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Abstract This paper is devoted to the study of warm infla-
tion using vector fields in the background of a locally rota-
tionally symmetric Bianchi type I model of the universe. We
formulate the field equations, and slow-roll and perturbation
parameters (scalar and tensor power spectra as well as their
spectral indices) in the slow-roll approximation. We eval-
uate all these parameters in terms of the directional Hubble
parameter during the intermediate and logamediate inflation-
ary regimes by taking the dissipation factor as a function of
the scalar field as well as a constant. In each case, we calcu-
late the observational parameter of interest, i.e., the tensor—
scalar ratio in terms of the inflaton. The graphical behavior
of these parameters shows that the anisotropic model is also
compatible with WMAP7 and the Planck observational data.

1 Introduction

In the context of cosmology, it has become an undeniable
fact through the combined efforts of type Ia supernova, the
large scale structure (LSS), cosmic microwave background
(CMB), and WMAP studies that the universe is undergoing
a stage of accelerating expansion [1-7]. This cosmic behav-
ior might be due to the repulsive nature of a missing energy
(due to the large negative pressure) called dark energy (DE),
which occupies 70 percent of the universe. It is described by
a tiny time-independent cosmological constant (A) obeying
w = —1 (w is the equation of state (EoS) parameter). Due to
the fine-tuning and cosmic coincidence issues [8] of this con-
stant, the search for a variety of DE models is ongoing. The
dynamical nature of DE is divided into two categories: scalar
field models (quintessence, phantom with negative kinetic
term, k-essence, quintom (unification of quintessence and
phantom) etc.) [9-14] and interacting DE models (Chaply-
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gin gas having novel EoS, holographic DE, Ricci DE etc.)
[15-18].

The standard cosmology (big-bang model) successfully
explains the observations of CMB radiation, but still there are
some unresolved issues. The early universe is facing some
long standing problems including the horizon problem (why
is the universe isotropic and homogeneous on large scale
structure?), flatness (why is Q¢oa1 ~ 1 today?), the monopole
issue (why do not they exist?); and finally we may ask: what is
the origin of the fluctuations? See Refs. [19-22]. The infla-
tionary scenario (@ < —%) proved to be a cornerstone to
explain the mechanism of the early universe and provides
the most compelling solution of these problems. The con-
stant A can also resolve these issues but unfortunately, in
this case inflation never ends and the normal evolution of the
cosmos remains impossible.

A scalar field (composed of kinetic and potential terms
coupled to gravity) is the perfect candidate to produce the

dynamical framework and act as a source for inflation. In

field theory, a spin zero particle is usually defined by a scalar
field, whereas, mathematically, it is a function of space and
time. It has the ability to interpret the distribution of LSS
and the observed anisotropy of the CMB radiation elegantly
in the inflationary era [23-25]. Golovnev et al. [26] dis-
cussed the vector inflation models based on an orthogonal
triplet, non-minimally coupled to gravity, which shows a
similar behavior as the scalar fields in a flat universe. It has
been proved that many cosmological models characterized by
vectors non-minimally coupled to the curvature, such as vec-
tor inflation, contain ghosts. Ghosts are associated with the
longitudinal vector polarization present in these models, and
they are found from studying the sign of eigenvalues of the
kinetic matrix for the physical perturbations. They introduce
two main problems: firstly, they make the theories ill defined
at the quantum level in the high energy regime; secondly,
they create an instability already at the linearized level. This
happens because the eigenvalue corresponding to the ghost
crosses zero during the cosmological evolution [27].
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The inflation regime is divided into two parts, i.e., slow-
roll and reheating epochs. During the slow-roll period, the
universe inflates as the interactions between scalar fields
(inflatons) and other fields become meaningless and the
potential energy dominates the kinetic term [28-30]. Reheat-
ing is the end stage of inflation; here the kinetic and potential
energies are comparable and the inflaton starts to oscillate
around the minimum of its potential [31]. Warm inflation
[32,33] has the attractive feature of joining the expanding
universe with the end of vector inflation. This motivated
researchers to discuss the inflationary scenario in the con-
text of warm inflation. During this regime, the dissipation
effects become strong enough due to the production of ther-
mal fluctuations of the constant density which play a vital
role in the formation of initial fluctuations necessary for LSS
construction. An additional advantage of warm vector infla-
tion is that the universe stops inflating and smoothly enters
into the radiation-dominated phase [34-36].

