
Eur. Phys. J. C (2015) 75:113
DOI 10.1140/epjc/s10052-015-3333-9

Regular Article - Theoretical Physics

Noncommutative geometry and the primordial dipolar imaginary
power spectrum

Pankaj Jaina, Pranati K. Rathb

Department of Physics, Indian Institue of Technology Kanpur, Kanpur 208016, India

Received: 8 July 2014 / Accepted: 26 February 2015 / Published online: 11 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We argue that noncommutative space-times lead
to an anisotropic dipolar imaginary primordial power spec-
trum. We define a new product rule, which allows us to con-
sistently extract the power spectrum in such space-times. The
precise nature of the power spectrum depends on the model
of noncommutative geometry. We assume a simple dipolar
model which has a power dependence on the wave number, k,
with a spectral index, α. We show that such a spectrum pro-
vides a good description of the observed dipole modulation
in the cosmic microwave background radiation (CMBR) data
with α ≈ 0. We extract the parameters of this model from
the data. The dipole modulation is related to the observed
hemispherical anisotropy in the CMBR data, which might
represent the first signature of quantum gravity.

1 Introduction

The cosmic microwave background radiation (CMBR) shows
a hemispherical power anisotropy [1–9], which can be param-
eterized as,

�T (n̂) = g(n̂)(1 + Aλ̂ · n̂) (1)

where g(n̂) is an isotropic and Gaussian random field, λ̂

the preferred direction and A the amplitude of anisotropy.
This model implies a dipole modulation [10–13] of the
CMBR temperature field. The WMAP 5 year data leads
to A = 0.072 ± 0.022 with the dipole direction, (l, b) =
(224◦,−22◦) ± 24◦ for l ≤ 64 in the galactic coordinates
[1–4,6,8]. This anisotropy has been confirmed by PLANCK
[7] with amplitude, A = 0.073 ± 0.010, and direction
(l, b) = (217◦,−20◦) ± 15◦ for l ≤ 64. It has been shown
in [14] that the model, Eq. (1), leads to several additional
implications for CMBR, besides hemispherical anisotropy.
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The hemispherical anisotropy has also been probed at mul-
tipoles higher than 64 [4,5]. The signal is found to be absent
at l ∼ 500 [15,16] and also not seen in the large scale struc-
tures [17,18]. These observations may be accommodated in
a model which proposes a scale dependent power spectrum
[19], such that the effect is negligible at high l.

Many theoretical models, such as, [20–44], have been
proposed which aim to explain the observed hemispherical
anisotropy as well as other signals of anisotropy seen in data
[45–51]. An interesting possibility is that there might have
been a phase of anisotropic expansion at very early time.
The inflationary Big Bang cosmology is perfectly consistent
with such an evolution [52]. The anisotropic modes, gener-
ated during this early phase may later re-enter the horizon
[52,53] and lead to the observed signals.

In this paper our objective is to determine a primordial
power spectrum which may lead to dipole modulation and
hence hemispherical anisotropy. It is possible to find a power
spectrum based on an inhomogeneous model [3,17,32,54–
56] which is consistent [57] with the observed temperature
anisotropy. However, it is not clear how an anisotropic model
might lead to a dipole modulation. The simplest model that
one might construct leads to quadrupolar and not dipolar
modulation [57]. The basic problem can be understood by
considering the two point correlations in real space. Let δ̃(�x)
be the density fluctuations in real space. Their two point cor-
relation function, F( ��, �X), may be expressed as

F( ��, �X) = 〈δ̃(�x)δ̃(�x ′)〉 (2)

where �� = �x − �x ′ and �X = (�x + �x ′)/2. We are interested in
a correlation which is anisotropic and hence depends on ��
besides the magnitude � ≡ | ��|. It is clear from the definition
of the correlation function that, in a classical framework, it
must satisfy

〈δ̃(�x)δ̃(�x ′)〉 = 〈δ̃(�x ′)δ̃(�x)〉 (3)

Hence it can only be an even function of ��. The simplest
anisotropic function is, therefore,
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F( ��, �X) = f1(�) + Bi j�i� j f2(�) (4)

where Bi, j , i, j = 1, 2, 3 are parameters. It is clear that such a
model cannot give rise to a dipole modulation, which requires
a term linear in �i .

