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Abstract The cosmic microwave background (CMB) and
large-scale structure (LSS) are complementary probes in
the investigatation of the early and late time Universe.
After the current accomplishment of the high accuracies
of CMB measurements, accompanying precision cosmology
from LSS data is emphasized. We investigate the dynami-
cal dark energy (DE) models which can produce the same
CMB angular power spectra as that of the �CDM model
with less than a sub-percent level accuracy. If one adopts
the dynamical DE models using the so-called Chevallier–
Polarski–Linder (CPL) parametrization, ω ≡ ω0 + ωa

(1−a), then one obtains models (ω0, ωa) = (−0.8,−0.767),

(−0.9,−0.375), (−1.1, 0.355), (−1.2, 0.688) named M8,
M9, M11, and M12, respectively. The differences of the
growth rate, f , which is related to the redshift-space
distortions (RSD) between different DE models and the
�CDM model are about 0.2 % only at z = 0. The dif-
ference of f between M8 (M9, M11, M12) and the
�CDM model becomes maximum at z � 0.25 with
−2.4(−1.2, 1.2, 2.5) %. This is a scale-independent quan-
tity. One can investigate the one-loop correction of the matter
power spectrum of each model using the standard perturba-
tion theory in order to probe the scale-dependent quantity in
the quasi-linear regime (i.e. k ≤ 0.4 h−1 Mpc). The differ-
ences in the matter power spectra including the one-loop cor-
rection between M8 (M9, M11, M12) and the �CDM model
for the k = 0.4 h−1 Mpc scale are 1.8 (0.9, 1.2, 3.0) % at
z = 0, 3.0 (1.6, 1.9, 4.2) % at z = 0.5, and 3.2 (1.7, 2.0,
4.5) % at z = 1.0. The larger departure from −1 of ω0, the
larger the difference in the power spectrum. Thus, one should
use both the RSD and the quasi-linear observable in order to
discriminate a viable DE model among a slew of the models
which are degenerate in CMB. Also we obtain the lower limit
on ω0 > −1.5 from the CMB acoustic peaks and this will
provide a useful limitation on phantom models.

a e-mail: skylee@kias.re.kr

1 Introduction

Both the cosmic microwave background (CMB) and the
large-scale structure (LSS) in the Universe have been used
to constrain the cosmological parameters. Especially, the
growth history of the matter fluctuation from LSS is used
to reveal the properties of dark energy (DE). Although CMB
anisotropies furnish the limited information as regards the
DE on their own, CMB constraints on the geometry and the
matter (radiation) content of the Universe play a crucial role
in probing DE when combined with low redshift surveys.
CMB data supply measurements of the observed angular size
of the sound horizon at recombination θs = rs/d

(c)
A from the

angular location of the acoustic peaks to better than 0.1 %
precision at 1 σ [1]. Even though the sound horizon at the
time of last scattering, rs(z∗), is insensitive to the properties
of DE, the comoving angular diameter distance at which we
are observing the fluctuations, d(c)

A (z∗), does depend on the
properties of DE.

CMB also provides the best way of fixing the amplitude of
cosmological fluctuations on the largest scales [2,3]. In addi-
tion to this, as a secondary anisotropies the different amounts
of potentials decay caused by different DE models lead to the
net energy change of photons called the Integrated Sachs–
Wolfe (ISW) effect. The alternative normalization is σ8, the
rms linear matter fluctuation in spheres of radius 8 h−1 Mpc
inferred from abundances of clusters. However, this scale is
not sufficiently large to remove the nonlinear effect and fluc-
tuations at these scales are still well inside the horizon to
depend on its evolution.

Redshift-space distortions (RSD) are a consequence of the
peculiar motions on the measurement of the power spectrum
from a galaxy redshift survey. On large scales, coherent bulk
flows bound to an over-density out of voids are coherent
toward the central mass, which leads to an enhancement in
the density inferred in the redshift space. The enhancement of
the power spectrum due to RSD, under the linear perturbation
theory assumption with the plane parallel approximation is
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given by Ps(k, μ) = (1+βμ2)2Pr (k, μ). β is a so-called the
RSD parameter defined as β = f/b where f = d ln δ/d ln a
is the growth rate and b is the bias factor [4].

