

√
J 2 + Q4

4
. (111)

As a result of (111), another relation,

J 2

M2 + Q2 = MCR
2, (112)

of the extremal KN spacetime continues to hold in the pres-
ence of the surrounding matter in accordance with the factthat
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KN black holes are degenerate if they are extremal. MCR

denotes the Christodoulou and Ruffini mass. Also, for the
entropy one obtains

S+ = S− = 2π

√
J 2 + Q4

4
. (113)

It is well known that the surface gravity and surface temper-
ature go to zero in the extremal limit, i.e., κ+ = κ− = 0 and
T+ = T− = 0.

It may be noted that the Komar energy goes to zero
at the extremal limit, i.e., E+ = E− = 0. This may
imply that this is another way of seeing the disconti-
nuity between the extremal spacetime and non-extremal
spacetime.

9 Discussions

In this work, we have derived the Smarr formula on the
Cauchy horizon (H−). We have proposed the four laws of
black hole mechanics for the inner horizon (H−). We have
found, in contrast to some earlier work [10,30], particularly
for the first law of the inner horizon (H−), complete consis-
tency between our results and these results.

We have also demonstrated that the area product, horizon
radii product, entropy product, and irreducible mass prod-
uct of the event horizon and Cauchy horizon are universal,
although the surface gravity product, surface temperature
product, and the Komar energy product are not universal for
a Kerr–Newman black hole.

We have also defined the Christodoulou and Ruffini mass
on the Cauchy horizon. We have further showed that the
identity Kχμ− = 2S−T− is valid on the inner horizon (H−)
and also the Komar energy in a compact form E− = 2S−T−.
This also relates the generalized Smarr formula E− = M −
2J�− − QV− on H−.

Another interesting point we have found is that the Komar
energy goes to zero at the extremal limit, which may display a
discontinuity between extremal spacetime and non-extremal
spacetime.
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