In this paper we argue that in a noncommutative space-
time, a term linear in �i is permissible. The power spectrum
that we are interested in is applicable at very early time,
perhaps even the time when quantum gravity effects were
not negligible. At that time, we cannot assume that space-
time is commutative [58–62]. Its noncommutativity may be
expressed as

[x̂μ, x̂ν] = iθμν (5)

where θμν are parameters and the coordinate functions,
x̂μ(x), depend on the choice of coordinate system. In a par-
ticular coordinate system, we may set

x̂μ(x) = xμ. (6)

In [63] the authors assume that this preferred system is the
comoving coordinate system. In general, the noncommuta-
tivity can appear quite complicated in different systems. The
effect of noncommutativity on cosmology has been consid-
ered earlier [63–79]. However, as explained below, the results
obtained in our paper are new.

In [57], we have determined the power spectrum corre-
sponding to an inhomogeneous model and shown that its
spectral index is consistent with zero. In the present paper
we determine the power spectrum of an anisotropic model
based on noncommutative space-time.

2 Correlations induced by dipole modulation

In this section we review the correlations between differ-
ent multipoles which are induced by the dipole modulation
model, Eq. (1). We may expand the CMBR temperature as

�T (n̂) =
∑

lm

almYlm(n̂) (7)

where alm are the spherical harmonic coefficients. Their two
point correlation function may be expressed as [14],

〈alma∗
l ′m′ 〉 = 〈alma∗

l ′m′ 〉iso + 〈alma∗
l ′m′ 〉dm (8)

where

〈alma∗
l ′m′ 〉iso = Clδll ′δmm′

〈alma∗
l ′m′ 〉dm = A (Cl ′ + Cl) ξ0

lm;l ′m′ . (9)

HereCl is the standard angular power spectrum, 〈alma∗
l ′m′ 〉dm

is the contribution due to the anisotropic dipole modulation
and

ξ0
lm;l ′m′ = δm′,m

[√
(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)
δl ′,l+1

+
√

(l − m)(l + m)

(2l + 1)(2l − 1)
δl ′,l−1

]
. (10)

Hence the model leads to correlations between multipoles, l
and l + 1. We define the statistic [14],

SH (L) =
L∑

l=lmin

l(l + 1)

2l + 1

l∑

m=−l

alma
∗
l+1,m . (11)

We maximize the statistic by varying over the direction
parameters. The resulting statistic is labeled as Sdata

H . This
provides a measure of the signature of anisotropy seen in the
data. This can be compared with a theoretical power spectrum
model in order to fix its parameters.

3 Anisotropic power spectrum

The relationship between the temperature fluctuations,
�T (n̂), and the primordial density perturbations, δ(�k), can
be expressed as

�T

T0
(n̂) =

∫
d3k

∑

l

(−i)l(2l + 1)δ(k)	l(k)Pl(k̂ · n̂) (12)

where Pl(k̂ · n̂) are the Legendre polynomials,

Pl(n̂ · n̂′) = 4π

2l + 1

∑

m

Ylm(n̂)Y ∗
lm(n̂′) , (13)

	l(k) the transfer function and k = |�k|. Here we assume
an approximate form of the transfer function, 	l(k) =
3

10 jl(kη0) [80], where jl is the spherical Bessel function and
η0 is the current conformal time. This form of the transfer
function is obtained by including only the contribution from
the Sachs–Wolfe effect. In this paper we confine ourselves
to the low-l multipoles, l ≤ 64, for which this is sufficiently
reliable. The error induced by ignoring other contributions is
smaller than the error in our extracted parameters, which, as
we shall see, is of the order of 25 %. It is of course neces-
sary to improve the accuracy of our calculation, as well as to
extend it to higher multipoles. This computation is compli-
cated and we prefer to postpone it for future research. There
also appears to be some evidence that the signal decays for
larger values of l [76]. This provides additional motivation
for confining our computation for l ≤ 64.

We next propose the following form of the anisotropic
power spectrum in real space:

F( ��) = f1(�) + λ̂ · �� f2(�) (14)

where λ̂ represents the preferred direction and f1 and f2
depend only on the magnitude �. Such a form is gener-
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ally not permissible since the correlation function must sat-
isfy Eq. (3). However, this does not follow in noncommuta-
tive space-time [63]. In this case the relevant quantity is the
deformed quantum field. Let ϕ0(�x, t) be a self-adjoint scalar
field. The deformed quantum field is defined as [63]

ϕθ = ϕ0 e
1
2
←−
∂ ∧P (15)

where

←−
∂ ∧ P ≡ ←−

∂ μθμνPν (16)

and Pμ is the Fock space momentum operator [63]. In these
equations the arrow pointing left means that the derivative
acts on the fields appearing on the left of this operator. For a
deformed field,

ϕθ (x, t)ϕθ (x′, t ′) �= ϕθ (x′, t ′)ϕθ (x, t) (17)

even for space-like separations [63]. Hence Eq. (3) does not
follow and a correlation function, Eq. (14), which depends
linearly on ��, is permissible.

