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Abstract It has been shown that the mass of a charged
scalar field in the background of a charged stringy black hole
is never able to generate a potential well outside the event
horizon to trap the superradiant modes. This is to say that the
charged stringy black hole is stable against massive charged
scalar perturbations. In this paper we will study the superra-
diant instability of the massless scalar field in the background
of charged stringy black hole due to a mirror-like boundary
condition. The analytical expression of the frequencies of
unstable superradiant modes is derived by using the asymp-
totic matching method. It is also pointed out that the black
hole mirror system becomes extremely unstable for a large
charge ¢ of the scalar field and a small mirror radius 7,,.

1 Introduction

Long ago, there was proposal of building a black hole bomb
[1] by using the classical superradiance phenomenon [2—
7]. It seems that the mechanism of a black hole bomb is
very simple. When an impinging bosonic wave with the fre-
quency satisfying the superradiant condition is scattered by
the event horizon of the rotating black hole, the amplitude
of this bosonic wave will be enlarged. If one places a mirror
outside of the hole, the enlarged wave will be reflected into
the hole once again. Then this wave will be bounced back and
forth between the event horizon and the mirror. Meanwhile,
the energy of this wave can become sufficiently big in this
black hole mirror system until the mirror is destroyed.

The black hole bomb mechanism firstly proposed by Press
and Teukolsky [1] was studied by Cardoso et al. in [§]
recently. It is found that there exists a minimum mirror’s
radius to make the black hole mirror system unstable. See
also Refs. [9—14] for recent studies on this topic. The black
hole bomb mechanism can be generalized to other cases.
The first case is to study the massive bosonic field in rotating
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black holes, for example in [15-26], where the mass term
can play the role of the reflecting mirror. In this case, the
wave will be trapped in the potential well outside of the hole
and the amplitude will grow exponentially, which triggers
the instability of the system. The second case is to study
the bosonic field perturbation in a black hole background
with the Dirichlet boundary condition at asymptotic infinity.
These background spacetimes include black holes in AdS
spacetime [27-33], black holes in a Godel universe [34,35],
and black holes in a linear dilaton background [36,37]. In all
these spacetimes, the Dirichlet boundary condition provides
the reflecting mirror, which results in the instabilities of the
systems.

For a charged scalar wave in the background of the spher-
ical symmetric charged black hole, if the frequency of this
impinging wave satisfies the superradiant condition, the wave
will also undergo the superradiant process when scattered by
the horizon [38]. But it is pointed out in [18] that there is no
unstable mode of a scalar field in a Reissner—Nordstrom (RN)
black hole. More recently, it was proved by Hod in [39,40]
that, for the Reissner—-Nordstrom (RN) black holes, the exis-
tence of a trapping potential well outside the black hole and
superradiant amplification of the trapped modes cannot be
satisfied simultaneously. This means that the RN black holes
are stable under the perturbations of massive charged scalar
fields. Soon after, Degollado et al. [41,42] found that the same
system can be made unstable by adding a mirror-like bound-
ary condition like the case of the Kerr black hole. However,
whether all of the charged black holes have similar proper-
ties to the RN black hole is still an interesting question that
deserves further studies.

In [43], we have shown that the mass term of the scalar
field in the charged stringy black hole is never able to gen-
erate a potential well outside the event horizon to trap the
superradiant modes. This is to say that the charged stringy
black hole is stable against massive charged scalar pertur-
bations. In this paper, we will further study the superradiant
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instability of the massless scalar field in the background of
the charged stringy black hole due to a mirror-like boundary
condition.

This black hole is the static spherical symmetric charged
black hole in the low energy effective theory of heterotic
string theory in four dimensions, which was first found by
Gibbons and Maeda in [44] and independently found by
Garfinkle et al. in [45] a few years later. The metric is given

oM\,
+(1-=) ar
r

2
+r <r — %) (d6? + sin” 0d¢?), (1)
and the electric field and the dilaton field are
a=-2
r
2
20— 2 )
Mr

The parameters M and Q are the mass and electric charge
of the black hole, respectively. The event horizon of the
black hole is located at » = 2M. The area of the sphere
of the charged stringy black hole approaches zero when
r = QZ%/M. Therefore, the sphere surface of the radius
r = Q?/M is singular. When Q% < 2M?, this singular
surface is surrounded by the event horizon. We will consider
the black hole with the parameters satisfying the condition
Q% < 2M? in this paper. When Q2 = 2M?, the singular
surface coincides with the event horizon. This is the case of
the extremal black hole.