Inflation is usually discussed in the context of intermedi-
ate and logamediate scenarios. Intermediate inflation is moti-
vated by string or M theory and proved to be the exact solution
of the inflationary cosmology containing a particular form of
the scale factor [37]. By adding the higher order curvature
correction (which is proportional to the Gauss—Bonnet (GB)
term) to the Einstein—Hilbert action, one obtains a ghost-
free action. Gauss—Bonnet interaction is the leading order
in the expansion of the inverse string tension, ‘«’, of the
low-energy string effective action [38,39]. This theory may
be applied to BH solutions [40], acceleration of the late time
universe [41,42], and initial singularity problems [43]. The 4-
dimensional GB interaction with dynamical dilatonic scalar
coupling leads to an intermediate form of the scale factor
[37].

In the intermediate era, the universe expands at a rate
slower than the standard de Sitter inflation (@ = ag exp(Hpt);
agp, Hop > 0) but faster than power-law inflation (¢ =
t™, m > 1) [44]. On the other hand, the logamediate infla-
tion [45] is motivated by applying weak general conditions
on the indefinitely expanding cosmological models. Barrow
[46] applied this scenario to constant, power-law, and expo-
nential types of scalar field. The effective potential and var-
ious types of potential associated with this model are used
in different DE models and in supergravity, Kaluza—Klein
as well as string theories, respectively [5,47,48]. It has been
proved that the power spectrum is red or blue tilted for this
type of inflation. Setare and Kamali [49] discussed this issue
of warm inflation using gauge fields in intermediate as well
as logamediate scenarios. Warm inflation is also studied in
generalized teleparallel gravity [50].

In a recent paper [51], Setare and Kamali have discussed
warm vector inflation in intermediate and logamediate sce-
narios for the FRW model and proved the physical compat-
ibility of these results with WMAP7 data [5,47,48] through
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the perturbed parameters. In this paper, we study the above
mentioned scenario in the framework of the anisotropic
model of the universe, i.e., in the locally rotationally sym-
metric (LRS) Bianchi I (BI) framework. The format of the
paper is as follows. In the next section, we construct the field
equations from the action and calculate the corresponding
pressure as well as the energy density, imposing the slow-
roll condition. We also formulate the slow-roll as well as
scalar and tensor perturbed parameters. In Sect. 3, we eval-
uate the Hubble parameter, scalar field as well as slow-roll
and perturbed parameters in two regimes:

(1) intermediate inflation, and

(2) logamediate inflation. The inflationary universe is fur-
ther studied with a variable and a constant dissipation factor.
The results are summarized in Sect. 4.

2 Basic formalism and perturbations

In this section, we briefly discuss the inflationary model using
the anisotropic background of the universe. A massive vector
field, non-minimally coupled to gravity, is presented by the
following action [26]:

1 1 R
‘S:_5 /d4x4/—g <R+§FaﬂF“ﬁ—€A“Aa—V(A“Aa)),

where o, B =0, 1, 2, 3, the field strength (F,g) and potential
(V) are defined as follows:

Fop = 04Ap — 3pAq, V(A“Ag) = m*A%Ay + -

This non-minimal coupling of the vector field has an opposite
effect, i.e., it violates the conformal invariance of the mass-
less vector field and forces it to behave just like a minimally
coupled scalar field. The variation of the action with respect
to Ay yields the following equations of motion:

1 R aVv
—— 0, (J—gF*?) + —AP + — =0, 1
Tt g ) oAl )

where 9, = %. An isotropic model (FRW) is unsteady near
the initial singularity and thus unable to explain the early
mechanism of the universe. One needs an appropriate geom-
etry, which is more concise and general than the isotropic and
homogeneous FRW universe. Bianchi models are prime and
viable models to discuss the behavior of the early universe. A
BImodel, being the straightforward generalization of the flat
FRW model, is one of the simplest models of the anisotropic
universe.