The correlation function of the Fourier transform, δ(�k), of
δ̃(�x) may be expressed as

〈δ(�k)δ∗(�k′)〉 =
∫

d3X

(2π)3

d3�

(2π)3 ei(
�k+�k′)· ��/2ei(

�k−�k′)· �X

×F( ��, �X). (18)

Using the model given in Eq. (14), we obtain

〈δ(�k)δ∗(�k′)〉 = δ3(�k − �k′)
∫

d3�ei(
�k+�k′)· ��/2F( ��). (19)

This leads to

〈δ(�k)δ∗(�k′)〉 = δ3(�k − �k′)P(k)[1 + i(k̂ · λ̂)g(k)] (20)

where the delta function arises due to spatial translational
invariance and P(k) is the Fourier transform of f1(�). The
anisotropic component of the power spectrum, g(k), can be
expressed as

g(k) = − 1

P(k)

d f̃2(k)

dk
(21)

where f̃2(k) is the Fourier transform of f2(�). Here P(k) is
the standard power spectrum,

P(k) = kn−4Aφ/(4π). (22)

Here we set the parameters n = 1 and Aφ = 1.16 × 10−9

[80]. In Eq. (21), g(k) is a real function which depends only
on the magnitude k = |�k| and represents the violation of
statistical isotropy. A more detailed fit, with n different from
unity, is postponed to future work.

3.1 A model power spectrum in noncommutative
space-time

We have so far argued that a noncommutative space-time
leads to an imaginary component in the power spectrum.
In the present section we use the model proposed in [63]
in order to compute the corresponding power spectrum. As
explained in Sect. 1, this model assumes that the coordinates
appearing in the basic equation, Eq. (5), are the comoving
coordinates in the FRW metric. Following the notation of
[63], we denote the inflaton field by ϕ(�x, t). We expand it
around the background field, ϕ0(t), so that

ϕ(�x, t) = ϕ(0)(t) + δϕ(�x, t). (23)

We denote the Fourier transform of δϕ(�x, t) by �(�k, t), i.e.,

�(�k, t) =
∫

d3xδϕ(�x, t)e−i �k·�x . (24)

It is useful to define the field �̃(�k, η) = a(η)�(�k, η), where
a(η) is the cosmic scale factor and η = η(t) is the conformal
time. We can express this field in terms of the creation and
annihilation operators as

�̃(�k, η) = u(�k, η)â(�k) + u∗(−�k, η)a†(−�k) (25)

where u(�k, η) is the standard mode function,

u(�k, η) = e−ikη

√
2k

(
1 − i

kη

)
. (26)

We need to include only the second term in the brackets in
this equation since it dominates at horizon crossing.

The resulting power spectrum is given in [74] for the com-
mutator,

1

2
[�θ(�k, η),�θ (�k′, η)]− ≡ 1

2
(�θ (�k, η)�θ (�k′, η)

−�θ(�k′, η)ϕθ (�k, η)) (27)

where η is the conformal time and �θ represent the deformed
quantum field, as defined in Eq. (15). In Fourier space the
power spectrum is given by Eq. (17) of [74], reproduced
here for convenience,

1

2
< 0|[�θ(�k, η),�θ (�k′, η)]−|0 >

∣∣∣∣
horizon crossing

= (2π)3P(k) sinh(H �θ0 · �k)δ(�k + �k′). (28)

Surprisingly, this power spectrum is real. Such a power spec-
trum would produce unphysical results and cannot arise in a
sensible theory. It clearly represents some error in the calcu-
lation. Before correcting this crucial error in this equation we
explain the different terms. The function P(k) is the standard
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power spectrum, given in Eq. (22) and �θ0 = (θ01, θ02, θ03)

are three parameters. The argument of the Dirac delta func-
tion is (�k + �k′) instead of (�k − �k′) in Eq. (19), since here we
take the correlation between �θ(�k, η) and �θ(�k′, η) instead
of �θ(�k, η) and �

†
θ (

�k′, η).
The fact that the power spectrum odd in �k must be imag-

inary has already been recognized in [75]. In this paper one
cures this problem by a prescription, Eq. (3.13) of [75], where
the correlation is simply defined to have an imaginary com-
ponent. To be precise the correlator of the anti-self-adjoint
part of the operator is multiplied by the imaginary i . This
is an interesting suggestion. It correctly points out the basic
problem that the operator whose expectation value is being
computed is not Hermitian. However, it is not clear how this
suggestion can be implemented at a fundamental level. The
action of any operator on a state is well defined. Hence it is
not clear how one can have different definitions of expecta-
tion values for different parts of an operator. It is clear that
the problem is not really solved and we need to look for
alternatives. In the second model discussed in [75], again the
parity odd power spectrum, Eq. (4.11) of [75], turns out to
be real. It acquires an imaginary component only if the vec-
tor �v = H �θ is chosen to be imaginary, as explained in the
discussion following Eq. (4.11) of that paper. Here H is the
Hubble parameter and �θ is the same as the vector �θ0, defined
in the previous paragraph. However, our main point is that
we need to obtain an imaginary power spectrum with �θ0 a
real vector. Here H is of course necessarily real.

As we have discussed above, the basic problem is traced
to the fact that the quantity being computed is not Hermi-
tian and hence not an observable. We next demonstrate this
explicitly. Let φ0(�x, t) represent a real scalar quantum field
and φθ (�x, t) the corresponding θ deformed field. The quan-
tity which was computed in [63], in position space, is the
vacuum expectation value of the product of two fields, i.e.,

〈0|φθ (�x1, t1)φθ (�x2, t2)|0〉 (29)

where the deformed product is explicitly given in Eq. (3.14)
of [63]. For the product of two fields, it is given by

〈0|φθ (�x1, t1)φθ (�x2, t2)|0〉
= 〈0|φ0(�x1, t1)φ0(�x2, t2)|0〉e− i

2
←−
∂ x2 ∧←−

∂ x1 . (30)

This expectation value is proportional to the power in position
space. This power should be compared with the basic equa-
tion, Eq. (14), and must be real in order to produce physically
acceptable results. However, the problem is that this expec-
tation value is not real since the operator under consideration
is not Hermitian. This can easily be seen. We have

φθ (x1)φθ (x2) = φ0(x1)φ0(x2) − i

2

∂

∂xμ
2

φ0(x2)θ
μν

× ∂

∂xν
1
φ0(x1) + · · · (31)

where we have kept terms only to leading order in θμν .
Here the arguments, x1 and x2, denote both the space and
the time coordinates, i.e. φ0(x1) = φ0(�x1, t1) and φ0(x2) =
φ0(�x2, t2), etc. Hence we find

(φθ (x1)φθ (x2))
† = φ0(x2)φ0(x1) + i

2

∂

∂xν
1
φ0(x1)θ

μν

× ∂

∂xμ
2

φ0(x2) + · · · (32)

where we have used the fact that φ0(x)† = φ0(x). Since
φ0(�x1, t1) and φ0(�x2, t2) commute for space-like separations,
we obtain

(φθ (x1)φθ (x2))
† = φ0(x1)φ0(x2) + i

2

∂

∂xμ
2

φ0(x2)θ
μν

× ∂

∂xν
1
φ0(x1) + · · · �= φθ (x1)φθ (x2).

(33)

Hence we see that φθ (�x1, t1)φθ (�x2, t2) is not a Hermitian
operator and its vacuum expectation value is not physically
observable. The same applies to the vacuum expectation
value of this operator in Fourier space. In view of this it
is not surprising that it does not lead to sensible results.

In order to cure this problem we define a new twist ele-
ment, given by

FθR = exp

(
−1

2
θαβ Pα ⊗ Pβ

)
(34)

with Pα = −i∂α . In contrast to Eq. (2.4) of [63], this does not
carry an i in the exponent. We call this the real twist element.
This twist element leads us to define a new product of two
functions, f (x) and g(x). Here the argument x denotes both
the space and the time coordinates, i.e. (�x, t). We define

( f � g)(x) = [e− 1
2 θμν Pμ⊗Pν f ⊗ g](x), (35)

which we call the diamond product, in contrast to the star
product, defined in Eq. (2.10) of [63]. The product symbol,
⊗, has the same meaning as in [63]. This implies that the right
hand side has to be evaluated by acting with the first operator
Pμ (= −i∂μ) on the function f (x) and the second opera-
tor Pν (= −i∂ν) on g(x). We point out that this is simply
an additional product rule, besides the standard star product,
that we can define within the framework of noncommutative
space-time. It does not conflict with any rule of noncom-
mutative geometry or quantum mechanics. For example, one
can always take a scalar or vector product of ordinary vec-
tors, without being in conflict with any of the rules of vector
algebra.