Our main interest is to understand the dark-energy effect
on the matter power spectrum in a quasi-linear regime. Ana-
lytical solutions are presented for the dynamical DE model
parameterization, the so-called Chevallier–Polarski–Linder
(CPL) parametrization, ω ≡ ω0 + ωa(1 − a) [5,6]. Each
dynamical model can produce the same CMB power spec-
trum as those of the �CDM model by obtaining the proper ω0

and ωa fixing all other cosmological parameters. A similar
approach for the numerical simulation has been investigated
[7] and the approximate approach using the standard pertur-
bation theory (SPT) for the one-loop correction matter power
spectrum has also been studied [8–10]. As we show in Ref.
[13], the exact SPT calculation improves the accuracy of the

total matter power spectrum at k = 1 h Mpc−1 about 4 % at
z = 0. Thus, even though the methodology in this manuscript
is not new compared to previous work [9], it is worth to inves-
tigate the dependence of the matter power spectrum on the
dynamical DE with better accuracies.

In the next section, we obtain the proper values of (ω0,
ωa) to produce the same angular size of the sound horizon
power as that of the �CDM model. We compare the CMB
power spectra of the models. In Sect. 3, we compare the
predicted values of RSD for corresponding models. In Sect.
4, we obtain the one-loop matter power spectrum of each
model using SPT and compare it with that of �CDM model.
We conclude in the last section. In the Appendix, we extend
the models including ones will be possibly ruled out in a
future survey.

2 Dark energy and cosmic microwave background

The CMB is a power window enabling one to probe the early
Universe. At the last scattering surface, z∗ where the photons
interact with matter for the last time, it shows tiny temper-
ature fluctuations that correspond to slightly different den-
sities, representing the seeds of LSS. The pressure of the
photons tends to erase temperature anisotropies, whereas the
gravitational attraction of the baryons makes them tend to
collapse.These two effects compete to create acoustic oscilla-
tions with a CMB peak structure. One calls the characteristic
angular size of the fluctuation in the CMB the acoustic scale.

It is determined by the sound horizon at the last scattering,
rs(z∗) and the comoving angular diameter distance, d(c)

A (z∗).
We adopt the CPL parametrization of the DE equation of
state, ω. The acoustic angular size is defined by

θs(z∗) = rs(z∗)
d(c)
A (z∗)

, (2.1)

where

rs(z∗) =
∫ t∗

0

csdt

a

c√
3H0

∫ ∞

z∗

dz′√
1 + R(z′)E(z′)

,

where R ≡ 3ρb

4ργ

, (2.2)

d(c)
A (z∗) ≡ (1 + z)dA(z∗) = c

H0

∫ z∗

0

dz′

E(z′)
, (2.3)

E(z) ≡ H

H0

=
√


m0(1 + z)3 + 
m0

1 + zeq
(1 + z)4 +

(
1 − 
m0

2 + zeq

1 + zeq

)
(1 + z)3(1+w0+wa) exp[−3wa(

z

1 + z
)], (2.4)

where H0 is the present value of the Hubble parameter, 
m0

is the present value of the matter energy density contrast, and
zeq is the matter and radiation equality epoch. θs(z∗) is mea-
sured by the positions of the peaks but not by their amplitudes
and this it is quite robust. Also, θs(z∗) is tightly constrained
from the observation, it can be safely used to constrain the
cosmological parameters. From Eqs. (2.1)–(2.4), one can find
that d(c)

A (z∗) depends on ω and so does θs(z∗). If one keeps
all other cosmological parameters fixed, except ω, then one
is able to obtain the viable values of (ω0, ωa) which can pro-
duce the same θs(z∗) as that of the �CDM model. We find
the viable models and show their (ω0, ωa) values in Table 1.