The line element for the LRS BI model (b(z) = c(t)) is
given as

ds? = —di? + d>(t)dx? + b*(1)(dy” + dz?),
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where a(t), b(t) are the scale factors along x-axis and (y, z)-
axis, respectively. This metric can be transformed into the
following form using a linear relationship, a = b", n # 1
[52,53]:

ds? = —dr® + b** (1)dx? + b*(1)(dy? + dz?). )

In this scenario, Eq. (1) leads to

. 2 n—4)y . .
Ai+<”;r )b( 7 b(A; — 3 Ao)

1 . R
+W(3i(akAk) — AAy) — 3 Ao+ <m2 + g) A =0,
EEE)

2(n+2)

1Dy 2 B A biz(ﬂ3+2) o
7 o+ (m +6 0+ ;A =0, (3)

—b

where a dot represents the time rate of change. Applying the
condition of the homogeneous vector field, i.e., 9; Ay = 0 to

Eq. (3), one deduces Ag = 0. Another variable, B; = ,,A—é,

b3
is introduced for the scalar field in place of A;. Consequently,
Eq. (3) has a similar form to the massive minimally coupled
scalar field, which can be written as

Bi + (n +2)HaBi + V'(B;B))B; = 0,

or equivalently
Bi 4+ (n + 2)Ha B + m*B; = 0, 4

where Hy = % is the directional Hubble parameter, and the
prime denotes a derivative with respect to B; 5.

The corresponding energy-momentum tensor can be
obtained by varying the action with respect to the metric
(g*P) [26]. The temporal and the spatial components of the
energy-momentum tensor are

1 . .
7Y = 5(Bg + V(B'B)),

2 .
n;L ) H, By By

1 +2\ . +2\?2 )
(e ms () i)

2 . .
nt > HQ(BI'B]' + B./'B,')

: 5., 1., 2
] [ 2B+ V) 3(

x8% + BiB; +<
2
) H22—V’(82)) B;B;,

n+2\ . n+2
+<( : )H2+3( y
()

where k stands for the summation index and B; satisfies
Eq. (4) for any vector field. We have considered the LRS
BI model of the universe with a homogeneous vector field,
which does not contain the off-diagonal terms in the energy-
momentum tensor. In order to make the spatial component of

the energy-momentum tensor diagonal, we use various fields
simultaneously. Therefore, a triplet of the mutually orthogo-
nal vector fields is defined as follows [54]:

> BB =B
a

Using the above conditions with an ansatz, B = |B|3] in
Eq. (5), the components of the energy-momentum tensor
reduce to diagonal form, thus

3 .
Ty = py = 5(6,% +V(BP),

‘ . 3 . .
Tj = —P3; = —E(B,E — V(IB)s.

These equations are similar to the equations which are evalu-
ated in [55] for a massive scalar field. The choice of |5| > 1
corresponds to the inflation epoch in the slow-roll limit
(B? < V(B%) for which p, = —P,.

We assume that the total energy density of the universe
is the sum of energy density of the vector field (p,) and
radiation (p, ). The mechanism of warm vector inflation can
be represented by the first field equation (evolution equation)
and the conservation equations given as

1 3 . 1
H; <§<B£+V(|B|2>)+py) =——(pu+py),

2T ¥ 1+2n
Py + (n+2)Ha(py + Py) = —nB5?, (©6)
. 4(n+2) .
Py + THZP)/ = 77827

where 7, T, stand for the dissipation or friction factor and

the temperature of the thermal bath, respectively. We assume
3

a suitable form of n = n()%, where 1 is any constant and
T, can be extracted via quantum field theory methods which
hold for low temperatures [56,57]. In this method, the infla-
ton interacts with the heavy intermediate field (which acts
as a catalyst) which could decay into a massless field called
radiation. Here 7 is taken to be positive (by the second law
of thermodynamics) which implies that the energy density
of the scalar field decays into radiation density. During the
inflation era, p, ~ V(A?), and the energy density of the
inflaton exceeds the radiation density (o, > p, ). Further,
we apply two limits on the above dynamic equations, i.e.,
the slow-roll approximation (B < (n+2)H, + g)l?),
and quasi-stability of the radiation production where p,, <«
4("—';2)Hzpy, oy < nBZ [32,33]. Using all these condi-
tions, we can write Eq. (6) as follows:

1 .
—5V'=m+2) (1 + %) HB, @)
3 ., (+2n) x V7 .
==t " _c,14 8
PR TRt 12 v T Ty ®)
3

22—V 9
27 2(1+2n) ©)
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where x = # H; denotes the rate of dissipation, where we
distinguish the strong (x > 1) and weak (x < 1) dissipation
regions. The radiation energy density is also written in the

formC, T;¥ ,where C), = % and g, is known as the number
of relativistic degrees of freedom. Using Egs. (7) and (9) in
(8), the temperature of the thermal bath can be obtained as
follows:

—(1 4 2n)x Hy ]4. 10)

- [zcy(n+2><1+§)

The dimensionless slow-roll parameters (e, A) [58] of the
warm vector inflation can be calculated using Eq. (9) as

3 d n+2 3 H
e=——————|In|—H =
(n+2)H2dt< ( 3 )) (n+2) H?

