Eur. Phys. J. C (2016) 76:544
DOI 10.1140/epjc/s10052-016-4390-4

THE EUROPEAN

CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

From stable to unstable anomaly-induced inflation

Tibério de Paula Netto'?, Ana M. Pelinson?", Ilya L. Shapiro'->°, Alexei A. Starobinsky*--4

1 Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, Campus Universitario, Juiz de Fora, MG 36036-330, Brazil
2 Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, Bairro da Trindade, Caixa Postal 476, Floriandpolis, SC 88040-970,

Brazil

3 Tomsk State Pedagogical University and Tomsk State University, Tomsk, Russia
4 L. D. Landau Institute for Theoretical Physics RAS, Moscow 119334, Russia
3 Department of Physics and Astronomy, Institute for Theoretical Physics, Utrecht University, 3508 TD Utrecht, The Netherlands

Received: 5 October 2015 / Accepted: 20 September 2016 / Published online: 6 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Quantum effects derived through conformal
anomaly lead to an inflationary model that can be either stable
or unstable. The unstable version requires a large dimension-
less coefficient of about 5 x 10® in front of the R? term that
results in the inflationary regime in the R 4+ R? (“Starobin-
sky”) model being a generic intermediate attractor. In this
case the non-local terms in the effective action are practi-
cally irrelevant, and there is a ‘graceful exit’ to a low cur-
vature matter-like dominated stage driven by high-frequency
oscillations of R — scalarons, which later decay to pairs of
all particles and antiparticles, with the amount of primordial
scalar (density) perturbations required by observations. The
stable version is a genuine generic attractor, so there is no
exit from it. We discuss a possible transition from stable to
unstable phases of inflation. It is shown that this transition
is automatic if the sharp cut-off approximation is assumed
for quantum corrections in the period of transition. Further-
more, we describe two different quantum mechanisms that
may provide a required large R?-term in the transition period.

1 Introduction

There are many solid results in quantum field theory (QFT)
in curved space-time, concerning divergences and renormal-
ization and to the evaluation of finite quantum corrections
(see, for example, [1-5] for introduction and further ref-
erences, and [6,7] for a recent review). The most interest-
ing applications concern vacuum sector of the theory and
the one-loop approximation is usually considered reliable.
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Hence the main interest is usually paid to the quantum effects
of free matter fields on an arbitrary classical gravitational
background. In particular, for the case of free massless con-
formal fields in a Friedmann—Lemaitre—Robertson—Walker
(FLRW) isotropic cosmological model, an explicit calcula-
tion of the finite average value of the energy—momentum
tensor (EMT) of these fields is possible by using the con-
formal anomaly [8,9] (see also the earlier pioneer references
[10,11] on the EMT regularization and calculation in a more
general anisotropic cosmology, and [12] for a general and
historical review). The early work concerning cosmological
applications of the conformal anomaly [13, 14] led to the first
inflationary model [15,16], which was extensively studied
(see, e.g., [17-23]), including inhomogeneous perturbations
of this modified gravity model in the scalar [24-26] and ten-
sor [25,26] sectors (following the pioneer calculation of the
generation of tensor perturbations during inflation in the case
of Einstein gravity in [27]).

The anomaly-induced effective action in d = 4 was
first calculated in [28,29] (see also [14] for the earlier
non-covariant version and [30-32] for a more complete
local covariant presentation), similar to the famous Polyakov
action [33] in d = 2. The application of this effective action
to cosmology was first considered in [34], where the pos-
sible torsion terms were also taken into account. Later on,
the effective action approach was systematically pursued in
[35,36]. The main advantage of using the anomaly-induced
effective action is a better control of the approximations and
also a better starting point for possible generalizations.

Anomaly-driven inflation can be stable or unstable,
depending on the sign of the local R>-term [15,16,37]. If
such a term is not introduced at the classical level, the stabil-
ity depends on the number of particles of different spin (0,
1/2 and 1) in the underlying QFT on curved space-time back-
ground. In particular, for the supersymmetric particle con-
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tent inflation is stable and, for the Minimal Standard Model
(MSM) of particle physics, it is unstable [38]. It is possible to
have inflation which starts as stable due to supersymmetry.
After some time supersymmetry breaks down and inflation
becomes unstable. The reason why supersymmetry can dis-
appear is related to the greater masses of the s-particles that
decouple according to the Appelquist and Carazzone decou-
pling theorem [39]. Let us note that the gravitational version
of the decoupling theorem has been derived in [40,41], hence
the described scheme looks consistent with the well-known
QFT results.

A relevant question is why the energy scale of stable
inflation is decreasing, such that the gravitational decoupling
could take place. The solution to this problem has been sug-
gested in [42—44]. The stable anomaly-induced inflation is
due to the quantum effects of massless conformal fields, and
is strictly exponential, such that the Hubble parameter is con-
stant. However, taking the weak effects of the masses of the
quantum fields into account, one can observe a tempered
form of inflation, with decreasing magnitude of the Hubble
parameter.

The second interesting question is what happens with the
universe after it leaves the stable inflationary stage. For the
choice of parameters which corresponds to the unstable infla-
tion, there are different types of solutions [15,16]. The desir-
able one is when the universe is asymptotically approach-
ing the FRW-behavior. Then the non-local part of anomaly-
induced action rapidly becomes irrelevant and the evolution
is essentially driven by the local R? term. Moreover, in order
to control cosmic perturbations after inflation, the coefficient
of this term must be very large, of the order of 5 x 108 [26].
This type of inflationary model is supported by all known
observations, including Planck data [45].