We put 
m0 = 0.3, 
b0 = 0.0462, 
γ 0 = 5.04 × 10−5,
H0 = 70 h km/sec/Mpc, zeq = 3513, and z∗ = 1089.73. This
set of parameters produces θs(z∗) = 0.0105 for the �CDM.
If we vary the value of ω0 from −1.2 to −0.8 to obtain the
same value of θs(z∗) as �CDM, then we obtain ωa values
as given in the Table 1. We label each model (ω0, ωa) =

Table 1 σ8 and the age of the Universe in (Gyr), t0 for CMB degenerate
DE models

Models (ω0, ωa) σ8 t0 (Gyr)

M8 (−0.8,−0.767) 0.850 13.40

M9 (−0.9,−0.375) 0.848 13.43

�CDM (−1.0, 0.0) 0.845 13.46

M11 (−1.1, 0.355) 0.842 13.50

M12 (−1.2, 0.688) 0.837 13.54
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Fig. 1 CMB angular power spectra and their differences. Left CMB
angular power spectra for M8 (dashed), M9 (dot-dashed), �CDM
(solid), M11 (dotted), and M12 (long-dashed), respectively. Right dif-

ferences between CMB angular power spectrum of the �CDM model
and that of M8 (dashed), M9 (dot-dashed), M11 (dotted), and M12
(long-dashed), respectively

(−0.8,−0.767), (−0.9,−0.375), (−1.1, 0.355), and
(−1.2, 0.688) as M8, M9, M11, and M12, respectively.

We show the CMB angular power spectrum of each model
and its difference from �CDM model in Fig. 1. As we expect,
the CMB angular power spectra between models are almost
the same, as shown in the left panel of the Fig. 1. Dashed,
dot-dashed, solid, dotted, and long-dashed lines correspond
(ω0, ωa) = (−0.8,−0.767), (−0.9,−0.375), (−1.0, 0),

(−1.1, 0.355), and (−1.2, 0.688), respectively. If we inves-
tigate the differences of the CMB power spectra between
DE models and �CDM model, then they are less than 1 %
for all model when l ≥ 5. The difference in the large scale
is due to the integrated Sachs–Wolfe (ISW) effect caused
by the gravitational redshift occurring between the surface
of last scattering and the present epoch. The different DE
models produce different evolutions of the large-scale grav-
itational potential energy wells and hills and they cause a
change of the energy of the photons passing through them.
This is shown in the right panel of Fig. 1. Dashed, dot-dashed,
dotted, and long-dashed lines correspond to the angular
power spectra differences between �CDM and (ω0, ωa) =
(−0.8,−0.767), (−0.9,−0.375), (−1.1, 0.355), and
(−1.2, 0.688), respectively. Observationally it is impossible
to distinguish the CMB angular power spectra for these dif-
ferent models at large scale due to the cosmic variance.

CMB with the different DE models also provides the dif-
ferent normalization at large scale as [11,12]

P(k, a) = Akns T (k)2
(D(a)

D0

)2

≡ 2π2δ2
H

( c

H0

)ns+3
kns T (k)2

(D(a)

D0

)2
, (2.5)

where A is the normalization, ns is the spectral index of the
primordial adiabatic density perturbations, T is the transfer
function, D(a)(D0) is the linear growth factor at a(a = 1),
and δH is the horizon crossing amplitude. From the CMB

observation, one can extract δH for the different DE mod-
els. In other words, δH can be a function of ω. However,
theoretically this value is determined from the specific infla-
tion model and thus we use the same value of δH (i.e. A)
for the matter power spectrum analysis in Sect. 4. This also
explains why we obtain the slightly different values of σ8 for
the different models.