_ 14+2n V_/z’ (11)
20+ 2)2(1+ %) V2
_ 3 H o 3
n+2) H,H, (n +2)Hye
Caea M (VYTV V]
n+22@+x) \V /) [V' V. 23+y)
(12)

The energy density of the scalar field can be expressed in
terms of the radiation density using Egs. (9) and (11) as

1
Py == L) ep,.
2\3+x

Here, we consider the strong dissipative regime where x >
1, which implies that n > 3(n + 2) H. Consequently, p,
can be simplified to

1

Py = 5€Pv: (13)

The condition of the warm inflation epoch, i.e., p, > 2p,,
can be verified via the inequality 0 < b < 1 for which
€ < 1. This inflationary scenario ends at € = 1 where the
inflaton energy density becomes twice the radiation density.
The number of e-folds at the two different cosmological times
t (beginning of inflation) and #; (end of inflation) is defined
as follows:

i+ 2)?
2(1 4+ 2n)

3]
2
Y U )/szt:
t

/ll(3+ Yar. (14)
3 Xyt
t

Now we evaluate the scalar and tensor perturbations for
the anisotropic LRS BI model of the universe in the case of
small scale structures by varying the field 5. In non-warm and
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warm inflation, quantum and thermal fluctuations, respec-
tively, yield [59-62]

n+2\* H}
88 ntum — N
( )qua tu < 3 > T
1
n+2\4* 1
(8B)thermal = (W) (HyT))4. (15)

In cosmology, a useful function of the wave number (k),
known as power spectrum, is introduced to quantify the vari-
ance in the fluctuations due to the inflaton. In a warm infla-
tionary universe, the scalar power spectrum is given by [63]

5 B n+2 2 ﬂ 2
AR(k)—( 3 ) <B<53)thermal> . (16)

Using Egs. (6), (9), and (15), we can calculate the power
spectrum of scalar perturbation in the form

A% (k) =

1 3
n+2°P°T}  |? Hy
9 +20)2G4n)3 | B,

_[ (n+ 27T T vi -

63972(1 +2n)>(4m)3 | V'*

The second important parameter to study the fluctuations is
the scalar spectral index (ng). For the present model, it is
defined as

B _dlnAi(k)

1
dInk (18)

ng —

The tensor perturbation (AQT(k)) and its spectral index (nr)
for the anisotropic universe are

s (n+2) 5 (n+2)2>1
AT(k)_< 3n ) g _<3(1+2n) 2’ (19)

nr = —2e. (20)

The tensor—scalar ratio (R) has the following form:

1
48(1 +2n)(@Am)3 |7 1.
R =— (+—nj(3n)2 H22H2- 20
(n+2)n’r]Ty

According to the observations of WMAP+BAO+SN, the per-
turbed scalar power spectrum is constrained to A%? (ko =
0.002Mpc=1) = (2.445 + 0.096) x 10~2 [23-25]. In this
context, the physically acceptable range of the tensor—scalar
ratio is determined, i.e., by R < 0.22, representing the
expanding universe.
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3 Intermediate and logamediate inflation

In this section, we discuss the warm vector inflation in the
context of intermediate and logamediate inflation by treating
n as a function of B as well as a constant.

3.1 Intermediate inflation

In theintermediate scenario, the scale factor follows the law
[37]
b(t) = bgexp(ut8), u>0,0<g<l. (22)

The number of e-folds for this model can be calculated using
Eq. (14) as

Nzg (8 —tl) (23)

Firstly, we explore the dynamics of warm intermediate infla-
tion by considering the variable dissipation factor.

T3
3.1.1 Case l: n = nOB—VZ, no = constant

Here, we evaluate some quantities which are useful to deter-
mine the parameters defined in the previous section. The
scalar potential is evaluated in terms of cosmic time ¢ using
Eq. (9) as

V:2(1+2n)(

T ()Y, (24)

The scalar field and the directional Hubble parameter are
found using Egs. (7), (9), (10), and (24) as follows:

Sg+2 InB—1InB 5g+2
B=DByexplwot 5 ), Ho=pug <—°> :
wo
(25)
2 142ny1 2C, 3.1 a- g)S(ﬂg)% :
where wg = [m(nJr2 )4(7)4] Sgi2 — Is a pure

constant. In this context, the slow-roll parameters take the
form

( 3 ) 1—g<lnB lnBO)58+2
€= ,
n+2/) ug o

2— 1 1 52
A:( 3 ) g(nB nBo) = ' 26)
n+2) pg o

The radiation density (13) can be calculated in terms of the
scalar field as

3(1+2n)
pr =g et
9(1+2n) nB—InBy\ 577
B n B nB —1InBy s+
= S ()1 =) (—w ) e

The inflationary era (¢ < 1) has the scalar field of magnitude,
B.