We emphasize that it is not necessary that only the star
product must be taken while computing the power. The use
of a star product in [63] was only a prescription. The funda-
mental theory in noncommutative space-time is defined by
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converting all products in the action into star products. How-
ever, this does not imply that only those operators can be
constructed which involve star products. The precise oper-
ator that should arise while computing the power spectrum
must be consistently prescribed by the underlying field the-
ory. One may, for example, use perturbation theory [21,53]
and compute the corrections to the power spectrum arising
due to noncommutative space-time order by order in the non-
commutative parameter, �θ0. This is rather complicated and
we postpone this detailed calculation to future research. Here
our use of the diamond product is a phenomenological pre-
scription which is consistent with all rules of quantum field
theory and noncommutative geometry. We expect that this
would lead to correct results at least to leading order in the
parameter �θ0.

Let us denote the deformed quantum field under the real
twist element by φθR (�x, t). Following [63], we can express
the product of deformed fields in terms of the undeformed
fields, φ0(�x, t). We obtain

φθR (�x1, t1)φθR (�x2, t2) = φ0(�x1, t1)φ0(�x2, t2)e
− 1

2
←−
∂ x2 ∧←−

∂ x1 .

(36)

The expectation value of this product in position space is real
and hence provides a consistent generalization of the power
in noncommutative spaces. We next explicitly show that the
resulting power is real in position space. For this we only
need to show that the real deformed product of two fields,
Eq. (36), is Hermitian. We have

φθR (x1)φθR (x2) = φ0(x1)φ0(x2)

−1

2

∂

∂xμ
2

φ0(x2)θ
μν ∂

∂xν
1
φ0(x1)+· · ·

(37)

where, for simplicity, we keep terms only to first order in
θμν . We have

(φθR (x1)φθR (x2))
† = φ0(x2)φ0(x1)

− 1

2

∂

∂xν
1
φ0(x1)θ

μν ∂

∂xμ
2

φ0(x2) + · · ·

= φ0(x1)φ0(x2)

− 1

2

∂

∂xμ
2

φ0(x2)θ
μν ∂

∂xν
1
φ0(x1) + · · ·

= φθR (x1)φθR (x2) (38)

where we have used φ0(x)† = φ0(x) and the fact that
φ0(�x1, t1) and φ0(�x2, t2) commute for space-like separations.
Here we have confined our proof to leading order in θμν . It is
clear that the proof will work to all orders. We simply need
to expand the exponential to higher orders. At each order the
operator is Hermitian, since the fields commute for space-like
separations. However, we postpone a detailed discussion of

higher orders to a future publication. Furthermore we empha-
size that our phenomenological prescription may be reliable
only to leading order in �θ0.

We next return to the calculation of the power spectrum
for the expanding Universe. This is now straightforward. We
can directly extract the result from [63] by changing �θ0 to
i �θ0. In Fourier space we obtain

〈0|�θR (�k1, t1)�θR (�k2, t2)|0〉

=
〈

0

∣∣∣∣∣�0

(
�k1, t1−i

�θ0 · �k1

2

)
�0

(
�k2, t2 − i

�θ0 · �k1

2

)∣∣∣∣∣ 0

〉
.

(39)

This may be computed by first computing the expectation

value for �θ0 = 0 and then replacing t1 and t2 by t1 − i
�θ0·�k1

2

and t2 − i
�θ0·�k1

2 , respectively. This leads to

〈0|�θR (�k, η)�θR (�k′, η)|0〉
= (2π)3P(k)e−i H �θ0·�kδ(�k + �k′) (40)

≈ (2π)3P(k)(1 − i H �θ0 · �k)δ(�k + �k′) (41)

at horizon crossing. In arriving at this result we have followed
[63] and used the equations

η±(�k) = η

(
t ± i �θ0 · �k

2

)
= η(t)e∓ i

2 H
�θ0·�k . (42)

We point out that in computing the power spectrum, it is
useful to first express the two fields in terms of t1 and t2 as
in Eq. (39) and then translate the time variables as indicated
in this equation. The approximate equality, Eq. (41), where
we retain only the term linear in θμν , is valid for small k.
Hence for small k we find an anisotropic power spectrum
proportional to 1/k2. The leading order term leads to the
standard power spectrum corresponding to an isotropic and
homogeneous model.

The main point of the above calculation is that we can
consistently obtain the imaginary dipolar power spectrum
which is required to yield physically acceptable results. By
comparing with Eq. (20), we identify

λ̂ = − �θ0

|�θ0|
g(k) = kH |�θ0|

(43)

in the limit of small k. Hence we find that in this limit the
anisotropic term increases linearly with k.