We start with analyzing the scalar field perturbation in the
background of the charged stringy black hole. The dynamics
of the charged massless scalar field perturbation is governed
by the Klein—Gordon equation,

(Vy, —igA) (V' —igA")¥ =0, 3)

where g denotes the charge of the scalar field. By taking the
ansatz of the scalar field W = e R(r) Y} (0, ¢), where
o is the conserved energy of the mode, / is the spherical
harmonic index, and m is the azimuthal harmonic index with
—I <k <1, one can deduce the radial wave equation in the
form of

d dR
A— | A— UR =0, 4
dr( dr)+ “)

where we have introduced anew function A = (r—r4) (r—r_)
with ry = 2M and r_ = Q?/M, and the potential function
is given by

2\ 2

U = (r_%) (wr —qQ)* — ALl +1). ®)
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The classical superradiance phenomenon for the scalar
field perturbation is present in a charged stringy black hole
[46,47]. In particular, by studying the asymptotic solutions
of the radial wave equation near the horizon and at spatial
infinity with the appropriate boundary conditions, one can
obtain the superradiant condition of the charged scalar field
[43]:

w<qdy, (6)

with &y = % being the electric potential at the horizon.

It has been shown by analyzing the behavior of the effec-
tive potential that for both the nonextremal black holes and
the extremal black holes there is no potential well which
is separated from the horizon by a potential barrier. Thus,
the superradiant modes of the charged scalar field cannot be
trapped and lead to the instabilities of the black holes. This
indicates that the extremal and the nonextremal charged black
holes in string theory are stable against charged scalar field
perturbations [43].

In this paper, we will make the black hole unstable by plac-
ing a reflecting mirror outside of the hole. More precisely, we
will impose the mirror’s boundary condition that the scalar
field vanishes at the mirror’s location r,,, i.e.

VU =ry,) =0. @)

The complex frequencies satisfying the purely ingoing
boundary at the black hole horizon and the mirror’s boundary
condition are called boxed quasinormal (BQN) frequencies
[8]. The scalar modes in the superradiant regime will bounce
back and forth between event horizon and mirror. Mean-
while, the energy extracted from the black hole by means
of the superradiance process will grow exponentially. This
will cause the instability of the black hole mirror system. In
the following, we will present an analytical calculation of the
BQN frequencies in a certain limit and show the instability
in the superradiant regime caused by the mirror’s boundary
condition.

Now we will employ the matched asymptotic expansion
method [48,49] to compute the unstable modes of a charged
scalar field in this black hole mirror system. We shall assume
that the Compton wavelength of the scalar particles is much
larger than the typical size of the black hole, i.e. 1/w > M.
With this assumption, we can divide the space outside the
event horizon into two regions, namely, a near-region, r —
ry < 1/w,and afar-region, r —ry >> M. The approximated
solution can be obtained by matching the near-region solution
and the far-region solution in the overlapping region M <
r —r4 < 1/w. Finally, we can impose the mirror’s boundary
condition to obtain the analytical expression of the unstable
modes in this system.

Firstly, let us focus on the near-region in the vicinity of
the event horizon, w (r —r4+) < 1. The radial wave function
can be reduced to the form
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Aar(ABrR(r))+[(r+ — r_)2w2—l(l+1)A] R(r)=0, (8)
with the parameter @ given by

o =ry(w—qPpy). 9
Introducing the new coordinate variable

1=t 1, (10)

the near-region radial wave equation can be rewritten in the
form of

ZBZ(ZBZR(Z))+[w2—l(l+1)(l_z )2} R(z)=0. (11)
Through defining
R=77(1-2""F(@), (12)

the near-region radial wave equation becomes the standard
hypergeometric equation

2(1-2)32F (2) +lc— (14+a+b)13. F (z)—abF (z) =0, (13)
with the parameters

a=1+1+2iw,
b=1+1,

c=1+2iw. (14)

In the neighborhood of z = 0, the general solution of the
radial wave equation is then given in terms of the hypergeo-
metric function [50]

R=Az7""(1—2)"FU+1,I+1 = 2iw, 1-2iw,2)

BZ” (11— FU+1,1+1+2iw, 1+2iw,z). (15)