We assume that B is another field, which is produced at
the end of inflation and could be found by fixing € = 1 as

3(1 —
B = Byexp | wo ((_g))
(m +2)pg
Inserting the values of the two different cosmic times (using
BB and B1) in Eq. (23), we get

8(2=2)

(n+2> (lnB 1nBo> 5g+2
N = | (———22
3 wo

-2)
InB; —1In By 5g+2
o

These two equations yield B in terms of N in the following
form:

3\ /N 1 %
—_ 8,
B = Byexp a)o((—) (—+—g>> ) . (28)
n+2)\pn gn

Using Eqgs. (10) and (25) in (17), the perturbed scalar power
spectrum in warm vector intermediate inflation [which can
also be expressed in terms of e-folds with the help of Eq. (28)]
is

3
A%m=< 10

1 1
23»“(n+2)29<ug)15<1—g)3*B,3
972(4m)3

QC)H(1+2n)

—18

InB —1n By 53+2
w|l— =
o

1 1
)Zr“m+m”ww”a—sz<4
B,"

- "o
B (972(47‘[)3 Q2CHIN(1 +2n)3

Sg+2
X ex — W —_— — _—
P C\\m2)\u gu
3 N | 15¢—18
— 8,
n+2)\pn gn

Using this equation in the scalar spectral index (18), we have

( 3 )(15g—18) (lnB lnIS’O>ig+2
14
n+2 8gu wo
3 15g—18 3 N 1-g\1!
1 B . (2
+(ﬂ+2)< 8gu )[<n+2>(u+ gu )] (29)
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1
098 | x (ZCV)H(I +2n)° '
3 (n +2)¥(ug)>(1 — g)°
0.96 2
. B3 (]n B—In Bo> 5¢+2
0.94 @0 '
48(4m)° (n +2* (ug)* \*
092 = 3
1
n PR PR P B PR PR PR PR | T — - 11 5 g
[ 50 100 150 200 250 300 « 2Cy) " +2n) B3
N 3 +2P ()51 —g)* |
E;ig. 1 The. graphh of ny versus numt.)er of e-folds for u = 1, g = 3 N 1—g %
7, 1~ 0.51n the intermediate scenario X exp 3w —_— — 4+ —
n+2)\n  gu
8+2
. . . . . 3 N 1—g 8g
Figure 1 shows the increasing behavior of ng with respect X -t —= .
to N. The observational value of ny; = 0.96 corresponds to n+2 K sH

N = 60, which indicates the physical compatibility of this
anisotropic model with WMAP7 data. Equations (19) and
(20) give the tensor power spectrum as well as the spectral

Rewriting the above equation in the form of ng, we have

1
index, respectively, as follows: R 48(471)3(11 + 2)4(/Lg)4 :
= e
2 nB—1nBy\ sarr 1
AZ (k) = 52+ 2)%(ug)* (T) QCc )M (1 +2n)° ’ 5
X
2e-1) 3 (n+2)20(ug)5(1—g)3 | °
2 (n+2)2(ug)2|:< 3 )<N+1_g>} ¢ S0
E e —_— —_— —_— N Sg+
972 n+2)\uw " gu << 3 )( 18 — 15¢ ))‘ég
8¢ x exp | 3wg
( 3 )(l—g) (lnB—lnBo)@ n+2) \8gu(l —ny)
ny = =2
n+2 g 20

2+2
B AR
(n+2)ug [\m+2 I gu n+2 8gu(l —ny)

The left graph of Fig. 2 shows that the anisotropic model is
incompatible with the WMAP7 data for all the three choices
1 of the dissipation factor. With the help of fine-tuning of the

R— (48(477)3(71 + 2)4(M8)4> ’ parameters g and 1, we are able to find the range R < 0.22
n4n8 in which ng = 0.96 lies for n9 = 0.25, 1, 4. The compatible

The tensor—scalar ratio is obtained as

035 | 0.04

0.30

0.25 0.03
R 020 R

0.02

0.15

0.10 | ool

0.05 K .

092 094 096 098 1.00 1.02 092 094 096 098 1.00 1.02
ng ng

1
Fig. 2 The left graph of scalar—tensor ratio versus ng foru =1, C, =70, g = % By x C, ™, n~0.5, no =0.25 (blue), 1 (green), 4 (red).
The right graph is plotted for u =5, g = 0.95
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behavior of the tensor—scalar ratio with the spectral index is
shown in the right graph.

