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Abstract Field localization on 2-dim extra space is con-
sidered in the framework of f(R) gravity. It is shown that
interference of the local matter energy distribution and the
metric of the extra space forms a point-like defect—a 4-dim
brane. The energy-momentum of the brane depends on the
initial conditions, which could lead to an arbitrarily small
cosmological A term.

1 Introduction

It is well known that the observed physical parameters of the
low energy theory differ by many orders of magnitude. Oth-
erwise, no complex structures would be formed. At the same
time a future theory should not contain very big/small physi-
cal parameters. The fine tuning (FT) of observable parameters
makes the situation much more challenging. Indeed the most
probable basis of FT, the multiverse idea, implies the exis-
tence of a huge variety of universes with different properties.
At first glance the multiverse cannot be obtained having a
fixed set of initial parameters of the future theory. There are
alot of attempts to explain the observable Universe with mod-
erate success [1,2]. One of the best-known ways is based on
the idea of extra space and more specifically on 4-dim branes
embedded in n-dim extra space [3,4].

The physical parameters of a primary theory are not the
only ones which influence the low energy physics. The initial
conditions of formation of the universe play a significant role
also. The well-known idea of the creation of the universe from
a space-time foam presumes randomly distributed initial con-
ditions. The accidental formation of manifolds with various
metrics and topologies may be considered as a source of dif-
ferent universes whose variety is connected with the huge
number of stationary metrics of the extra space [5,6]. Even
if the parameters of the primary Lagrangian are fixed we still
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have a set of initial conditions provided by the space-time
foam. It could resolve the FT and hierarchy problems.

The probability of the birth of the universe was calculated
via numerous approaches with radically different results [7].
This is not surprising due to the absence of the theory of quan-
tum gravity. In this study it will be sufficient to assume a non-
zero probability of any metric originating from a space-time
foam. Some of these metrics evolve classically to stationary
states; see e.g. [8].

The idea of random initial conditions originating from the
space-time foam are used in this paper to explain the small-
ness of the cosmological constant, the prominent example of
the fine tuning.

The extra spaces with point-like defects [9] underlie this
research. It is shown that a scalar field is localized on the
point-like defects of the 2-dim metric of extra space while
its distribution in ordinary space is assumed to be uniform.
In its turn, the back reaction of the trapped scalar field on
the extra space metric appears to be significant. It deepens
the “gravitational well” as it occurs in the case of Einstein
gravity.

The point-like defects being uniformly distributed in our
space form a brane embedded in (4 4+ n)-dim space. Brane
solutions with various ways of matter localization have been
widely investigated in the literature where the existence of
a brane is usually postulated [10,11]. Another widely used
way to form a brane in noncompact extra spaces is to involve
scalar fields with a complex potential [12]. Matter fields are
trapped by such branes and deform their shape. This result
may be obtained in the simplest version of f(R) gravity;
see e.g. [13]. Branes embedded in 6-dim space are also the
subjects of wide discussion [14—17].

In this paper the smallness of the A term produced by
the brane is explained without fine tuning of the physi-
cal parameters. It means that all physical parameters of the
Lagrangian are chosen within the interval 1073 < £ < 103
if it is a dimensionless unit, or it lies within the interval
(1073mp)" < & < (10°m p)" if its dimensionality is [m p]".
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The general basis of the present study is f(R) gravity.
The interest in f(R) theories is motivated by inflationary
scenarios starting with the pioneering work of Starobinsky
[18]. A number of viable f(R) models in 4-dim space that
satisfy the observable constraints were proposed in Refs. [ 19—
21].

Nonlinear Lagrangians depending on the Ricci invari-
ants inevitably appear if one takes into account quantum
phenomena [22-26]. At first sight there are no reasons to
set f(R) = R if it does not contradict the observations.
However, a more thorough analysis indicates serious inter-
nal problems. They include negative metric states, unitarity
violation, and the instability of flat space. However, Simon
[27,28] has shown that these problems do not appear when
the theory is treated as an effective field theory. In the low
energy limit the effect of nonlinearity is a small correction
to the pure Einstein—Hilbert action and no bad behavior is
revealed. This particularly relates to the Kaluza—Klein f(R)
gravity where the small parameter—the ratio of curvature in
our 4-dim space and the curvature of compact extra space—
arises naturally.