It is obvious that the first term represents the ingoing wave at
the horizon, while the second term represents the outgoing
wave at the horizon. This can be observed by calculating the
group velocity of the wave [24]. At the horizon, the first term
behaves as W (¢, )|, ~ eTiwl =i In(r=r4) The normal-
ized group velocity, vg,, at the horizon is v, = & 4 T @) —
—1, which is independent of the value of w. This implies the
first term is the ingoing wave solution. The second term is
obviously the outgoing wave solution, which is reflected by
the fact that the corresponding group velocity is positive.
Because we are considering the classical superradiance
process, the ingoing boundary condition at the horizon should
be employed. Then we have to set B = 0. The physical
solution of the radial wave equation corresponding to the

ingoing wave at the horizon is then given by

R=A7""" (- FU+1,1+1=2iw, 1-2iw, 7). (16)

In the far-region, r — ry > M, the effects induced by
the black hole can be neglected. The metric is reduced to the
Minkowski metric in spherical coordinates. Then the radial

wave equation reduces to the wave equation of a scalar field
in the flat background,

l(l+ 1)

32(rR(r)) +[ 2 }( R(r)) = 0. (17)

This equation can be solved by the Bessel function, which is
given by [50]

R=r""[adipip2(0r) + BJi-12(0r)]. (18)
In order to match the far-region solution with the near-
region solution, we should study the large » behavior of the
near-region solution and the small » behavior of the far-region
solution. For the sake of this purpose, wecanusthez — 1—z2
transformation law for the hypergeometric function [50],

I'e)T'(c—a—b)
I'c—a)l'(c—Db)
c—a—p L@ (@+b—oc)

-9 I'(a)I'(b)
xF(c—a,c—b,c—a—b+1;1—72).
(19)

F(a,b,c;z) = F(a,b,a+b—c+1;1-2)

By employing this formula and using the properties of the
hypergeometric function F(a, b, c,0) = 1, we can get the
large r behavior of the near-region solution as

(ry —r_)7 T+ 1) N
I+ DIl +1-2iw)
(ry —ro)*0(=20-1)

()T (= —2iw) } ‘

R~ AT(1 = 2iw) [

(20)

On the other hand, using the asymptotic form of the Bessel
function [50], J,(z) = (z/2)"/T'(v + 1) (z < 1), one finds
the small r behavior of the far-region solution as

(w/2)1+1/2 ;
o r
Tl +3/2)

((,()/2)_1_1/2

r—l—l
(=l +1/2)

2

By comparing the large r behavior of the near-region
solution with the small r behavior of the far-region solu-
tion, one can conclude that there exists an overlapping region
M < r —ry < 1/ where the two solutions should match.
This matching yields the relation

B T(=l+1/2) TU+1) T'(=2l-DTU+1-2iw)

o TA+3/2) TQI+1) T(=l) TI(=l-2iw)
21+1
x (%) (ry —r_)2+1, 22)
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By using the property of Gamma function, I'(x + 1) =
xI'(x), one can easily derive the relations
P-1+1/2 _  (=p22+!
rd+3/2) @ —DNQRI+DN
r—2—1 (=n*'n

r—n)  Q@+D
Fl+1=2im) o ot
T ) = (=)"2iw [ [(* +4o?). (23)

k=1

Applying these formulas to the matching condition, one can
derive

B 2 (=1 ( 1! )2 (ry — r_)2H1

=2iw
o @I+1) \@l-Dn! ni@2l + 1!
!
X l_[(k2 + 4w2)a)2[+1. (24)
k=1

Now we want to impose the mirror’s boundary condition
to study the unstable modes. We assume that the mirror is
placed near infinity at a radius r = ry,. The far-region radial
solution should vanish when reflected by the mirror. This
yields the extra condition between the amplitudes « and 8 of
the far-region radial solution, which is given by
B _ _M, (25)
a J_1—172(wrp)

This mirror condition together with the matching condi-
tion gives us the following equation, which determines the
BQN frequencies of the scalar field in this black hole mirror
system:

Jiip@rm) (—1)1“( I )2 (ry —r)?
J_i_12(@rm) QI+ \ - ) @DiRi+1)!
/
x l_[(k2 + 42wt (26)
k=1

For very small w, the analytical solution of the BQN fre-
quencies can be found from the above relation. In this case,
the right hand side of the above relation is very small and
then can be set to be zero. This means that