3.1.2 Case 2: n = n1 = constant

Now, we calculate all the above parameters by taking the
constant dissipation factor. When 7 is constant, 5 and Hj
take the following form:

2(g—D
B— Bo) 21

w1

B=By+wit T, Hz=ug< (31)

1

with w; = [n?&:—z’;;z(l - g)(ug)z]z. The corresponding

slow-roll parameters are
2
() (550
€= ,
n+2/) ug ]

2g
3 2 — — =2
=) ) “
n+2 g w1

In this case, the relationship between p,, and p, becomes

~9(1+2n)
Y= 2+ 2)

B—BO>?‘—§§

w1

(ng)(1 —g) <

The number of e-folds between 5 and [3; is calculated as

2¢g 28
<m+2> (B—B())Zgl (B]—Bo)%’l
N = " - (== ,
3 w] w1

(33)
where
3(1 ) :
—g 2
1=t [ 252 ]
(n+2)ng
The scalar field in terms of e-folds is given as
3\ (N 1 4
— 2g
B =B+ [( )(—+—g)} . (34)
n+2)\n g

The corresponding scalar power spectrum and spectral
index are

A2 = | (=) (n+2) 0} 1)} 7
R 2Cy ) 972(47)3(1 +2n)3 (1 — g)3

() 5T
"‘:1_<4u<3+2)> [(niz) (%Jrlg;ugﬂ_l'

(35)

0.98 -

S S S R S S S

n n n n n n 1
| 20 40 60 80 100
N

Fig. 3 The graph of ng versus number of e-folds

The graphical behavior of the spectral index against the num-
ber of e-folds is shown in Fig. 3. The corresponding number
N of ng = 0.96 decreases as compared to the previous case,
in which 7 is a function of B. In this case, the model remains
consistent with WMAP7 observations. Similarly, A% andny
can be written as

2(g-D
2 3 N 1-—g g
AZ = — 2 2 2 - R
=gz e [<n+2> <M+ gu )}

~1
s [ o
ug(m +2) | \n+2 I gn

The tensor—scalar ratio can be found as

nyr = —

. 48(41)3 (1 +2n)7 (ng) 2 (1 — 9)2(2C,)* |
4n332(n +2)1

3 N 1 s
AGH) G
n+2)\ p g
1

B [48(4703(1 +2m)3 (ug)3(l — f)3<2cy>5}2
wpi3t(n+2)2

8-5¢g
x [W(l —ns):| e 37)

Figure 4 shows the agreement of the considered model with
WMAP data as the value of observational interest of n; lies
in the region R < 0.22.

3.2 Logamediate inflation
Here we evaluate the above-mentioned parameters in the con-
text of logamediate inflation to study the dynamics of warm

vector inflation. In this scenario, the scale factor has the spe-
cific form [45]

b(r) = boexp(ullnsl¥), ¥ >1, u>0. (38)
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P S E U SR B M- L L
0.92 0.94 0.96 0.98 1.00 1.02
ng

Fig. 4 The graph of the scalar—tensor ratio versus ng foru = 1, C), =

70, g = 5 n=~0.5, 7710<C6

Thus the number of e-folds is

pw([In]¥ —[int]Y). (39)

N=m+m
3

T3
3.2.1 Casel:n= nOB—”z

In this case, the scalar field and the directional Hubble param-
eter are

B = By exp(wy'(1)), (40)

_ 2y =1
e (o[ (22528
155
-2
y [p—l (M)] , @n
)

1

3 S 3 1 2
iy T q 4
3410
[51//8+3 ln’] is the incomplete gamma function. The poten-

tial term is expressed in terms of B using Egs. (9) and (40)
as

2 1+2n InB—1nBy\T\*V "
e (n[ (R0
w2
_ -2
8 |:F_l <lnB lnBo)i| . @2)
155
The slow-roll parameters can be described as
_ 2(y-1)
_ 3 <ln [F_l <lnB lnBo)i|> ’
(n +2)uyr )

6 ( [ 1<1n8—1n80)}>2(w_1)
=—— (|7 {———= . (43)
(n+2)uyr w)
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The corresponding energy density of radiation is