At the same time, there are other solutions in the the-
ory with anomaly-induced corrections, which can be called
hyperinflation [35]. In this case the expansion of the uni-
verse is even more violent than in the exponential phase, and
there is no chance for a sound physical interpretation of such
a solution. The first purpose of the present work is to see
which of the two possible scenarios of the post-stable evo-
lution takes place. The simplest possible approach in used.
Namely, we assume that the unstable phase starts exactly at
the point where the stable phase ends. Another important
issue discussed in this paper concerns quantum mechanisms
to generate a large coefficient of the R?-term in the transition
period from stable to unstable inflation. We demonstrate that
this effect may take place because of a possible strong cou-
pling between fields which may result in a large value of the
parameters & of the non-minimal interaction of scalar fields
with scalar curvature.

The paper is organized as follows. In order to have a self-
consistent presentation, Sect. 2 includes a brief review of the
effective action induced by anomaly, and also the inflationary
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solutions, both stable and unstable, including tempered stable
inflation due to the effects of massive fields. The difficulties
of the QFT-based systematic study of the transition period
are also briefly explained. Section 3 describes the numerical
results concerning the transition between stable and unstable
epochs in the sharp cut-off approximation. In Sect. 4 these
results are supported by analysis of the phase diagrams in
both cases. Section 5 describes two alternative (but related)
quantum mechanisms to generate a large coefficient of the
R%-term in the transition epoch. Finally, in the last section
we draw our conclusions and discuss further perspectives of
the QFT-based approach to inflation.

2 Brief review of anomaly-driven inflation

The effective action of vacuum is defined through the path
integral over the set of all matter fields @, including gauge
fields and ghosts (e.g., in Standard Model or GUTs),'

T Em) — /d<b &SP guv) €))

The consistency of the theory requires that the classical
action includes vacuum part, S(®, g,v) = Svacuum (8uv) +
Smatter (P, guv), Where the first term does not depend on the
matter fields, but still has to be renormalized. The vacuum
action of renormalizable theory should include Einstein—
Hilbert term with a cosmological constant,

1

4
= - —9o(R+2A 2
SEH 6 G d*x/—g (R +2A) (2)

and four covariant four-derivative terms,
Sup = /d4x~/—g {a1C?* + wE + as0OR + asR*}.  (3)

Here ay, ..., a4 are parameters of the vacuum action. In the
conformal case one can set a4 = 0, but it is also possible to
include this term. The full action of the external metric is

Svacuum = SHD + SEH. 4

Since gravity is not quantized, there is no problem with uni-
tarity of gravitational S-matrix. Instead, one should worry
about the stability of the approximate low-energy classical
solutions below Planck energy scale, as discussed recently
in [46,47].

2.1 Anomaly and induced effective action
In the very early universe the masses of quantum fields and

their interactions are assumed to be irrelevant. Consider con-
formal theory with N real scalars, Ny Dirac fermions and

I Our notations are Ny = diag(+ — ——) and R, = 9 F}w — e
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N, massless vectors. For the scalar massless fields ¢ confor-
mal invariance requires that the non-minimal parameters of
the £ Rp>-interaction are & = 1/6. Taking a4 = 0, the action
Su p satisfies the conformal Noether identity

2 8SHD
—gu— =0, (5)
\/__g Sg ny
which means zero trace for the stress tensor of vacuum
T,f = 0. At the quantum level, this condition is violated
by an anomaly,

B 2 st
T =(TH = ——
" Nkl
= — (wC? 4+ bE + cOR), (6)

where w, b, and ¢ are B-functions for the parameters
ai, az, az, which depend on the number of (real) scalar,
(Dirac) spinor, and gauge vector fields, Ny, N¢, Ny,

pr= L (N N N 7
w— B —
"Z @2 \120 " 20 T 10
1 (N, [11N; 3IN,
b = = - — B — —_— s 8
P2 (47)2 (360 360 | 180 ) ®)
1 N Ny N,
=By = — [y L) 9
b= ny (180 30 10) ©)

One has to note that the coefficient ¢ has the well-known
regularization-dependent ambiguity, which is equivalent to
the possibility to add the a4 R*-term at the classical level (see,
e.g., [12]). This issue was discussed in full details in [48],
using both dimensional and covariant Pauli—Villars regular-
ization. It was shown that the ambiguity concerns the starting
point of the renormalization group trajectory and not the flow
itself. In particular, this means one can fix it by imposing
a renormalization condition on the classical coefficient ay.
There is nothing wrong in defining the R? term by hand, but
it is more natural to assume that this term comes from vac-
uum quantum effects according to (6), which corresponds to
the point-splitting [49] and ¢ regularizations [50].> In Sect.
5 we shall discuss the possibility of significant change of the
overall coefficient a4 of the R?-term in the epoch of transition
from stable to unstable inflation.

Natural question concerns possible effect of higher loops.
Let us remember that the non-perturbative structure of con-
formal anomaly is basically the same as at one loop. This
statement is known as a- and c-theorems and gained signifi-
cant attention in the recent years [51-53]. Since only the trace
anomaly is relevant for the dynamics of conformal factor, one

2 The equivalent n-wave and adiabatic EMT regularizations proposed
earlier in [10,11] respectively lead to the same result for conformal
anomaly if applied to the case of a non-zero rest mass m of a quantum
field with m set to zero in the final result.

can safely assume that at higher loops nothing changes dra-
matically and conclude that the one-loop approximation is
sufficiently reliable in this case.