The following sections are devoted to the mechanism of
the formation of point-like defects.

2 Setup

From now on, it is assumed that the characteristic scale of
the extra space is small and its geometry has been stabilized
shortly after the creation of the universe. The stabilization
issue is discussed in [29,30].

As a common basis, consider a Riemannian manifold with
metric

ds’=®,pdz*dz" =guv(X)dx"dx” + Gap(x, yydy*dy?.
(D

Here M, M’ are the manifolds with metrics g, (x) and
Ggp(x, y), respectively. x and y are the coordinates of the
subspaces M and M'. We will refer to 4-dim space M and n-
dim compact space M’ as the main space and the extra space,
respectively. Here the metric has the signature (+ — — — - - ),
the Greek indices u, v = 0, 1, 2, 3, refer to 4-dimensional
coordinates). Latin indices run overa, b, ... =4,5, ...

The time behavior of the metric tensor G, (x, y) is gov-
erned by the classical equations of motion and changes under
variations of initial conditions. As was shown in [30] the
energy dissipation into the main space M leads to an entropy
decrease of the manifold M’. This explains the emergence of
a friction term in the classical equations for the extra metric
G,p(x, y). This term stabilizes the extra metric. Finally the
inflationary process strongly smooths out a space inhomo-
geneity so that
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at the modern epoch. The time dependence of the external
metric was discussed within the framework of the Kaluza—
Klein cosmology and Einstein’s gravity [31]. If a gravita-
tional Lagrangian contains terms nonlinear in the Ricci scalar
the extra metric G, could have asymptotically stationary
states [8,30]

Gab(t’ y) - Gab(y)v (3)

see also [32,33] for a discussion.

Let us estimate the rate of stabilization of the extra space.
Weak deviations of the geometry from the equilibrium con-
figuration can be interpreted as excited states with the mass
mgk (see, for example, [34]). Since it is the only scale,
the decay probability is expected to satisfy the relation-
ship I' ~ mgx ~ 1/L,, where L, is the characteristic
size of the n-dim extra space. According to observations
L, < 10718 ¢cm, so that the lifetime of the excited state
ist; ~ L, < 1028 5. Therefore, the extra space reaches a
stationary state long before the onset of the primordial nucle-
osynthesis but, possibly, after completion of the inflationary
stage.

According to (1) and (3), the Ricci scalar represents a
simple sum of the Ricci scalar of the main space and the
Ricci scalar of the extra space

R = R4+ R,. “)
In the following, the natural inequality
Ry K Ry (%)

is assumed. This suggestion looks natural for an extra space

size of L, < 107! cm as compared to the Schwarzschild

radius L, < rg ~ 10% cm of a stellar mass black hole where

the largest curvature in the modern universe exists.
Consider gravity with higher order derivatives and the

action in the form

5=

/ 4P Z/18ILf (R) + Lu]: ©)
= ZakRk
k

with arbitrary parameters ag, k # 1 and a; = 1. Here D =
n + 4 and L, is the Lagrangian of matter.

Using inequality (5) the Taylor expansion of f(R)inEq. 6
gives

mD / d*xd"y\/1g O IVIGO) I Lf (Ra~+Ry)+ L]
mD / d*xd"y/[gOIVIGOTRa(x) £ (R ()

+f(Rn(y)) + Lnl (N

JF(R)
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The prime denotes the derivation of functions with respect
to the argument. Thus, f'(R) stands for d f/dR in the for-
mula written above. In this paper the stationary and uniform
distribution of the matter fields is taken into account. The
comparison of the second line in expression (7) with the
Einstein—Hilbert action

2

M
&H=-§ﬂ/1ﬁhﬂﬂmuR—2A> ®)
gives the expression
M&=n£‘{/ww¢uxwu%Raw> ©9)

for the Planck mass. According to the effective action (7) the
term

D-2
AE_ZZQ/dw IGOILf (Ra) + Lun ()] (10)
Pl

represents the cosmological A term. Both the Planck mass
and the A term depend on the stationary geometry G, (y). As
shown below, the physical parameters {ay } are not necessarily
fine tuned in order to make the A term small.

