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Abstract The Friedmann equation in the Friedmann–
Robertson–Walker (FRW) universe with any spatial curva-
ture is derived from the first law of thermodynamics on the
event horizon. The key idea is to redefine a Hawking tem-
perature on the event horizon. Furthermore, we obtain the
evolution equations of the universe including the quantum
correction and explore the evolution of the universe in f (R)

gravity. In addition, we also investigate the generalized sec-
ond law of thermodynamics in Einstein gravity and f (R)

gravity. This perspective also implies that the first law of
thermodynamics on the event horizon has a general descrip-
tion in respect of the evolution of the FRW universe.

1 Introduction

Since its discovery by Bardeen, Bekenstein, and Hawking [1–
3] in the 1970s, the relationship between black hole physics
and thermodynamics has been generally accepted by physi-
cists. Decades of research show that the formula of the black
hole entropy S = A/4 where A is the area of the hori-
zon and the temperature T = |κ|/(2π) where κ is the
surface gravity has a certain universality. In 1995, Jacob-
son [4] argued that the Einstein equation could be derived
from the relation of thermodynamics (Clausius relation1) and
pointed out that the Einstein equation is an equation of state.
It was an important discovery that there exists a deep con-
nection between Einstein gravity theory and thermodynam-
ics. Besides, in a 4-dimensional de Sitter space, the analy-
sis of quantum field theory shows that the temperature of
the horizon of spacetime is T = κ/(2π) = 1/(2πR) and
the total entropy is S = πR2 where R is the radius of the

1 This relation is also called the first law of thermodynamics (see, for
example, Refs. [5,6]), so we use the terms Clausius relation and the first
law of thermodynamics interchangeably in this paper.
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horizon [7]. This implies that there exists a closed relation-
ship between the horizon of spacetime and thermodynamics.
Based on the above research results, we know that thermody-
namics has a certain universality in describing the horizons of
spacetime.

For the dynamic black hole, Hayward [8–10] introduced
the notion of trapping horizon in the 4-dimensional Einstein
gravity and showed that the Einstein equation is equivalent
to the unified first law. Based on these facts, the authors of
[11,12] generalized these concepts to the FRW universe and
investigated the relationship between the unified first law and
thermodynamics of the horizon in the FRW universe. Espe-
cially, in Ref. [11], they considered the FRW universe as
a dynamical spherically symmetric spacetime and defined
a trapping horizon. In this way, they showed the equiva-
lence between the unified first law and thermodynamics of
the apparent horizon in the FRW universe.

In addition, regarding thermodynamics of the horizon,
Padmanabhan [13,14] has shown that the field equations in
Einstein gravity and Lanczos–Lovelock gravity for a spheri-
cally symmetric spacetime can be expressed as the thermody-
namic identity dE = T dS−PdV , where the quantities E , T ,
S, and V are related to the horizon and have the interpretation
of energy, temperature, entropy, and volume. So the Clausius
relation δQ = T dS holds on the horizon. On the other hand,
in cosmology, there exists an event horizon since the universe
is in accelerated expansion according to astronomical obser-
vations. Indeed, Li [15] predicted the equation of state of the
dark energy and resolved the cosmic coincidence problem
by introducing the event horizon in the model of holographic
dark energy. Besides, the event horizon of the universe is the
largest comoving distance from which light emitted now can
ever reach the observer in the future and very similar to the
event horizon of the black hole whose thermodynamics has
been accepted generally. Therefore, it is natural and interest-
ing to investigate the laws of thermodynamics related to the
event horizon in the FRW universe.
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For the research as regards the thermodynamics on the
event horizon, though Wang et al. [16] claimed the event
horizon is unphysical from the point of view of the laws of
thermodynamics, Chakraborty [6] concluded that the uni-
verse bounded by the event horizon may be a Bekenstein
system by redefining the Hawking temperature. Based on the
temperature defined in Ref. [6], we [17] investigated the ther-
modynamics of the universe bounded by the event horizon
and dominated by a tachyon fluid and found that there exists
a good thermodynamic description in such a universe. How-
ever, the definition of the temperature on the event horizon is
not general in Refs. [6,17], and the thermodynamical descrip-
tion is reasonable just in the flat universe and some models.
So does there exist a general thermodynamic description of
the event horizon in the FRW universe with any spatial cur-
vature? Indeed, we obtain the first law of thermodynamics
on the event horizon by redefining the Hawking temperature
in Einstein gravity.

Now we can ask the question whether the first law of ther-
modynamics can hold on the event horizon in other gravity
theories such as f (R) gravity. In fact, in f (R) gravity, Eling
et al. [18] have shown that the correct equation of motion
cannot be obtained if one uses the Hawking temperature, the
entropy assumption S = αA f ′(R), and the first law of ther-
modynamics. An entropy production term has to be added to
the first law of thermodynamics in order to obtain the correct
equation. Thus f (R) gravity is described by the nonequilib-
rium thermodynamics of spacetime. So the above question
turns into the question whether the first law of thermody-
namics on the event horizon which is obtained by redefin-
ing the Hawking temperature in Einstein gravity can hold in
f (R) gravity. In other words, can the thermodynamics of the
spacetime in f (R) gravity be described by the equilibrium
thermodynamics? Through the investigation, we find that the
first law of thermodynamics on the event horizon is also held
in f (R) gravity. Therefore, we may conclude that the first
law of thermodynamics on the event horizon has a general
description in respect of the evolution of the FRW universe.