σ 2
8 (a) ≡

〈∣∣∣ δM

M(R = 8Mpc/h, a)

∣∣∣2〉

= 1

2π2

∫ ∞

0
k2P(k, a)

∣∣∣W (kR)

∣∣∣2

R=8Mpc/h
dk. (2.6)

Even though we use the same values of δH and ns for the
different DE models, one obtains different T (k) and these
cause the slight different values of σ8 as shown in Table 1.

3 Dark energy and redshift-space distortions

Although Hubble’s law determines the redshift corresponds
to true distance, peculiar velocities not associated with the
Hubble flow cause distortions in redshift space. These pecu-
liar motions produce two different types of distortion to the
matter power spectrum. On small scales, random velocity
dispersions in galaxy clusters cause structure to appear elon-
gated with long thin filaments in redshift space point directly
back at observer. This is called the “finger of God” effect. On
large scales, peculiar velocities of galaxies bound to a cen-
tral mass during their infall. Peculiar velocities are coherent
toward the central mass and cause the deviation of measured
redshifts from a pure Hubble’s law. This leads to an enhance-
ment in the density inferred in redshift space and this is called
a redshift-space distortion (RSD). The enhancement of the
power spectrum due to RSD, under the linear perturbation
theory assumption with the plane parallel approximation, is
given by Ps(k, μ) = (1 + βμ2)2Pr (k, μ) where Ps is the
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matter power spectrum in the redshift space, Pr is the one in
the real space, μ = k̂ · r̂ with r̂ denoting the unit vector along
the line of sight, and β is the so-called the RSD parameter
defined as β = f/b where f = d ln δ/d ln a is the growth
rate and b is the bias factor. Since one cannot directly mea-
sure the matter power spectrum, one has to investigate the
RSD to the matter power spectrum of the galaxies as matter
tracer in the galaxy redshift survey. Alternatively, one can
use a bias-free RSD measurement using f σ8.

In sub-horizon scales, one can define both the scale-
independent matter fluctuation δ(k, a) = D(a)δ(k) and its
growth rate f = d ln D/d ln a where D is obtained from the
linear perturbation theory

d2D

da2 + 3

2a

(
1 − w
de

)dD

da
− 3

2a2 
mD = 0, (3.1)

where 
m = 1 − 
de =
(

1 + (
−1
m0 − 1)(1 + z)3(w0+wa)

exp[−3wa(
z

1+z )]
)−1

. D is the sub-horizon scale growth fac-

tor. Due to the ω dependence on 
m(z), both D and f also
depends on ω. However, the differences of D and f between
different models are expected to be very small due to their
similar background evolutions. We show this in Fig. 2.

If we compare the evolutions of the matter energy density
contrast, 
m(z), for different models, then M8 has the biggest

m(z) during the cosmic evolution. On the other hand, M12
maintains the smallest 
m(z) among models. 
m(z) pro-
vides the source term in Eq. (3.1). Thus, one may expect the
biggest D for M8 and the smallest one for M12. This is shown
in the left panel of Fig. 2. The difference of D between M8
(M9, M11, M12) and �CDM is depicted as dashed (dot-
dashed, dotted, long-dashed) lines. At the present epoch,
z = 0, the difference of D between M8 (M9, M11, M12) and
�CDM is 0.4 (0.25,−0.2,−0.9) %. Thus, it is impossible to
distinguish the different DE models with RSD when the mea-

surement accuracy is higher than the sub-percent level. The
difference of D becomes maximum at z � 0.8 and it is about
1.2 (0.6,−0.7,−1.8) % for M8 (M9, M11, M12). We also
show the differences of f between models in the right panel
of Fig. 2. At the present epoch, the differences between all
models are less 0.2 %. The difference of f between M8 (M9,
M11, M12) and �CDM becomes maximum around z � 0.25
with −2.4(−1.2, 1.2, 2.5) % deviation. Thus, measurements
of f at specific epochs are quite important to probe the DE
from RSD.