The one-loop part I'(1) of the vacuum effective action sat-
isfies the equation

2 sTM
- g
v " g 3guv

which can be solved in the form [28,29]

= (TH), (10)

Cing = Sc[g'/w]
_ _ 2= _ _
+/d4x,/—g { wo C? + bo (E - gDR) +2bo Aso

1 2 \,- - -
-5 <c + §b> [R—6(Vo)? —600] } , (11)
where we separated the conformal degree of freedom o
according to

Suv = &uv - €27 = gy - a*(x) (12)

and used notation

Ay =P +2R"V,V, — % RO+ % (VER)V,, (13)
for the fourth derivative, conformal operator acting on
the conformal-invariant scalars. The term S, in (11) is a
conformal-invariant functional, Sc[g,v] = Sc[guv], Which
is an “integration constant” for Eq. (10). In cosmology, this
term is irrelevant for defining the dynamics of the conformal
factor of the background metric, a(#), and therefore (11) is
the exact form of quantum correction in this case. The general
fiducial metric is

dr?
1 —kr?
where 7 is the conformal time. In the following we consider
a spatially flat metric, k = 0.

ds? = guudxtdx’ = dp? — —r2dQ, (14)

2.2 Stable and unstable solutions

The dynamics of conformal factor is defined from the vari-
ational principle of the total action, including quantum cor-
rections,

Sy = Svacuum + Tind- (15)

Then we arrive at the following equation:

@ 3ad i 4b\ dd’
—+ +=—(5+—

a a? a? c) addd
M (a i 2A 0 6
8rc \a a2 3 )7

where Mfz, = 1/G is the square of the Planck mass. We
assume that the cosmological constant A always satisfies the

@ Springer
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condition0 < A K M%. Equation (16) is written in terms of
the physical time ¢, where d¢ = a(n)dn. An equivalent third-
order equation (34) can be obtained as the 00-component of
the Einstein equation with quantum corrections [14]. More-
over, this equation can be reduced to a first-order one, as
shown in Sect. 4. Let us note that a more detailed discussion
of deriving 00- and ij-components of generalized Friedmann
equations was given in [23] and generalizations in the pres-
ence of radiation were given in [54].

Equation (16) has important particular solutions with con-
stant Hubble parameter [15, 16] (for A # 0 the solution was
obtained in [43,44]),

a(t) = ag - ™’ (I7)

12
M 641b A
== (1 1+ 222
v =32mb 3 Mg

(18)

where

The Hy solution is close to the original one of [15,55],
H = Mp/+/—167h, which is an exponential inflationary
solution. The second value is close to the classical dS solution
H_ ~ /A/3 without quantum corrections. In the following
we will mainly be concerned with the inflationary phase and,
therefore, assume Hy = H. .

The solution (18) is real since b < 0, according to (8). At
the same time, the coefficient ¢ in Eq. (9) may have different
signs, depending on the particle content of the theory. For
small perturbations o (#) — o () + 8o (¢) around inflation-
ary exponential solution, it is easy to check that it is stable
for ¢ > 0 and unstable for ¢ < 0 [15,43,44]. Assuming (9),
the stability condition ¢ > 0 boils down to the relation

%Nf + 1—18Ns > Ny, (19)
satisfied for any realistic supersymmetric model. Then H =
H, is the unique stable attractor and hence inflation starts
for any choice of initial conditions with homogeneous and
isotropic metric.

On the other hand, (19) is not satisfied for the Minimal
Standard Model of Particle Physics [42]. Another case when
the condition (19) is not satisfied is the present-days universe.
Since the decoupling of the lightest massive particles (pre-
sumably neutrino), photon is the unique “active” quantum
particle, such that Ny =1 and Ny = N, =0.

Let us note that in this case the classical dS solution with
H = /A3 is stable under small perturbations of Hubble
parameter [43,44], which is a relevant consistency test for the
whole approach. The same is true for the tensor perturbations,
which do not grow up for dS [23,27,36] and for other classical
solutions, even in the presence of matter or radiation [46,47].

@ Springer

2.3 Effect of masses and tempered stable inflation

Consider some realistic supersymmetric model, where s-
particles have relatively large masses. Other particles can
be approximately regarded as massless.

At the beginning of the stable inflation Hubble parameter
H is even greater that all masses and the last can be seen as
small perturbations violating conformal invariance. In this
case one can apply a conformal description of the massive
theory [42—-44] (similar approach can be found in [56,57],
see also [58]). The masses of matter fields, Newton constant
and cosmological constant are replaced by powers of a new
auxiliary scalar yx,

2
m
m? — V; Xz,
my
1 M3
167G 6 112 [Rx* 46 00°],
A,

where M is a new dimensional parameter. For the Einstein—
Hilbert term the kinetic term for x provides conformal invari-
ance of the action. In order to have local conformal invariance
one can define the field x to transform as

X — xe W, (22)

while other fields transform according to

8uv = uv €2a(x)’
9> @ e W, (23)
Y= e 3002, (24)

Now we can calculate anomaly and anomaly-induced effec-
tive action. Finally, we fix the conformal gauge according to
X = x e~ % = M. The result has the form

'Y = Sup + Tina

—/d4x —ge* [Ié+6(§a)2] . <1671'rG —f.o')

A
—/d4x “E o (—&TG - g-G), (25)

where the “massless” terms in the r.A.s. were defined in (4)
and (11) and the coefficients f and g can be expressed via
the dimensional parameters

~ 16w f
F==n
MP

2

1 Ny m? 1 1 Nymy

_ZJTZ M3 <E 6)+37TZ z

scalars P fermions P
(26)
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. 8mg
T M2A
4
1 Nym* 1 Nym%
- R R— . 27
4 Z MiN @ Z MZA @7
scalars fermions

In the last expression we assume for simplicity that masses
of all fermions are equal, and the same with scalars masses
and non-minimal parameter £. The possibility of £ # 1/6
is introduced for generality, more detailed discussion will be
given in Sect. 5.

Equation (25) is not an exact result like (11), even for the
FRW metric. The reason is that the conformal-invariant func-
tional S, in this case depends not only on the metric g, but
also on the scalar field x . The approximation which provides
Eq. (25) becomes clear if we remember that the renormaliza-
tion group in curved space is related to the global rescaling
of the metric, g,, — guv - exp(27) [4,59-61]. Since coef-
ficients w, b, c, f, g are the Minimal Subtraction scheme-
based B-functions of the higher derivative parameters, G !
and pp = A/8m G, it is easy to note that (25) is exactly the
renormalization group improved classical action of vacuum
(4), where the global scaling parameter is replaced by the
time-dependent conformal factor of the metric, T — o (¢).
Hence the approximation assumed in (25) is the one of the
Minimal Subtraction scheme of renormalization. Within this
approximation one cannot observe effects of masses, such
as low-energy decoupling. However, it is a reliable approxi-
mation at high energies, including at the initial stage of the
stable anomaly-driven inflation.?