3 Deformed extra space and boundary conditions

Let us find the 2-dim metric disregarding the influence of
scalar field and keeping in mind (5). In this work, the metric
formalism is used, which consists of varying the action with
respect to G*?. Note that the r.h.s. of the expression (7) con-
sists of three terms. The first term is much smaller than the
second one according to (5); accordingly, a stationary con-
figuration G5 (y) is determined by static classical equations

85  _ 8Sexma
8Ge(y) ~ 8Gab(y)

)

D-2
_ mD n
Sextra = Tv4/d y |G|[f(Rn) + Lm]a (11)
where vq = f d*x./ g(x), or in more explicit form

1 1
Rabf/ - Ef(R)Gab - Vuvbe + GabDf/ = ﬂTab-

mp
(12)
Here [ stands by the d’ Alembert operator
1
O =0, = —8,(G"\/|G|3), a,b=1,2. 13
el a ( |Gl0p), a (13)

Here, the term proportional to R4 is omitted; see (5). The
smallness of the Lambda term (10) is the additional condition
that will be proven later.

Evidently, there is a continuum set of solutions to system
(12) depending on the boundary conditions. Maximally sym-
metrical extra spaces, which are used in the great majority of

the literature, represent a small subset of the continuum set.
The relationship of the extra metric and boundary conditions
is studied below. We will see that such nontrivial metrics lead
to interesting results.

The trace of (12) can be written in the form

f'(Ru)Ry — ;_lf(Rn) + (= DO, f'(Ry) =T, (14)

which will be used below. From now on we will use the units
mp = 1.

In order to perform numerical analysis in the first order
approximation let us disregard the matter contribution and
choose n = 2, which strongly facilitates the analysis. Indeed,
if the extra space is 2-dimensional, only one equation in sys-
tem (12) remains independent. Let it be Eq. (14).

The compact 2-dim manifold is supposed to be parame-
terized by the two spherical angles 6 and ¢ (0 <0 < 7,0 <
¢ < 2m). The choice of the metric

Gog = —r(0)%; Ggp = —r(0)?sin*(6) (15)

leads to the Ricci scalar expressed in terms of the radius r (0),

_ 2 / 2
R = W(—r rCOS(@) +r Sm(@)

+r% sin(0) — sin(@)rr"), (16)

where the prime means d/d6.
If a brane is artificially attached to a point & = 0 the 2-dim
metric acquires the form

re(d6* + o? sin® 0dg?). (17)

The effect of the brane causes a deficit angle § = 27 (1 — «)
in a bulk with flat 4-dim metric. The cost is a strict connection
between the parameters of the model; see e.g. [11,16] and
for a review [35], where the pros and cons of this approach
are discussed.

The metric (15) has a more general form, which causes
a thick brane formation—a solution to Eq. (14). This equa-
tion leads to the trivial equality, if the function f is a linear
function of R. The solutions are much more promising if the
function f has a more complex form. So suppose that

F(R) = ui1(R — Ro)*. (18)

As aresult the explicit form of Eq. (14) to be solved numer-
ically is

2 1 2,p2 2 r(6)*
03R +cot0dR = ——r(0)*(Rg — RY) — ——T. (19)
uj

The solutions r;(0) for T = 0 are represented in Figs. 1 and 2
(solid lines). Their features are discussed in [36]. Due to the
high nonlinearity of the equation, the gravity is able to trap
itself in a small region around 6 = 0.
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Fig. 1 Radius r(0) as a function of the angle 0. Solid line mat-
ter is absent (C = 0), see (25), dotted line small density of the
scalar field (C < 1), dashed line moderate density of the scalar field
(C =~ 1). Boundary conditions: r(x) = 447,r' () = 0, R(7) =
2/r(n)2, R'() = 0, and the parameters Ry = 1075 u; = 100; m =
0.15

The variation of the boundary value r(;r) reveals two
classes of the metric. They are separated by the bound-
ary value r, = +/2/Ro, which gives a maximally sym-
metrical stable 2-metric as a particular solution of Eq. (19)
(ry = 447.2 for the parameters written in the capture of
Fig. 1). Two representatives of these classes are shown in
Figs. 1 and 2 by solid lines. Apple-like configurations are
formed if 7 (r) < ry, while onion-like configurations appear
if 7(r) > ry. One can smoothly vary the form of the 2-dim
extra space by variation of the boundary condition r (;r). The
physical parameters, like the Planck mass and the cosmolog-
ical constant, depend on the geometry of the extra space and
hence on the specific value of r(;r). As was shown below, it
leads to a set of different universes which has the cardinal-
ity of the continuum. The matter contribution—dotted and
dashed lines in Figs. 1 and 2—is discussed in Sect. 4.2.