9(1 + 2n) InB—1InBy\T\*¥ P
P = 2m +2>(‘”)<[ ( o >D

o (1 In B —1n B —4
125

The number of e-folds between two fields is given as

v=("52)u[(w [F ("))
_((n;rz)W)W]. (44)

The second equality in the above equation is obtained by
using the value of 3] and putting € = 1. Equation (40) can
be rewritten in terms of e-folds as

LY
3 \N 3 =
B=Bgexp | wI" exp |:<n_+2> ;+<n+2mp> ]

(45)

The corresponding perturbed parameters A2 7 (k) and A2 (k)
are

1 1
a2 - [0\ [ e a1
k (4m)3 ac)n 0

r 1

3 N 3 % v
x exp | —3ws I exp <7n+2);+<7n+2(/ﬂﬁ)>
1
v v
o || ) i (o)™
S I el DY R WD S
v T8y
3 N 3 -y
{(Hz)ﬂ(nu(“‘“) } , (46)
2(y—1)
2_ 2 20,32 3 \N 3 =
=t | () (o) |

1
X exp {—2 (<n12>2+<ni2<w>)1%)w} 47)

The corresponding spectral indices are

L Isa-w) (3 3 \N
BT TR <n+2) <n+2)ﬁ
~1

3 =
+ (m(l“ﬁ)) ) (48)
6 3\N [ 3 o
T 2y [(n+2> ;+(m(wf)> } '

S
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Fig. 5 The graph of ng versus number of e-folds for u =1, ¥ = 10
(red), 50 (blue), n =~ 0.5 in logamediate scenario

Figure 5 indicates the behavior of ng against N for v =
10, 50. The number of e-folds decreases as i increases.
Here the allowed value of the parameter ny, = 0.96 lies in the
range N = 50. Finally, we obtain the following observational
parameter of interest as a function of the spectral index:

1 1
464m)’ \ | _eH)Mm+2)7(ny) |°
R =
81m4n3 311 +2n)3
X 3 150 — 1) 17
*Bo [(n+2> 8y (1 —nsJ

3w ( : ) rrr %
X exp | dw2 eXp|: nt2 Sl,l,lﬂ(l_ns)i|

15y — 1)

il I
X exp| —= .
8 n+2) 8uy(l —ny)

We see from Fig. 6 the consistency of the model with the
observational data for specific values of ng. The ratio R
decreases as ¥ increases.

(49)

0.036
0.034
0.032
0.030

0.028

3.3 Case2: n =1

For this case, the scalar field and the directional Hubble
parameter are

B=DBy+w3l'(t), Hy=

(50)

1
-
where 03 = [ 212000 15 Wbl and (1) = [, '3,

In this case, V is transformed into

_aasan [0 (e ()T
B r (58]
The parameters € and X take the following form:
(5]
T atowy)
- 1=y
e[ ()
(n+2)(u)
The number of e-folds becomes
(Ol (2]
- ["gz(w)}lm] (52)

The scalar field is

I
3 N 2 =
B = Bp+w3I exp [<m> E n (”;‘ (MW)) "’i| .

024

022

0.18 |

—

P S
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0:94—

1
Fig. 6 The left graph of scalar—tensor ratio versus ng forpu =1, C, =70, f = % n=~05, ByxCy, ", ¢ =10, no = 0.25 (blue), 1 (green),

4 (red). The right graph is plotted for ¢ = 50
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The power spectra in scalar and tensor forms can be found
as

A2<k)=< ni(n+2)332 (uy)? )[( 3 )ﬁ
: 972(1 + 2n)3 (47)3(2C,)? n+2) 1

3@ -1

(”*2( w>)lﬂ o

2(1 +2 3
A= 2020 [( ) =

=

372 n+2
201

ww:| 2
N
M

3
X exp|—2
® ((n+2>
The terms ny and nr related to the above equations become

y -1
nx_1:49(1—w) [( 3 )N (n+2( w)) w} |
uyr(n+2) n+2

1=y

6 ( 3 >N <n+2( 1//))1‘@ A
T oy | \nt2

(55)

3
+ (m(l“/f)

1

‘/7 v
3 —
(—(Ml/f)) )

(54)

Figure 7 shows a similar behavior to behavior for the large
values of ¢ giving small values of the N. The value N ~ 20
coincides with ny; = 0.96 and verifies the compatibility of
this case with the observational data. The curves for Y = 50
and ¥ = 70 overlap in the allowed range. Consequently, R
can be represented as

1
(3888(1 +2m)7 (4m)32C,) (i)
81y (n +2)333
Sw—1)

[( 3 > 3 —1) } i
X
n+2) 4uy (1 —ng)
() s =)
xexp|—2 .
n+2) 4pg (1l —ny)
Figure 8 verifies the compatibility of the anisotropic Bl model

of the universe in the constant logamediate inflation regime
with WMAP7 data.