4 Dark energy and one-loop matter power spectrum

The standard perturbation theory (SPT) has been widely used
to investigate the correction to the linear power spectrum in
a quasi-nonlinear regime. The exact solutions for the Fourier
components of the matter density fluctuation δ̂(τ, 
k) and the
divergence of the peculiar velocity θ̂ (τ, 
k) has been obtained
for general DE models up to third order [13]. One can inves-
tigate the DE effects on the matter power spectrum including
the one-loop correction with these exact solutions.

The equations of motion of δ̂(τ, 
k) and θ̂ (τ, 
k) in the
Fourier space are given by

∂δ̂

∂τ
+ θ̂ = −

∫
d3k1

×
∫

d3k2δD(
k12 − 
k)α(
k1, 
k2)θ̂(τ, 
k1)δ̂(τ, 
k2), (4.1)

∂θ̂

∂τ
+ Hθ̂ + 3

2

mH2δ̂ = −1

2

∫
d3k1

×
∫

d3k2δD(
k12 − 
k)β(
k1, 
k2)θ̂(τ, 
k1)θ̂(τ, 
k2), (4.2)
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Fig. 2 Differences in the growth factor D and the growth rate f as a
function of z. Left differences of growth factors Ds between DE mod-
els and the �CDM. The notation is M8 (dashed), M9 (dot-dashed),

M11 (dotted), and M12 (long-dashed), respectively. Right differences
of growth rates f s between DE models and the �CDM. We use the
same notation as left panel
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where τ is the conformal time, 
k12 ≡ 
k1 + 
k2, δD is the Dirac
delta function, H ≡ 1

a
∂a
∂τ

, 
m is the matter energy density

contrast, α(
k1, 
k2) ≡ 
k12·
k1
k2

1
, and β(
k1, 
k2) ≡ k2

12(

k1·
k2)

k2
1k

2
2

.

Due to the mode coupling of the nonlinear terms shown in
the right hand side of Eqs. (4.1)–(4.2), one needs to make a
perturbative expansion in δ̂ and θ̂ [14]. One can introduce the
proper perturbative series of solutions for the fastest growing
mode Dn

δ̂(a, 
k) ≡
∞∑
n=1

δ̂(n)(a, 
k), (4.3)

θ̂ (a, 
k) ≡
∞∑
n=1

θ̂ (n)(a, 
k), (4.4)

where one can define each order solution as

δ̂(1)(a, 
k) ≡ D1(a)δ1(
k), (4.5)

θ̂ (1)(a, 
k) ≡ Dθ1(a)θ1(
k) ≡ −aHdD1

da
δ1(
k), (4.6)

δ̂(2)(a, 
k) ≡ D21(a)K21(
k) + D22(a)K22(
k)
≡ D2

1

[
c21(a)K21(
k) + c22(a)K22(
k)

]

≡ D2
1(a)δ2(a, 
k) ≡ D2

1

∫
d3k1

×
∫

d3k2δD(
k12 − 
k)F (s)
2 (a, 
k1, 
k2)

×δ1(
k1)δ1(
k2), (4.7)

θ̂ (2)(a, 
k) ≡ Dθ21(a)K21(
k) + Dθ22(a)K22(
k)
≡ D1

∂D1

∂τ

[
cθ21(a)K21(
k) + cθ22(a)K22(
k)

]

≡ D1
∂D1

∂τ
θ2(a, 
k) ≡ −D1

∂D1

∂τ

∫
d3k1

×
∫

d3k2δD(
k12 − 
k)G(s)
2 (a, 
k1, 
k2)

×δ1(
k1)δ1(
k2), (4.8)

δ̂(3)(a, 
k) ≡ D31(a)K31(
k) + · · · + D36(a)K36(
k)
≡ D3

1(a)

[
c31(a)K31(
k) + · · · + c36(a)K36(
k)

]

≡ D3
1(a)

∫
d3k1d

3k2d
3k3δD(
k123 − 
k)