Different from the effective action of massless fields [28,
31], the covariant version of Eq. (25) is not known, but this
expression is sufficient for basic cosmological application.
One can safely assume that the cosmological constant and
its running do not play essential role at the inflation epoch.
Following [42-44], we set A = g = 0. Then the equation
for o (t) is

o b\ .., 4b.,
oc+700+46-+4|(3——-)606°— —0
C C
M? . f
Y .. .2 _ S
— [(o+2a)(1 Fo) 20] 0. (28

The new part compared to Eq. (16) is the presence of the
mass-dependent terms with f, also we use other variable,
according to Eq. (12).

An approximate solution of Eq. (28) can be obtained by
the replacement

2 2 ~
My — My [l — fo()] (29)
3 This result of Refs. [42-44] concerning the effects of massive fields

has been independently confirmed in [62] by technically different
method (see also [57]).

in the expression for the Hubble parameter (18) correspond-
ing to the massless solutions (17). The solution has the form

H? .
o(t) = Hot — Toftz, (30)

which reproduces numerical solutions of (28) with a very
good precision. Equation (30) describes a tempered form of
inflation, which starts as an exponential (massless-based) ver-
sion (17) and ends when H decreases to the value where the
decoupling of s-particles starts.

Starting from the solution (30), we need to know when
the stable phase of inflation ends and what happens with the
universe after that. If H* is the energy scale where the super-
symmetry breaks down, the stability holds until the moment
of time t,, when H(t.) = Ho — (1/2)HZ ft. = H*. This
expression means that at the scale H* most of s-particles
are beyond the IR cut-off, My > H™* and decouple from
gravity at the quantum level. After certain amount of such
particles decouple, the sign of the g-function ¢ = B3 in
(9) changes to the opposite and inflation gets unstable. It
is a natural to suppose that H* should have the same
magnitude as the mass scale of supersymmetry breaking,
Mgy sy . Another quantity which depends on the same scale is
[~ (H*/Mp)*.

The next issue to address is what happens to the universe
after it goes through the critical point H(t) = H*. Indeed,
this question is very difficult to answer and hence we have to
change the style of the consideration. Until this moment our
consideration was based on the use of the QFT results, such as
Eq. (28), even if the derivation of the equation required some
risky methods such as conformal replacement of dimensional
parameters [42]. Unfortunately, in the vicinity of the critical
point H = H* the QFT provides no real help and even no
insight. The reason is that we do not have an approxima-
tion or approach to deal with the situation when the Hubble
parameter is of the same order of magnitude as the mass of
the free quantum field on curved background. It is obvious
that the usual expansion in powers of curvature tensor over
square of mass of the quantum field has no much sense. On
the other hand, the approach which led us to (28) is based
on treating mass as a small perturbation and, therefore, also
does not work for H(t) ~ H*.

In the next two sections we will deal with this difficult
problem in a most simple way, which can be called the “sharp
cut-off”” method. Namely, we consider the final point of the
evolution (30) as a starting point of the unstable inflation.
Of course, this is a great simplification, since we completely
ignore the quantum effects in the intermediate epoch. In the
“sharp cut-oft” approach we simply cut-off the intermediate-
scale quantum effects and try to see in which part of the phase
diagram of the unstable inflation we arrive by moving along
the solution (30).

@ Springer
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3 Numerical study of transition to unstable epoch

Consider that the stable phase ends at the moment 7,, when the
Hubble parameter has the value approximately correspond-
ing to (27),

H*=H(t,) = \/}MP. 31)

Using the last equation and Eq. (30), the value of 7, can be
expressed as

2 -
« = ——=(Hy — Mp). 32
r Hozfm\/}p) (32)

The initial conditions for the consequent unstable evolution
can be calculated through Egs. (32) and (30), using the Mini-
mal Supersymmetric Standard Model (MSSM) particle con-
tent, Ny, s, = (104,32, 12). We assume that f = 1074,
which is close to the value for the GUT-scale supersymme-
try.

An explanation of the choice of the value of £ is in order
here. The GUT-scale supersymmetry is different from the
usual TeV-scale supersymmetry which is useful to address
the gauge hierarchy problem. The unique aspect of super-
symmetry which is relevant for us here is the change of sign
in the relation (19) when the supersymmetry is broken, hence
we are not confined by some specific scale of supersymme-
try breaking. Looking at the definition (26) it is clear that
the value corresponding to the GUT-scale supersymmetry
should be f oc 1070 and for the TeV-scale supersymmetry
about f o 10732, Let us note that an inflationary model that
pretends to describe the observed power spectrum of density
perturbations (without inflaton) should have H ~ 10 GeV.
Then f should be no less than 10~10. Since for the GUT-scale
SUSY one has f ~ 107° and this is the mostly interest-
ing case. We have checked numerically that the qualitative
aspects of transition which will be discussed below are not
sensible to the choice of f . For making plot and presentation
in general better, we mainly use larger value of f=10"%
This value also exceeds the value f ~ 107> at which the
comoving scale corresponding to the present Hubble radius
first crossed it in the opposite direction during unstable infla-
tion in the R + R? model; see Sect. 5.

Let us present the results of the numerical solution of Eq.
(16) in the unstable case with the initial data corresponding to
the point H*. For the sake of definitiveness, we consider the
Minimum Standard Model (MSM) particle content Ny, 7, =
(4,24, 12).

The numerical solution at small scales of time show oscil-
lations in the Hubble parameter H as shown in Fig. 1.