It is important to notice that in the framework of ordinary
gravity the scale of classical region is about [, > 1/Mpy.
In our case with D-dim space and multidimensional Planck
mass mp the situation is not so evident. The main differ-
ence is found in hyperbolic extra spaces [9]. For a space
with positive curvature (like in our case), the result coin-
cides in order of magnitude with the expected one—/, >
1/mp(=1in mp units). This means that the classical solu-
tions represented in Figs. 1 and 2 are validat 6 ~ [./r(0) >
1/r(@) ~ 1/400. Therefore, the quantum effects invalidate
our classical results only in the close vicinity of the point-like
defect at 6 = 0.

@ Springer
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Fig. 2 Radius r(0) as a function of the angle . Boundary conditions
and the parameters the same as in Fig. 1 except r () = 448

The 2-dim metric depends on the internal coordinates only.
Thus, it may be interpreted as a thick 4-dim brane embedded
into 6-dim space M4 x Mj. In the framework of Einstein—
Hilbert gravity the brane must include matter to avoid singu-
larities [7]. In our case of unavailability of matter the brane
has a predictable structure in classical region and fails near
the brane. The latter should be true not only for the model in
question.

Let us discuss the mechanism of matter concentration
inside a small volume of compact manifold with “apple”-
type metric represented in Fig. 1.

4 Localization of scalar field
4.1 Field trapping by point-like defects of the 2-dim metric

Consider the influence of a deformed extra geometry repre-
sented by a solid line in Fig. 1 on a scalar field distribution. As

is shown in this section, the scalar field with the Lagrangian
1 2
Lin = 509G 0 — =-¢? (20)

is localized in the vicinity of such defect.
The field is assumed to be uniformly distributed in our
4-dim space,

@lx, y) =Y(y), 2D
so that the classical equation of motion is

0,Y () +m?Y (y) = 0. (22)
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With the metric (15) it may be written in the following form:
cot(0)dgY (0) + 02Y () — m*rp(0)°Y (9) = 0. (23)

This equation can be simplified to obtain an analytical solu-
tion. For that purpose recall that the characteristic size 7 of
an extra space must satisfy the condition

r>1/mp, (24)

which is a necessary condition for the extra space to be
considered classically. For the particular case represented
in Figs. 1 and 2, ¥ ~ r, =~ 400/mp, and the inequality
(24) holds. Let us define the “potential” v(f) = m2ry(0)%e?
where the small parameter

€e=1/(mp) K 1

was introduced.
In the spirit of WKB a solution to (23) may be found in
the form

Y(0) = CeS/e. (25)

Here C is an arbitrary constant. The equation acquires the
form

ecot(6)S) +eS" + 82 —v(6) =0. (26)

The first and the second terms are proportional to the small
parameter € and therefore may be omitted as compared to
S'2.

The first term tends to infinity for & — 0 and some spec-
ulations are necessary to demonstrate that it is nevertheless
small in the classical region where quantum fluctuations are
negligible. Indeed, a necessary condition for the classical
description of an area of a size [ reads [ >> 1/m p. In angular
units it means that 6 >~ [/r,(0) > 1/ > 1/mprp (0 K 1
is assumed). The first inequality is true in a close vicinity
to & = 0, where the condition r,(f) < 7p holds, as can be
seen from Fig. 1. Hence the classical description is valid if 6
satisfies the inequality
P — @7)

rmp

This condition is equivalent to the condition € cot(f) < 1
at small angles. It means that the first term is also small in
comparison with the term S’g and the classical solution to
(25) has the following form:

0
Y(@) = Cexp {—m/ d9’rb(9’)} . (28)
0

If the radius rp, (9) is growing monotonically as in Fig. 1 (solid
line) the scalar field density has a sharp peak, as is seen from
Fig. 3.

As a result, the matter is concentrated near point-like
defects of the extra space metric. At the same time it is uni-
formly distributed throughout our 4-dim space M. The effect

T(0)

0.8

0.6

0.4 1

0.2

0.05 0.10 0.15 0.20 0.25 0.30

0

Fig. 3 Typical distribution of the energy-momentum tensor trace of
the scalar field

of fermion trapping on the apple-like brane is discussed in
[37] on the basis of Einstein—Hilbert gravity.