The precise form of the correlation predicted within the
framework of noncommutative geometry is model depen-
dent. In particular, the basic equation, Eq. (5), depends on
the choice of coordinates which obey this simple relation-
ship. Here we do not confine ourselves to a particular model
and instead extract the anisotropic power directly from the
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data. For this purpose, we assume the following parametriza-
tion of g(k):

g(k) = g0(kη0)
−α (44)

where g0 and α are parameters. The noncommutative model,
Eq. (5), implies α = −1. As we shall see the data indicates
a value of α close to zero for the range of l explored in this
paper.

3.2 Implications for CMB temperature anisotropy

We next compute the two point temperature correlations,

〈�T (n̂)�T (n̂′)〉 = T 2
0

∫
d3k

∞∑

l,l ′=0

(−i)l−l ′

×(2l + 1)(2l ′ + 1)	l(k)	l ′(k)

×Pl(k̂ · n̂)Pl ′(k̂ · n̂′)Piso(k)[1 + i(k̂ · λ̂)g(k)]. (45)

Setting z-axis as the preferred direction, we obtain k̂ · λ̂ =
cos θ . The correlations of the spherical harmonic coefficients
can be expressed as

〈alma∗
l ′m′ 〉 =

∫
d�n̂d�n̂′Y ∗

lm(n̂)Yl ′m′(n̂′)〈�T (n̂)�T (n̂′)〉.
(46)

We obtain

〈alma∗
l ′m′ 〉 = 〈alma∗

l ′m′ 〉iso + 〈alma∗
l ′m′ 〉aniso, (47)

where

〈alma∗
l ′m′ 〉iso =(4π)2 9T0

2

100
δll ′δmm′

∫ ∞

0
k2dk j2

l (kη0)Piso(k),

(48)

〈alma∗
l ′m′ 〉aniso =(−i)l−l ′+1(4π)2 9T0

2

100
Gll ′ξ

0
lm;l ′m′ , (49)

ξ0
lm;l ′m′ is defined in Eq. (10) and

Gll ′ =
∫ ∞

0
k2dkP(k) jl(kη0) jl ′(kη0)g(k). (50)

Using Eq. (44), we obtain

Gll ′ = g0Aφ

4π

∫ ∞

0

ds

s1+α
jl(s) jl ′(s). (51)

Hence the anisotropic power spectrum, Eq. (14), leads to a
correlation between l and l ± 1. This allows us to obtain the
theoretical prediction of the statistic, SH (L), which can be
compared to Sdata

H in order to determine the best fit value of
the power spectrum parameters, g0 and α.

4 Data analysis

In this section we explain our procedure for extracting the
parameters, g0 and α, of the anisotropic model. Here we first
determine the value of the statistic, SH (L), from data over a
chosen multipole range. As mentioned earlier this is denoted
Sdata
H (L). The procedure used for this calculation is the same

as that followed in [14,57]. The main steps in this calculation
are given below. We next compute this statistic using the the-
oretical anisotropic model. The model parameters can then
be determined by making a fit to the data value.

We use WMAP’s nine year ILC map [81], denoted
WILC9, as well as the SMICA map, provided by the
PLANCK team [82]. We use the mask K Q85 and the CMB-
union mask, respectively, for these two maps in order to
eliminate the foreground contaminated regions. We fill the
masked portions by simulated random isotropic CMBR data.
The SMICA map as well as the corresponding mask is avail-
able at a high resolution with Nside = 2048. Hence we first
generate a full sky CMB data map at this high resolution in
this case. Next we smooth the mask boundaries by applying
appropriate Gaussian beam [14]. The resulting map is down-
graded to a lower resolution with Nside = 32. This procedure
eliminates any breaks at the mask boundaries that might be
generated due to our random filling procedure. The WILC9
map is provided only at lower resolution with Nside = 512.
Hence, in this case we generate the full sky map only at this
resolution which is subsequently downgraded to a low res-
olution with Nside = 32. In this case, the contribution due
to detector noise is also included in the simulated data. The
detector noise is not included for PLANCK data, since the
corresponding noise files are too bulky. In any case, for the
multipole range under consideration the contribution due to
detector noise is found to be negligible for the WMAP data.
Hence it might be reasonable to neglect the detector noise
even for PLANCK data in our analysis. The PLANCK team
has also provided the SMICA in-painted map. In this case
the in-painting procedure [83,84] has been used in order to
reconstruct the masked regions. We use this full sky map also
for our analysis.