Later on the amplitude of these oscillations becomes
smaller and the Hubble parameter behavior starts to look very
similar to the radiation-dominated universe without quantum

@ Springer
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Fig. 1 Numerical solution for the Hubble parameter H (¢) in the units
of Planck time 7 = ¢ /¢p for the MSM particle content and f = 104

0.010

0.008

0.006

H(r)

0.004

0.002

0.000 . . . . .
0 200 400 600 800 1000

T

Fig. 2 The same case as in Fig. 1, but at larger scale. MSM and f =
10~

corrections H (t) ~ 1/2¢t. The situation is illustrated in Figs.
1 and 2.

The oscillations which we observe in these plots can lead
to the production of matter particles. But since the physi-
cal unstable inflation is still to come, this is not a physi-
cally relevant process. After a certain period corresponding
to the MSM, the expansion of the universe becomes weaker
and at some point even the contributions of massive non-
supersymmetric particles get decoupled. At the last stage
only the massless particle — the photon, gives contributions.
The numerical analysis for the unstable inflation driven by a
single photon as an active quantum field, Ny, 7, = (0,0, 1)
leads to the plots shown in Fig. 3. In this case one can observe,
once again, some oscillations for the initial short period of
time, however, the amplitude of the oscillations is weaker
compared to the MSM case. And oscillations become weaker
after the initial period.

The case of a single photon is an extra example of sta-
bilizing perturbations. For the reasons explained above, it is
not useful for describing inflation, and it is included mainly
for generality. At the same time, it has some physical rele-
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Fig. 3 Numerical solution for the Hubble parameter H in units of
Planck time t = t/tp for the photon case and f = 10~*
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Fig. 4 Part of the plot from Figs. 1 and 2, but with much smaller scale
in the H axis

vance, not linked to inflation, but serving as a test for the
consistency of the anomaly-induced model. Since we are
dealing with the higher derivative action, it is important to
ensure that the physically relevant solutions do not suffer
from the Ostrogradsky-like instabilities. Looking backward
to the history of the universe, the last strong perturbation for
the conformal factor occurred at the epoch when quantum
contributions of neutrino decouple from gravity. According
to the plot of Fig. 3 the perturbations for the conformal factor
are stabilized after this decoupling.

The difference between the photon case and the one of
MSM is quantitative, namely oscillations have smaller ampli-
tudes for a photon. In order to show that the oscillations still
take place, we show a part of the previous plots with another
scale in Fig. 4.

4 Phase diagrams and stitching the solutions

In this section we shall consider the transition between stable
and unstable regimes by means of phase diagrams. Instead

Lob AR o

Fig. 5 Phase diagram of Eq. (35) with MSSM particle content

of Eq. (30) one can use 00-component of the equation
1
Ry, — 3 gu(R —=2A) =8rnG (Ty), (33)

in our case it has the form of the third-order equation

? ( 2b)d4 M2
_ 3+_ - __r __ =
C

2ad @ 2ia
I R
(34)

Equation (34) can be reduced to the first-order differential
equation

dy  bx—x"'3)

1 35
dx 6¢cy (35)

by the following change of variables [15,16]:

<H>3/2
x=|— ,
Hy

H
v=—mH 2 (36)
HO
d
dt = —x’
3Hyx?3y

where (as before) Hy = Mp//—167b.

The critical point (1, 0) corresponds to the exponential
solution (17) in both stable and unstable cases. For a stable
inflation [43,44] based on the MSSM particle content, the
phase diagram of Eq. 35 is shown in Fig. 5. As we can see,
there is a single attractor corresponding to the inflationary
solution (17).

For the unstable case we arrive at the phase diagram shown
in Fig. 6. In this case there are different attractors [15,16].

Let us see which integral curve in the unstable case of
Fig. 6 corresponds to the initial point xg, yo where the stable
regime ends. Placing the solution (30) into expressions (36)
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Fig. 6 Phase diagram of Eq. (35) with MSM particle content
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we find

~ 1/4
xo = (—=16xb )4, yo = — ! ( s ) . @37
4 \ —16x7b

Taking this initial value, one meets the integral curve
shown in Fig. 7.

Let us say that this result nicely fits our most opti-
mistic expectations. It exactly corresponds to the relatively
“peaceful” unstable inflation qualitatively similar to the one
of [15,16], and not to the “hyperinflation”-type explosion,
which was described in [35]. Anyway, the initial phase of
such an inflation can be very violent, because the coefficient
of the R? is very small. In the next section we describe how
it can be enormously increased during the transition period,
which was simply ignored until now within the “sharp cut-
off” simplification.

5 UV/IR running and generating huge R2-term

As we have seen in the previous sections, the end of the stable
phase of inflation occurs in the region of the phase plane

@ Springer

from which the universe can continue into the unstable phase.
However, in order to have a successful inflationary model
we need to go beyond the anomaly-induced effective action.
The reason is that the coefficient of the overall R?-term with
a much greater value, about 5 x 108, is required to control
density perturbations after the inflation period ends [26]. In
more detail: the dimensionless coefficient in the action in
front of the R? should be N2/(2887t2As), where Ag (k) is
the amplitude of the power spectrum of primordial scalar
(density) perturbations, while N is the number of e-folds
from the end of inflation and log(ksn/ k) at the same time.*
As(k) is also proportional to N 2 for the model involved.
According to the most recent measurements [45] A (k) =~
2.2x 107 fork = kg = 0.05Mpc~!. Choosing N = 55 for
k = ko we arrive at the estimate 5 x 108 for the coefficient
of the R%-term. Thus, it is the observed smallness of large-
scale inhomogeneous perturbations in the present universe
(characterized by the small value of Ay) that requires the
coefficient in front of the R? term to be large and of the
order of AS_1 during the last, unstable and observable part of
inflation. An alternative to this could be to add some other
non-gravitational scalar field by hand which would support
the second (unstable) part of inflation. The simplest models
of such kind of double inflation were investigated in [63,64].
However, both models considered in these references use
trans-Planckian values of this inflaton field and produce too
large amount of primordial gravitational waves, which has
been excluded by recent observational data [45].