4.2 Back reaction of the scalar field to the metric

Let us study the influence of a scalar field on the metric of 2-

dim manifold. Suppose that the trace of energy-momentum

tensor has a sharp peak near 6 = 0 as in Fig. 3. An origin

of such peak does not matter. It could be a result of metric

influence as was discussed above or an accidental fluctuation.
The energy-momentum tensor

1 )
Tap(9(0))) = 82939 — Gap [Each‘dadw - U(w)} (29)

should show a sharp maximum as well.
For the 2-dim extra space we have

T = G®T, = 2U(p) = m*¢?
6
= C*m?y? = C*m?exp {—Zm / de/rb(e/)}. (30)
0

The abundance of matter is ruled by the arbitrary param-
eter C. Numerical calculations with the help of the same
Eq. (14) and the trace in the r.h.s. of Eq. (30) are presented in
Fig. 1. It can be seen that the local matter distribution strongly
influences the 2-dim metric making the wall deeper (dotted
and dashed lines). It can be concluded from Fig. 2 that a
matter clump is able to form a gravitational well. The more
densely the matter is concentrated near a point, the deeper
the gravitational well. This coincides with our physical
intuition.
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Fig. 4 The cosmological A term versus scalar density distributed on
the extra space. 7'(0) is the trace of the energy-momentum tensor at
0=0,mp=1

5 Self-fitting of the cosmological A term and the Planck
mass

The approach developed above is based on the approximation
(5). Let us check its validity. To be more precise, and keeping
in mind the connection R4 ~ A we must obtain the smallness
of the A term, A < Ry; see (10).

The main assumption of the developed approach is the
formation of universes from space-time foam. Any initial
conditions may occur with non-zero probability. In our case
it relates both to a scalar field placed in the extra space
and to the form of the extra space. The chosen physical
parameter #; > 0 and the quadratic form of the function
f(R) means that f(R) > 0 always. A simple analysis of
expression (20) indicates that L,, < O for stationary solu-
tions of the scalar field, so that these terms could annihilate
each other. The matter distribution strongly depends on the
initial conditions that can vary within a wide range. This
observation is confirmed by the numerical calculations pre-
sented in Fig. 4. It is assumed that the trace of the energy-
momentum tensor 7 (0 = 0) is also the result of the initial
conditions.

Thus, the cosmological constant may vary from nega-
tive values (when matter is absent) to positive values (due
to the matter contribution). The variety of universes dif-
fers due to their initial conditions. In particular there exist
a set of universes with cosmological A terms being arbi-
trarily close to zero. According to Fig. 4 these universes
are formed with a scalar field distribution such that 7'(0) ~
0.00024.

The Planck mass depends significantly on the metric of
the extra space as shown on Fig. 5. Even if mp = const, the
calculated Planck mass can be fitted to the observable one by
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Fig. 5 The Planck mass square versus boundary value r (0 = ) nor-
malized by the sphere metric at 7 () = ry

a modification of the boundary conditions. Notice that some
boundary conditions lead to negative values of the Planck
mass and hence are unacceptable.

6 Conclusion

This paper discusses extra spaces with metrics that differ
from the maximally symmetrical ones within the framework
of f(R) gravity. The variety of initial conditions caused by
the space-time foam leads to a continuous set of 2-dim met-
rics containing point-like defects of the extra space. The extra
space metric is uniform in our 3-dim space and therefore
may be responsible for the 4-dim brane formed in 6-dim
space Mg = M> x My. The extra space structure is deter-
mined everywhere except for the close vicinity of the brane
where the quantum gravitational effects destroy the classical
description.

A scalar field distributed in the extra space is localized
within the vicinity of the point-like defect. Such a clump of
scalar field, in its turn, makes the gravitational well of the
point-like defect more prominent.

Both the metric and the scalar field contribute to the value
of the cosmological A term. The signs of their contributions
are opposite, so they could annihilate each other at some
specific initial conditions. It is shown that the continuous set
of 2-dim metrics contains a subset responsible for the range of
A terms including the zero value. Consequently, this subset
contains an extra space metric leading to an observable value
of the cosmological constant.
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