For each of the three maps, WILC9, SMICA, and SMICA
in-painted we first maximize the statistic, SH (L), by mak-
ing a search over the preferred direction parameters over the
chosen multipole. The resulting direction parameters corre-
spond to the choice of our z-axis. For WILC9 and SMICA
maps the masked regions are filled by randomly generated
data. Hence for these maps, the results depend on the real-
ization used for the full sky ‘data’ map. The statistic and the
corresponding direction parameters, (l, b), are computed by
taking their average over 100 such filled data maps for both
SMICA and ILC.

We first perform the calculation over the entire range of
multipoles, 2 ≤ l ≤ 64, and next repeat it for the multipole

123



Eur. Phys. J. C (2015) 75 :113 Page 7 of 9 113

bins, l = 2–22, 23–43, 44–64. In the latter case, the best fit
direction parameters are found to depend on the bin [57].
However, the dependence is relatively mild and we set the
direction parameters to be equal to their mean values over
the entire range of multipoles, l = 2–64 [57].

Our procedure of filling of masked regions with simu-
lated data is likely to generate some bias, which we estimate
through simulations [57]. We correct this bias in the final
results. Our bias correction procedure is described below in
Sect. 4.1. Our simulations show that the bias generated is
relatively small.

The anisotropic power spectrum parameters, g0 and α,
defined in Eq. (44), are determined by making a fit to the data
statistic. The theoretical prediction for the statistic, SH (L),
can be obtained by using Eq. (49) for the correlation among
different multipoles. We first set α = 0 and extract g0 for
which the theoretical prediction of SH (L) agrees with the
data value over the entire range of multipoles, l = 2 − 64.
We next use the χ2 minimization procedure in order to extract
both parameters, g0 and α. In this case we use the data in the
three multipole bins, l = 2–22, 23–43, 44–64.

4.1 Bias correction

The bias generated by our procedure of filling masked regions
with simulated data in the case of the ILC and the SMICA
maps is estimated through simulations by using the method
described in [57]. The use of simulations for bias correc-
tion is analogous to the procedure used by the WMAP sci-
ence team [85] in order to correct for the residual foreground
contamination in the ILC map. Here we briefly review our
bias correction procedure. We first create a full sky CMBR
map through simulations which has the same characteristics,
including dipole modulation, as the real data. This is obtained
by first simulating a full sky isotropic CMBR map. This map
is multiplied by the dipole modulation term, (1+ Aλ̂ · n̂). The
direction, λ̂, is taken to be same as that obtained by WMAP
[5] and the amplitude, A, is a free parameter. Subsequently
we apply the same mask to this map as used for the real data.
The masked regions are finally filled with simulated isotropic
CMBR data. This procedure simulates a full sky realization
of a map with properties the same as the full sky real map
we utilize for our analysis.

We next make a search over the amplitude parameter A
such that the simulated map leads to a statistic, SH , which
is equal to Sdata

H , the statistic obtained for real data. For each
A the calculation is performed by generating 1000 different
realizations of the simulated samples. The output statistic is
equal to the average value obtained over these 1000 sam-
ples. The error in SH is given by the variance over these
samples. The final A, which yields the statistic closest to that
obtained by the real data, provides the estimate of this param-
eter, as well as its error, in real data. We next use this value

of A in order to obtain the full sky estimate of the statistic.
This calculation is performed by generating 1000 full sky
realizations of simulated CMBR maps, which have a dipole
modulation whose amplitude is the same as the value of A
extracted above. The bias corrected estimate of the statistic,
SH , is obtained by taking an average of its value over these
1000 maps.

5 Results

For the entire multipole range, 2 ≤ l ≤ 64, the best fit val-
ues of g0 are given in Table 1 for all the three maps. Here
we have assumed that the spectral index α = 0. Hence the
function, g(k), is equal to a constant, g0. The bias corrected
statistic as well as the best fit direction parameters, obtained
in [57], are also given in Table 1. We find that the bias cor-
rection is relatively small, less than 10 % both for WILC9
and SMICA [57]. The extracted values of the dipole mod-
ulation amplitude parameter, A, are given in Ref. [57]. We
find that both the direction and the amplitude parameters
of the dipole modulation are consistent with those obtained
earlier by hemispherical analysis of WMAP [1–4,6,8] and
PLANCK [7] data.