×F (s)
3 (a, 
k1, 
k2, 
k3)δ1(
k1)δ1(
k2)δ1(
k3),

(4.9)

where

c2i = D2i

D2
1

, cθ2i = Dθ2i

D1

(∂D1

∂τ

)−1
, c3i = D3i

D3
1

,

(4.10)

K21(
k) = −
∫

d3k1

×
∫

d3k2δD(
k12 − 
k)α(
k1, 
k2)θ1(
k1)δ1(
k2), (4.11)

K22(
k) = −
∫

d3k1

×
∫

d3k2δD(
k12 − 
k)β(
k1, 
k2)θ1(
k1)θ1(
k2), (4.12)

F (s)
2 (a, 
k1, 
k2) = 1

2

[
c21

( 
k12 · 
k1

k2
1

+ 
k12 · 
k2

k2
2

)

−2c22
k2

12(

k1 · 
k2)

k2
1k

2
2

]

= c21 − 2c22

( 
k1 · 
k2

k1k2

)2

+ 1

2

(
c21 − 2c22

)

×
k1 · 
k2

(
1

k2
1

+ 1

k2
2

)
, (4.13)

G(s)
2 (a, 
k1, 
k2) = 1

2

[
−cθ21

( 
k12 · 
k1

k2
1

+ 
k12 · 
k2

k2
2

)

+2cθ22
k2

12(

k1 · 
k2)

k2
1k

2
2

]

= −cθ21 + 2cθ22

( 
k1 · 
k2

k1k2

)2

−1

2

(
cθ21 − 2cθ22

)
k1 · 
k2

(
1

k2
1

+ 1

k2
2

)
, (4.14)

F (s)
3 (a, 
k1, 
k2, 
k3) =

6∑
i=1

F (s)
3i (a, 
k1, 
k2, 
k3), (4.15)

where explicit forms of F (s)
3i are given in the appendix of Ref.

[13]. Now we replace D1(a) with D(a)

Both the linear and the one-loop power spectra are defined
as

P1(a, k)=
(
D(a)

D0

)2

P11(k), (4.16)

P2(a, k) =
(
D(a)

D0

)4[
P22(a, k) + 2P13(a, k)

]
, (4.17)

where D0 = D(a = 1), P22, and P13 are obtained:

P22(a, k)=2
∫

d3qP11(q)P11(|
k−
q |)
[
F(s)

2 (a, 
q, 
k−
q )
]2

= (2π)−2k3

2

∫ ∞
0

dr P11(kr)

×
∫ 1

−1
dx P11

(
k
√

1 + r2 − 2r x
)

×
[

(c21 + 2c22)r + (c21 − 2c22)x − 2c21r x
2

(1 + r2 − 2r x)

]2

,

(4.18)
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Fig. 3 The difference of the matter power spectrum including one-loop
correction between DE models and �CDM at different epochs. Left dif-
ferences of the matter power spectrum P between DE models and the

�CDM at z = 0. The notation is M8 (dashed), M9 (dot-dashed), M11
(dotted), and M12 (long-dashed), respectively. Right differences of P
at z = 0.5

2P13(a, k) = 6P11(k)
∫

d3qP11(q)F (s)
3 (a, 
q, −
q, 
k )

= (2π)−2k3P11(k)
∫ ∞

0
dr P11(kr)

×
[

2c35r
−2 − 1

3

(
4c31 − 8c32 + 3c33 + 24c35 − 16c36

)

− 1

3

(
4c31 − 8c32 + 12c33 − 8c34 + 6c35

)
r2 + c33r

4

+
(r2 − 1

r

)3
ln

∣∣∣1 + r

1 − r

∣∣∣
(
c35 − 1

2
c33r

2
)]

, (4.19)

where r = q
k and x = 
q·
k

qk . Terms with c2i and c3i represent
the dark energy effect on the one-loop power spectrum.