Jiv12(wry) = 0. (27

The real zeros of the Bessel functions were well studied. We
shall label the nth positive zero of the Bessel function J; 11,2
as ji+1/2,n- Then we get

O = Ji+1/2.n- (28)

In the first approximation for BQN frequencies, the solution
of (26) has a small imaginary part, which can be written as

Ji+1/2.n

WBON = +i6, (29)

'm
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where the introduced imaginary part § is small enough com-
paring the real part of BQN frequency. It can be consid-
ered as a correction to (28). For the small §, we can use
the Taylor expansion of Bessel function Jiy1/2(wrm) =
i6rm Jl’+1/2(j1+1/2,n). Then (26) can be reduced to

iér

(—1)l+1( I )2
=2iw
" IZi21 G 12n) @+ \@ -

I . 241
(ry —r_)2+! ) 2 <J1+1/2 n)
X —— k° + 4w —_— . (30

D2l + 1)! ]l:[]( ) T'm (30)

J1/+1/2(j1+1/2,n) .

From this we can easily obtain the small imaginary part of
the BQN frequencies as

. _1 l]_ _ .
5= —y (]l+1/2,n —qd>H> ( )/ ! 1./2(]l+1/2,n)’ 31)
m J[+1/2(]l+1/2,n)
with
_ 2 Al 2 ry(ry — r_)y+1
YZoirn\ai=nt) e+ 1)
l etz \ 2
x (H(k2 +4w2)> <L> . (32)
k=1 T'm

Notice that y is always greater than zero, and (=DM 2
(Ji+1/2,n) and Jl/+1/2(jl+1/2,n) always have the same sign.
So we have

8 <« —(Re[wpon] — qPH). (33)

Itis easy to see that, in the superradiance regime, Re[wpon ]—
q®Py < 0, the imaginary part of the complex BQN fre-
quency § > 0. The scalar field has the time dependence
e~iol = giRelolt o3 \which implies the exponential amplifi-
cation of superradiance modes. This indicates that the BQN
frequencies in the superradiant regime is unstable for the
charged scalar field in a stringy black hole with a mirror
placed outside of the hole.

Here, we shall discuss our analytical result briefly. The
instability time scaling that characterizes the composed black
hole mirror system is given by

T = 8

Firstly, the imaginary part of the complex BQN frequency §
decreases when the mirror’s radius 7, increases. This means
that the instability time scaling becomes larger for the larger
mirror radius.

Secondly, from (29), we can observe the that wave fre-
quencies of these unstable superradiant modes are propor-
tional to the inverse of the mirror radius. When the mirror
radius decreases, the allowed wave frequencies will increase.
The superradiant condition then restricts the position of the
mirror; it cannot be placed very near the horizon. There exists

a critical radius r¢"'* at which this instability disappears.
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From the analytical result, one can obtain the critical radius

which is given by

_ Ji+1/2m _ (35)
qPH

However, from the above equation, one can see that we can

still place the mirror at a very small radius as long as the

charge g of the scalar field is big enough.

Finally, one should note that, for the RN black hole in a
cavity [13,42], the charged scalar field has a rapid growth of
superradiant instability. The expression of the imaginary part
of BQN frequencies is very similar to the result given in [42].
For the present case, one can also observe that § grows with
the charge ¢ of the scalar field. This implies the instability
becomes stronger as g increases. So one can expect that,
for large ¢ and small r,,, the instability time scale of this
charged spherical symmetric black hole mirror system will
become very short. This result is different from the rotating
black hole mirror system. For the rotating black hole [8],
the superradiant condition is given by w < m®y, where m
and ® g are the azimuthal number and the angular velocity
of the horizon, respectively. The value of m cannot be taken
arbitrarily large because of the limit condition m < [ with /
being the spherical harmonic index.

In summary, we have studied the instability of the massless
charged scalar field in the stringy black hole mirror system.
By imposing the mirror boundary condition, we have ana-
lytically calculated the expression of the BQN frequencies.
Based on this result, we also point out that the black hole mir-
ror system becomes extremely unstable for the large charge
g of the scalar field and the small mirror radius r,,. In [13], it
is deduced by Hod using the analytical method that, for the
RN black hole, the instability time scale can be made arbi-
trarily short in a special limit. So, the analytical computation
and the numerical simulation are still required to verify the
conclusion.
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