Note that the same observational data on the power spec-
trum of primordial density perturbations in the universe show
also that any higher-order terms of the type R, n > 2 added
to the action of the unstable anomaly-induced inflation are
strongly (exponentially in n) suppressed for the number of
e-folds from the end of inflation N < 60 [65]. Thus, obser-
vations demand the absence of significant higher-order in
R corrections to the phenomenological R + R? inflationary
model that provides an independent support to theoretical
arguments for the conservation of the structure of the con-
formal anomaly in higher loops discussed in Sect. 2.1.

Quantum decoupling of s-particles can explain the change
of the sign of ¢, but cannot make it grow so much. The pur-
pose of the present section is to discuss alternative mecha-
nisms which can produce a dramatic change of the coefficient
¢ in the epoch close to the change of its sign.’ Let us stress
that we have no reliable information as regards the physical
theories at the GUT scale or even the supersymmetry break-
ing scale when the transition from stable to unstable versions
of anomaly-driven inflation is supposed to occur. Hence we
are not in a position to indicate a definite mechanism which

A2

4 Ay is related to the quantity A used in the paper [26] as A; = s

> Recently another mechanism of generating a sufficiently large value
of a4 was discussed in [66] in the models with extra dimensions.
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provides such a dramatic growth of the coefficient of the R?-
term. Instead we shall describe two possible situations when
such a growth is possible. In both cases the consideration is
based on the relation between non-minimal scalar—curvature
interaction and the vacuum R>-term. This relation was pre-
viously discussed, e.g. in the context of supersymmetry [67].

5.1 RG running of the non-minimal parameter &

Renormalization group (RG) in curved space (see, e.g., [4])
tells us that the values of all parameters of the theory may
run with change of energy scale. In particular, the RG for
the coefficient a4 in the vacuum action (4), (3) has a general
form

P T (38)
du

where the coefficients /1 » 3 are given by power series in cou-

pling constants, corresponding to the loop expansion. We

assume that the high energy GUT-like model (supersymmet-

ric or not) includes gauge g, Yukawa h, and four-scalar f

couplings, hence l1 23 = 112,3(g, h, f).

Indeed, all quantities in Eq. (38) are also running param-
eters and satisfy their own RG equation. In particular, the
equation for £ has a general form

dg
ME-=ﬂg=M+k& (39)

i
where l4 5 = l45(g, h, f).Inprinciple, the running (39) may
significantly change both sign and magnitude of £, even at the
short interval on the energy scale. The necessary condition
for this intensive running is large values of at least some
of the couplings g, i, f. This situation is possible near the
transition, since it can be related to formation of condensate
and then the non-perturbative regime may take place.

Note that at one loop the expressions are much simpler,

a _ 1)?

Bi —hé—g , (40)
a _ 1

B =-2)bs (41)
where

Is ~ Isi f + Isoh® + I53°. 42)

In the last formulas the coefficients /3, Is1, Iso, [53 are model-
dependent constants.

At the one-loop order the conformal values £ = 1/6 and
a4 = 0 are fixed points, which can be stable in either UV or
IR [68] (many examples and further references can be found
in this work and in Ref. [4]). However, at higher loops the
conformal value £ = 1/6 is not a fixed point, as was found
for a scalar field in [69] and can also be established from a
general considerations [70,71].

It is natural, albeit not necessary, to assume that the value
of & in the far UV is conformal.® Suppose the “far UV”
corresponds to the sub-Planckian energies. Then the value of
& can become very different from conformal already at the
GUT scale, due to the running (39) in the framework of GUT
theory. Hence when it comes to the transition from GUT to
some lower energy theory, £ may be essentially away from the
conformal point, even if it was at this point in the UV. Another
important point is that around the scale of stable—unstable
transition some of the interactions may become strong. Then,
according to (39), the B-function for & may be given by an
infinite power series of large couplings. Assuming that this
series is convergent, one can see that there is nothing wrong
in a very intensive running of £ on a very short interval of
the energy scale, before the masses of the fields grow large
and running of £ stops due to the IR decoupling.

The next observation is that if |£| becomes very big, then
the coefficient a4 can become even much greater, due to the
quadratic dependence in (38), and especially assuming large
values of couplings before the “confinement” of the GUT
degrees of freedom and the non-perturbative nature of Eq.
(38) in this situation. It is worth noticing that both & and a4
are not couplings in the semiclassical theory, hence there is
no contradiction to have their values large, even within the
perturbative approach. Indeed, these arguments can easily
explain the value of £ &~ 40,000, which is required for the
Higgs inflation [72]. As well, or even more natural, these
arguments can explain that the value of a4 is about 5 x 108,
which is roughly the square of the mentioned value of &.

It may be a very interesting problem to construct a model
of GUT and its breaking into Standard Model plus a hidden
Dark sector, which yields the picture described above. But
since this consideration is beyond the scope of the present
work, let us describe the second possibility to gain a very
large value of the coefficient ay of the R>-term.

5.2 Spontaneous symmetry breaking (SSB) with non-zero &

As asecond example, we review how the R%-term can emerge
due to the spontaneous symmetry breaking (SSB) in the pres-
ence of non-minimal coupling between scalar field and scalar
curvature, & Rp?. Let us stress that a non-zero £ is a neces-
sary condition of renormalizability of the theory with the
Higgs field or its analogs in GUT models. Another question
of whether the large value of £ is “natural”.

As we discussed above, quantum corrections can pro-
duce an intensive running of &. Then, since £ is a dimen-
sionless quantity, it cannot be regarded large or small by
itself. In order to evaluate whether £ is large or not, one

© For instance, this is required by the field-particle correspondence
(traceless T}") for the effectively massless free fields, since we assume
asymptotic freedom in the fundamental theory.
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has to compare the corresponding dimensional combinations
with some reference quantity. In our case the comparison
should be done between & R and the square of mass m of the
scalar field, since they always emerge in a linear combination
Fm? +& R (the choice of a sign depends on whether the SSB
is assumed or not). For instance, in the present-day universe
and Higgs field the numbers are m> = m%io< 10* GeV? and
R ~ H020< 1078 GeV? (Hj is the value of Hubble param-
eter). Obviously, the values of & = 10* — 10° do not look
large in this case. Indeed, the situation may be different in
the early universe, since the curvature has been much greater
then. In this situation the curvature effects can be relevant for
the SSB and Higgs, which is well known from the studies of
curvature-induced phase transitions (see, e.g., [4]) and Higgs
inflation [72-77].