We obtain the one-loop power spectra for different DE
models by running the camb to obtain the linear power spec-
trum [15] using ns = 0.96 and A = 2.1 × 10−9. The
numerical integration range for q in Eqs. (4.18) and (4.19) is
10−6 ≤ q ≤ 102. In this analysis, we use the normalization
of A defined in Eq. (2.5) instead of σ8. This is due to the fact
that the specific inflation model predicts the specific value
of A. However, σ8 value is affected by the secondary effects
like DE as shown in the Table 1.

Dark energy dependence on the one-loop matter power
spectrum is depicted in Fig. 3. We compare the matter power
spectrum of each model with the one of �CDM. In the
left panel of Fig. 3, we show the differences of P between
models at the present epoch. The differences of P between
M8 (M9, M11, M12) and �CDM are 1.1 (0.6, 0.8, 1.9) %
for k = 0.1 h Mpc−1 mode and 1.8 (0.9, 1.2, 3.0) % for
k = 0.4h Mpc−1 one. In the right panel of the figure, the
differences of P between models at z = 0.5 are shown. The
differences of P between M8 (M9, M11, M12) and �CDM
are 2.1 (1.1, 1.3, 3.0) % for k = 0.1h Mpc−1 and 3.0 (1.6,
1.9, 4.2) % for k = 0.4 h Mpc−1. We also investigate the
differences of P between the models at z = 1.0. The differ-
ences of P between M8 (M9, M11, M12) and �CDM are
2.4 (1.2, 1.5, 3.4) % for k = 0.1 h Mpc−1 and 3.3 (1.7, 2.0,
4.5) % for k = 0.4 h Mpc−1.

We summarize the RSD and matter power spectra result
in Table 2. We define � f = fDE− f�CDM

f�CDM
× 100 (%) and

�P =
∣∣∣ PDE−P�CDM

P�CDM

∣∣∣ × 100 (%). Both � f and �P have a

similar sensitivity on ω to separate DE models from �CDM
at z = 0.25. However, �P can be used for almost entire
epochs to distinguish the DE models. As z increases, so does
�P . This cannot be achieved by RSD. Also the bigger the
departure of ω0 value is from −1, the larger the �P .

Table 2 Summary of results in
∣∣∣ PDE−P�CDM

P�CDM

∣∣∣ and fDE− f�CDM
f�CDM

. k in unit of h/Mpc

Models Matter power spectrum �P (%) RSD � f (%)

z = 0.0 z = 0.5 z = 1.0 z = 0 z = 0.25

k = 0.1 0.4 0.1 0.4 0.1 0.4

M8 1.1 1.8 2.1 3.0 2.4 3.2 0.2 −2.3

M9 0.6 0.9 1.1 1.6 1.2 1.7 0.2 −1.2

M11 0.8 1.2 1.3 1.9 1.5 2.0 0.2 1.2

M12 1.9 3.0 3.0 4.2 3.4 4.5 0.2 2.4
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5 Conclusions

Cosmic microwave background is degenerate for the differ-
ent dark energy models even if one fixes the other cosmo-
logical parameters. This degeneracy can be broken when one
combines CMB with LSS. If we parameterize the dark energy
equation of state by CPL, then we can find the various com-
bination of (ω0, ωa) which can produce the same angular
acoustic scale for each other. These models produce the dif-
ferent prediction for the growth rate which can be determined
by the galaxy redshift-space distortions. However, the growth
rate is by scale-independent measurement and the differences
between the models can be reached by the maximum at the
specific epoch, like z � 0.25. Even in this case, the maxi-
mum difference is about 6 % for the considered models. If we
consider the matter power spectrum including the one-loop
correction, then the model dependence on the matter power
spectrum is increased. If the accuracy of the future galaxy
survey reaches 5 %, then one can rule out many dark energy
models which are degenerate by CMB and RSD.
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Appendix

One can expand the CMB degenerate DE models. One is
able to find the combinations of (ω0, ωa) to produce the
same value of θs(z∗) for all models. If one just considers
θs(z∗), then one can keep lowering the value of ω0 to find the
proper ωa . We obtain the corresponding ωa values as given

in the Table 3 by varying ω0. We label each model (ω0, ωa)=
(−0.5,−2.035), (−0.6,−1.599), (−0.7,−1.176), (−0.8,

−0.767), (−0.9,−0.375), (−1.1, 0.355), (−1.2, 0.688),

(−1.3, 0.993), (−1.4, 1.266), and (−1.5, 1.502) as M5,
M6,M7, M8, M9, M11, M12, M13, M14, and M15, respec-
tively.