We next extract the function, g(k), using data in the three
multipole bins, l = 2–22, 23–43 and l = 44–64. We parame-
terize it in terms of g0 and the spectral index α. As explained
in Sect. 4, here we set the direction parameters for all the
three bins to be equal to the mean parameters over the entire
range l = 2–64 [57]. Setting α = 0, the best fit value of g0 is
found to be g0 = 0.24±0.06 with χ2 = 0.41 for WILC9 and
g0 = 0.23 ± 0.06 with χ2 = 0.15 for SMICA. For SMICA
(in-painted) we obtain g0 = 0.27 ± 0.07 with χ2 = 1.4
for α = 0. Hence we find that a zero spectral index for the
anisotropic part of the power spectrum provides a good fit to
the data. The resulting fit is shown in Fig. 1 as the dotted line.
The value of χ2 is found to be rather small, especially for the
case of SMICA. However, such a small value is not unrea-
sonable in the present case when we fit only three data points.
Furthermore the data value in the first bin is found to have a
rather large error. Allowing a non-zero value of α we find that
the 1σ limit on this parameter is, −0.28 < α < 0.28 and
−0.46 < α < 0.30 for WILC9 and SMICA, respectively.

Table 1 The extracted value of the amplitude g0 obtained by making
a fit in the multipole range l = 2 − 64. Here we have set α = 0. The
values of the statistic, Sdata

H , and the direction parameters are also given

Sdata
H (L) (mK2) (l, b) g0

WILC9 0.025 ± 0.008 (227◦,−14◦) 0.28 ± 0.09

SMICA 0.023 ± 0.006 (229◦,−16◦) 0.25 ± 0.07

SMICA (in-painted) 0.027 ± 0.007 (232◦,−12◦) 0.30 ± 0.08
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Fig. 1 The statistic, Sdata
H , as a function of the multipole l for WILC9.

Here the statistic in the three bins is extracted by fixing the direction
parameters to be equal to the mean direction over the entire multipole
range [57], as given in Table 1. The dotted line is the theoretical fit
corresponding to α = 0, g0 = 0.24 ± 0.06

For SMICA (in-painted), the one sigma limit is found to be
−0.21 < α < 0.16.

Our result that α ≈ 0 differs from the result obtained
in [76]: a tilt parameter, n∗, close to zero for the imag-
inary power spectrum. The two parameters are related as
α = 1 − n∗. Hence in [76], the authors find an anisotropic
power which decays with k. The difference most likely arises
since we analyze the signal only in the multipole range,
2 ≤ l ≤ 64, whereas [76] employs a much larger range
2 ≤ 400. The signal is most likely absent beyond l∼50 [76].
We have also explicitly verified that the effective dipole mod-
ulation amplitude gets significantly reduced for l > 64. As
we have shown in our paper, the data for low l is consis-
tent only with α ≈ 0. Hence the results of [76] suggest that
a pure power law is not consistent over the larger range of
multipoles. In all likelihood, the function g(k) may be almost
independent of k for low k, as suggested by our results, and
it dies off at larger k. We postpone a detailed fit which might
provide a good description of data over the full range of mul-
tipoles to future research.

6 Conclusion

We have shown that noncommutative geometry can lead to
a dipolar anisotropic power spectrum, which is required to
obtain the observed signal of hemispherical anisotropy. This
anisotropy can be parameterized in terms of a dipole mod-
ulation model, which leads to correlations among the mul-
tipoles corresponding to l and l + 1. The noncommutative
anisotropic power spectrum model also leads to such a corre-
lation. The anisotropic power spectrum, g(k) = g0(kη0)

−α ,
is parameterized in terms of the amplitude, g0, and the spec-
tral index, α. The theoretical power spectrum depends on the
model of noncommutative geometry. The precise model used

in this paper leads to a power spectrum which, for small k,
grows linearly with k. The full power spectrum has a com-
plicated dependence on �k. In this paper we do not use the
precise form of the power spectrum predicted by the theory.
Instead we directly extract the parameters, α and g0, from
the data. We first set α = 0 and determine the value of g0

by making a fit over the entire multipole range, 2 − 64. The
best fit value is found to be g0 = 0.28 ± 0.09 for WILC9.
We next determine these parameters by making a fit over
the three multipole bins, l = 2–22, 23–43 and l = 44–64.
In this case again we first set, α = 0. The best fit leads to
g0 = 0.24 ± 0.06 for WILC9. This leads to a good fit to the
data withχ2 = 0.41. Furthermore we find the one sigma limit
on α to be −0.28 < α < 0.28 for WILC9. There are many
indications that the signal of the dipole modulation decays
for large l values. Hence the data suggests that the anisotropic
power, g(k), is independent of k for small k, which gives a
dominant contribution in the range 2 ≤ l ≤ 64, but it decays
for larger values of k.

We conclude that the observed hemispherical anisotropy
might represent the first observational signature of noncom-
mutative geometry and hence of quantum gravity.
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