(56)

4 Concluding remarks

It is well known that inflation due to scalar fields is compat-
ible with a completely isotropic universe. In this paper, we

@ Springer

Fig. 7 The graph of n versus number of e-folds for u = 1, ¢ = 10
(red), 50 (green), 70 (blue), n ~ 0.5
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Fig. 8 The graph of scalar—tensor ratio versus ng for u = 1,

1
70, ¥ = 10 (red), 50 (green), 70 (blue), n ~ 0.5, n; x Cy6

Cy =

assume vector field inflation, which can provide the isotropic
(by orthogonal triplet vector fields) as well as anisotropic
universe (with randomly oriented N vector fields). The
anisotropic fields can be achieved in two ways, i.e., by apply-
ing initial conditions on the potential and fine-tuning of the
inflationary time period. The anisotropy is of the order 1/v/N
at the end of inflation. We have investigated the role of warm
vector inflation in the framework of the LRS BI model of the
universe. A triplet of mutually orthogonal vectors is intro-
duced to remove the off-diagonal terms from the components
of the energy-momentum tensor as the considered model is
symmetric. We construct the field equations and conserva-
tion equations in the slow-roll approximation using a specific
form of the dissipation coefficient. We have assumed the dis-
sipation of the inflaton density into radiation density (n > 0).

The slow-roll parameters (e, A) are presented in the
context of anisotropic warm vector inflation. Using these
parameters and applying the strong dissipative regime, we
have calculated the more general conditions for the start-
ing and ending of the inflationary era (13). In warm infla-
tion, thermal fluctuations are produced instead of quantum
fluctuations, which are characterized by the power spectra
( A%e k), AZT (k)) and spectral indices (ns, n7). We have eval-
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uated all these perturbed parameters under slow-roll con-
ditions and finally an important parameter, i.e., the tensor—
scalar ratio, which is constrained by WMAP7 observations.

We have developed our model into intermediate and loga-
mediate models as they represent exact cosmological solu-
tions. Each era is discussed for two possible choices of , i.e.,
it is a function of scalar field or some positive constant. The
directional Hubble parameter, and slow-roll as well as per-
turbation parameters are calculated in these frameworks of
inflation for an anisotropic universe. According to the obser-
vations of WMAP7, the best fit values of these parameters
(A%Q (k), ns, R) have been calculated with a higher degree of
accuracy. We have checked the physical compatibility of our
model with the results of WMAP?7, i.e., the standard value
ns = 0.96 must be found in the region R < 0.22. The behav-
ior of these parameters is checked through graphs of N and
R versus ng in each case.

During the intermediate scenario with variable 1, we have
seen that ng = 0.96 corresponds to N = 50. The left R—ng
trajectories in Fig. 2 show the inconsistency of the m0<liel with

WMAPT7 forp =1, C, =70, g =4, By C,) %, n~
0.5, no = 0.25, 1, 4. The method of fine-tuning helps one
to find the allowed range and hence ng = 0.96 is located in

the region R < 0.22 forpu =5, g = % By C;% n~
0.5, no = 0.25, 1, 4. The isotropic universe [51] for this
case is compatible with WMAP7 only for n9 = 1, keeping
the same rest of the parameters the same. For constant 7,
the model remains compatible with the observational data.
Hence the anisotropic model of the universe is compatible
with the WMAP7 data during variable and constant interme-
diate inflation. Figures 5, 6, 7, and 8 indicate the compati-
bility of the variable as well as constant logamediate infla-
tionary scenario in the framework of anisotropic universe
with the WMAP7 data. We would like to mention here that
this model is consistent for all chosen values of ¥ and 7o,
while the isotropic universe for a variable dissipation factor
is compatible only for np = 1. We have also observed that
the compatibility of the model is disturbed for large values
of the anisotropic parameter (). It is interesting that all the
results reduce to the isotropic universe (FRW) for n = 1.
Anisotropic warm inflation can be discussed in the interme-
diate and logamediate scenarios using gauge fields.
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