However, CMB also provides accurate measurements on
its acoustic heights. From M5 to M14, the differences in
the CMB angular power spectra between models are at the
sub-percent level for all scales. However, the differences of
the CMB angular power spectrum between M15 and �CDM
become higher than 1 % for almost all scales. Thus, one can
put the lower limit on the ω0 value (i.e.ω0 > −1.5). This can
be used as a useful prior in other observations, like SNe Ia.
We might be able to rule out phantom models with ω0 > 1.5
if we use the same cosmological parameters as �CDM. M15
also produces about 9 % deviation in the σ8 value from that of
�CDM. If the accuracy of the RSD observation at z = 0.25
reaches the 3 % level, then one can distinguish M5, M6, M7,
M13, and M14 from �CDM.

If one further considers the matter power spectrum, then
one can have the stronger constraint on ω0. The difference of
the linear matter power spectra at the present epoch between
M5 (M6, M7, M8, M9, M11, M12, M13, M14, M15) and
�CDM becomes 2.2 (1.9, 1.5, 1.1, 0.6, 0.8, 1.9, 3.6, 7.3,
16.9) % at k = 0.1 h Mpc−1. Thus, if the accuracy of the
galaxy redshift survey reaches the 5 % level, then both M14
and M15 can be ruled out. If one considers the matter power
spectrum including the one-loop correction, then one can
have even stronger constraints on ω. We consider the matter
power spectrum including one-loop correcting using SPT at z
= 1.0. The difference of the matter power spectra between M5
(M6, M7, M8, M9, M11, M12, M13, M14, M15) and �CDM
becomes 4.85 (4.12, 3.28, 2.33, 1.25, 1.49, 3.37, 5.97, 10.51,
20.83) % at k = 0.1h Mpc−1. Also if we consider the scale
k = 0.4 h Mpc−1, then it becomes 6.59 (5.58, 4.44, 3.14,
1.69, 1.99, 4.48, 7.87, 13.71, 26.50) %. Thus, even M13 will
be ruled out by the 5 % level accuracy measurement. These
results are summarized in Table 3.
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Table 3 Summary of results in � f and |�P| at z = 0.5. k in unit of h Mpc−1

Model (ω0, ωa) σ8 �σ8 � f �P(z = 0.5) (%)

z = 0 z = 0.25 k = 0.1 k = 0.4

M5 (−0.5,−2.035) 0.855 1.183 −0.42 −5.56 4.85 6.59

M6 (−0.6,−1.599) 0.853 0.947 −0.35 −4.51 4.12 5.58

M7 (−0.7,−1.176) 0.852 0.828 −0.27 −3.43 3.28 4.44

M8 (−0.8,−0.767) 0.850 0.592 −0.19 −2.32 2.33 3.14

M9 (−0.9,−0.375) 0.848 0.355 −0.10 −1.18 1.25 1.69

M10 (−1.0, 0) 0.845 0 0 0 0 0

M11 (−1.1, 0.355) 0.842 −0.355 0.12 1.22 1.49 1.99

M12 (−1.2, 0.688) 0.837 −0.947 0.23 2.50 3.37 4.48

M13 (−1.3, 0.993) 0.830 −1.775 0.36 3.84 5.97 7.87

M14 (−1.4, 1.266) 0.814 −3.669 0.52 5.26 10.51 13.71

M15 (−1.5, 1.502) 0.770 −8.876 0.70 6.77 20.83 26.50
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