Let us consider how the R2-term emerges in the induced
action of gravity in the theory with non-minimal interaction &
and SSB. The considerations presented below are not directly
related to the Higgs field in the Standard Model and can also
be applied to more general theories at different energy scales.

We start by briefly reviewing SSB in curved space-time,
in the way it was originally discussed in [78]. Consider the
classical action of a scalar field ¢,

S = /d“x«/—g [g’“’ dup* e + UGt
+ERG'y — A 0], 3)

The vacuum expectation value v for the scalar field is defined
by the relation

—Dv+u%v+$Rv—2kv3=O. (44)

For a minimal interaction case £ = 0 we have a constant
solution,

v = =2, (45)

However, in a generic curved space one cannot find a constant
solution due to the potentially variable curvature scalar. Then
the [-term in (44) cannot be neglected and a closed-form
compact solution is impossible. At the same time, one can
obtain a solution in the form of the power series in &,

v(x) = vo + vi(x) + v2(x) + .-, (40)

regarding (45) as a zeroth-order approximation.
In the first order we find [78]

& v & v

= 5% p_ _ 5% 47
O — 12+ 6A0v3 O + 4x] “n

v

@ Springer

It is not difficult to derive the next orders of this expansion,
for instance

2
1
_ & {R R
O+4ad | O+ 4a0}

2
—620] _ L g } (48)
O+ 43

In the points of the minima we meet the induced gravity
action. Replacing the solution (46) into the scalar action (43),
we obtain the induced low-energy action of vacuum, depend-
ing only on the metric,

Sind = /d4x«/—g{g“” B v 0y v

+(ud +ER) VE — At

v2

Making an expansion in the powers of &, at the second
order we arrive at the expression

Sind = /d4x«/_—g{— v10vy + &R (V5 + 2vov1)

—l—uz (v% + 2vgv; + 2vpva + v%)
—A (vg + 41)81}1 + 4v8v2 + 61)31}12)} + O(RY)

— /d4x«/—g{)\v3 + ERv}

2.2
+& UORD+4/\v(2)R + } (49)

The first two terms in the last action represent an induced
cosmological constant (CC) and Einstein—Hilbert terms,
respectively.

Let us make a few observations concerning the last result
(49). The induced CC density in the first term is huge com-
pared to the observed value, hence the compensating vacuum
CC should be introduced. There is an extensive discussion
of the fine-tuning required for this compensation; see, e.g.,
the standard review [79] and recent work treating this prob-
lem in the QFT framework [80,81]. The second term in (49)
is the induced Einstein—Hilbert term. For Sv% <« M %, the
value of the coefficient of this term is not sufficient to have
a purely induced gravity, hence the corresponding vacuum
term is required. In the case of the Standard Model Higgs
and £ o« 10* the induced term is just a very small correction
to the vacuum term. One can say that the situation is opposite
to the one with the CC term.

The third term in (49) is quadratic in scalar curvature and
in & and it is non-local. It is easy to see that this term behaves
in a very different way in the UV and IR limits. The defi-
nition of UV here is related to the magnitude of derivatives
of the curvature tensor, compared to v(2). In the case when
OR > v%R, the term is essentially non-local and shows the
global scaling which is identical to the one of the Einstein—
Hilbert term. Let us mention, in passing, that the next local
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term, of the R (L1+4A v(z)) —2 R-type, cancels identically, hence
there is no similar correction to the CC-term from SSB”. For
inflation, when R is approximately constant, we can assume
an opposite relation R « v%R. Then the third term in (49)
becomes effectively local and equal to

2

Sind = i_k

d*x/=g R>. (50)
One can note that in the same approximation the next-order
terms are suppressed by higher powers of £ R/ v(2) and there-
fore the last term represents the leading quantum contribution
with higher powers of scalar curvature being small correc-
tions to it.

One can easily see that the term (50) is close to what we
need for a successful “jump” in the value of the coefficient
of the R%-term due to the phase transition related to SSB.
Assuming that & has a large value, e.g., due to the mechanism
which we discussed in the previous subsection, the small
value of the four-scalar coupling A in the IR is enhancing the
effect of running.

Different from the running of a4, the induced value (50)
has a definite positive sign. According to Egs. (9), (19), and
(11) this is the same sign which we need for the unstable
R + R? model [15,16]. In the GUT-like models with several
scalars there are typically different A and & for each of these
scalars. Then itis sufficient that one of the combinations £2 /A
becomes very large at the instant when the scalar is freezing in
the vacuum state, to provide a desired huge value of induced
coefficient a4. It would be definitely interesting to construct
an explicit realization of this situation in the framework of
some GUT-like model.

Unfortunately the consideration presented above does not
work for the R?-inflation [15], because during inflation the
magnitude of the product &£ R is too large and the expansion
(46) is not appropriate.® One of the possibilities is to consider
a different expansion using a de Sitter starting point ,u62 =
,u% + &R instead of /L%. However, this approach also meets a
serious problem.

It is worthwhile to discuss the situation in detail and see
if the appearance of the large R? term can be explained by
the modified SSB for a sufficiently low value of the Ricci
scalar R. This value should be still sufficient for the unstable
R? inflation to occur with the parameter a4 following from
observational data. For a slow-roll quasi-de Sitter inflation,
when R < 0 can be considered as a constant in the zero

7 This does not mean that these corrections are impossible within other
approaches. There was recently an interesting work [82] (see further
references therein) about the cosmological relevance of the massless
version of such a term, proposed originally in [78].

8 We are grateful to the anonymous referee for indicating this important
point to us.

approximation, the non-trivial solution of Eq. (44) is

vy = Mo ER (51)
A

Thus, if we want to have symmetry restored at large |R| and
R < 0, we have to take & > 0, i.e., the same sign of £ as
in the case of conformal coupling &.onf = 1/6 and opposite
to that for the Higgs inflationary model [72]. Then the SSB
occurs for |R| < u(z) /&, and the value of v is given by Eq.
(51).

Replacing Eq. (51) into the action (43) and adding the
Einstein term, we get the effective Lagrangian density in the
quasi-static (slow-roll) case:

- MR N EUIR N £2R?
2 2% 45

L= (52)
where M|, = (87 G)~ Y2 is the reduced Planck mass. In this
model, the unstable R? inflation occurs for values of scalar
curvature |R| > R; = AM’[p]2/$2. Thus, A/£2 should
be small to justify quasi-classical description of space-time.
This condition can easily be achieved. However, the condi-
tion that the SSB occurs at curvatures |R| >> R; requires
also

AMy?
: 53
F (33)

Then the coefficient in front of R in Eq. (52) has the wrong,
positive sign (i.e. gravity becomes repulsive at low curvature,
in particular, in almost flat space-time). Therefore, we come
to conclusion that it is not possible to use this type of SSB
to generate the large coefficient a4 needed for viable unsta-
ble inflation. At the same time, there is a chance that some
other modified scheme related to a phase transition may be
working.

ng > ER; =

5.3 Unstable phase with a large R>-term

Assuming that there is a desired increase of the value of a4 in
the transition period, it is natural to ask how it will change the
evolution if the universe in the consequent unstable period
of inflation. In order to see this, we repeated the analysis
of Sects. 3 and 4, but this time with a very large value of
as =5 x 108,

Qualitatively, the phase diagram does not change too
much, since the system is still in the “right” part of the phase
plane of Fig. 6. The plot for the trajectory is similar to the one
in Fig. 7, but now much closer to the origin of coordinates x
and y.

The result of numerical analysis is shown in Fig. 8. It is
easy to see that the dynamical system of our interest suffers
from initial oscillations which last a very short period. After
that the dependence looks linear.
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Fig. 8 The plotof H (¢) for the theory with one photon and a4 = 5x 103

The interpretation of the plot in Fig. 8 is straightforward.
The initial very fast change of H (t) represents a remnant of
the stable phase, with a relatively large initial value of H.
After that the huge R-term starts to dominate. After some
oscillations the universe starts the period of unstable inflation
in the R + R%-model. The analytic expression for this phase
is very similar to Eq. (30),

M,
o(t)=Hit — Hl + O(n(ty — 1)), (54)

where ¢ corresponds to the end of inflation, H; is an inte-
gration constant and M < H in the given phase [26]. Equa-
tions (30) and (54) both lead to the approximately linear time
dependence of H, which we can also observe in the plot under
discussion.

It looks like the transition from stable to unstable phases is
rather successful in the presence of a huge R-term, since it
leads to the known dynamics after this transition, and this is
exactly the dynamics which passed some tests in comparison
with observational data. After all, the distinguished feature
of the inflationary model based on the stable/unstable transi-
tion is the presence of preliminary stable phase. The conse-
quences may be not observable, but this phase provides right
initial conditions for the physically testable unstable phase.

6 Conclusions

The anomaly-driven inflation [15, 16] can be stable or unsta-
ble depending on the particle content of the underlying quan-
tum field theory. In the course of inflationary expansion the
number of the “active” fields can change, especially due
to the quantum decoupling of heavy particles from grav-
ity [40,41]. For example, one can expect the transition from
stable to unstable phases in the supersymmetric versions of
the Standard Model or GUTs, due to the decoupling of the
s-particles.

@ Springer

The detailed description of the transition period is far
beyond the available theoretical methods of quantum field
theory, because this situation requires the description of the
vacuum quantum effects in the case when Hubble parameter
is of the same order of magnitude as the mass of the quantum
massive field. For this reason, we use the most simple phe-
nomenological approach to this problem, by assuming that
the unstable part starts exactly in the point when the stable
phase ends. The unstable particle contents may lead to the
graceful exit to the usual radiation-dominated evolution, or
to a very violent “hyperinflation”-like behavior [15,17,35].
By using numerical methods and also by stitching the solu-
tions on the phase diagrams of the theory we have found that
the point when the stable evolution ends exactly corresponds
to the initial data of the desirable type of unstable evolution,
such that the “hyperinflation”-type solutions are ruled out.

In order to have a phenomenologically successful R + R>
inflation one need to explain also a relatively large value of
the coefficient a4 of the R2-term. We discussed this issue
starting from the renormalization group running of the non-
minimal parameter £ and using two alternative ways to gener-
ate a huge R2-term. The conclusion is that both mechanisms,
namely the renormalization group running of vacuum a4 and
the SSB-based induced gravity, are capable to provide the
coefficient of the R?-term in the desirable range. The most
important ingredient in both cases is a large value of the non-
minimal parameter & o 10*. From the QFT side, this means
that it would be interesting to design the field theory models
which could provide an intensive running of £ from the UV
to IR, in either perturbative or non-perturbative frameworks.
The first step in the non-perturbative direction has been done
recently in [83], and the considerations presented above show
that this is a phenomenologically relevant subject.

Qualitatively, the output of our work means that the transi-
tion from stable to unstable version of anomaly-driven infla-
tion can occur successfully, at least it is so within the sharp
cut-off approximation. In this case no special conditions for
the initial data are required in the model. All these statements
correspond to the dynamics of the conformal factor of the
metric. It would be very interesting to extend it further to the
case of initially anisotropic metrics. There is a strong expec-
tation that anisotropy disappears rapidly during the stable
phase, but this feature still requires a detailed investigation

([58D.
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