The present paper is organized as follows. In Sect. 2, we
show that the first law of thermodynamics on the event hori-
zon holds by redefining the Hawking temperature. In Sect. 3,
we derive the evolution equations of the universe based on
the first law of thermodynamics on the event horizon where
the quantum correction of the entropy is included. These evo-
lution equations of the universe cannot be obtained just by
the Einstein equation, so the method of the thermodynamical
description is more general. In Sect. 4, we study the evolution
of the universe based on the first law of thermodynamics on
the event horizon in f (R) gravity. In Sect. 5, we investigate
the generalized second law of thermodynamics of the uni-
verse bounded by the event horizon in Einstein gravity and
f (R)gravity. We end our paper with the conclusion in Sect. 6.
Throughout the paper, the Greek indices, μ, ν, . . . , etc. run

over 0, 1, 2, 3 and the units are chosen with c = h̄ = kB = 1;
the signature of the spacetime is taken as (−,+,+,+).

2 Redefinition of the Hawking temperature on the event
horizon

In a homogeneous and isotropic universe, the metric can be
expressed as

ds2 = hi jdx
idx j + R2dΩ2

2 , (1)

where i , j can take the values 0 and 1, R = a(t)r in which
a(t) is the scale factor and the 2-dimensional metric is hi j =
diag(−1, a2/(1 − kr2)), in which k is the spatial curvature
constant. A scalar quantity is defined as

χ = hi j∂i R∂ j R. (2)

The apparent horizon is defined by the scalar quantity
χ = 0, which gives RA = 1√

H2+ k
a2

. Then the surface gravity

on the apparent horizon is defined as [5,6,19,20]

κA = −1

2

∂χ

∂R

∣∣∣
R=RA

= 1

RA
, (3)

and the corresponding Hawking temperature is

TA = |κA|
2π

= 1

2πRA
. (4)

The study of the thermodynamics of the apparent horizon has
made great progress in the FRW universe [11,12,16,21–24].
In Refs. [11,12], it was shown that the function of the sur-
face gravity for any horizon of the FRW universe depends on
these variables2 RA and ṘA and is related to the ratio ṘA/RA

in the framework of the unified first law. On the other hand,
Bousso [25] pointed out that a thermodynamic description
of the horizon would be approximately valid and it does not
matter whether one uses the apparent or the event horizon in
the quintessence dominated spacetime (Q-spacetime). There-
fore, we assume that the surface gravity on the event horizon
(with the radius RE ) should have the following form:

κE = −1

2

∂χ

∂R

∣∣∣
R=RE

ṘA

RA
g(RE ), (5)

where g(RE ) is a function which is related to the variable
RE .

Now let us determine the form of the function g(RE ).
In the model of the flat Q-spacetime (the scale factor a(t)
is tα(α > 1) and the spatial curvature constant k is 0), the
radius of the apparent horizon is RA = t

α
and the radius of

2 The trapping horizon coincides with the apparent horizon RA in the
context of the FRW universe, so we use RA to denote the radius of the
trapping horizon.
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the event horizon is RE = t
α−1 , and the surface gravity on

the event horizon can be reduced to the following form [6]:

κE = −1

2

∂χ

∂R

∣∣∣
R=RE

. (6)

So the simplest form of the function g(RE ) is

g(RE ) = RE

ṘE
. (7)

Up to now, we obtain the surface gravity on the event
horizon

κE = −1

2

∂χ

∂R

∣∣∣
R=RE

ṘA

RA

RE

ṘE
. (8)

According to the relation between Hawking temperature and
the surface gravity on spacetime horizons, we get the tem-
perature on the event horizon

TE = |κE |
2π

= H

2π

(
k

a2 − Ḣ

)
R2
E

ṘE
. (9)

Now we would like to show the universality of this tem-
perature on the event horizon. The energy flux across the
event horizon during an infinitesimal time interval dt can be
calculated as [6,16,24,25]

δQ = ATμνk
μkvdt |r=RE , (10)

where kμ is a null vector and Tμν = (ρ + p)uμuν + pgμν is
the energy-momentum tensor. Thus, we can get the energy
flux

δQ = 4πR3
E H(ρ + p) dt. (11)

Using the Friedmann equation Ḣ − k
a2 = −4πG(ρ + p), the

energy flux turns into

δQ = HR3
E

G

(
k

a2 − Ḣ

)
dt. (12)

On the other hand, we use the Bekenstein entropy–area
relation and get

TEdSE = H

2π

(
k

a2 − Ḣ

)
R2
E

ṘE
· 2πREdRE

= HR3
E

G

(
k

a2 − Ḣ

)
dt. (13)

From Eqs. (12) and (13), we can see the first law of thermo-
dynamics, δQ |RE= TEdSE , holds on the event horizon. In
turn, we can also obtain the Friedmann equation in the FRW
universe with any spatial curvature based on the first law of
thermodynamics. This is an important result describing the
event horizon of the universe.

There are some comments we would like to make regard-
ing the thermodynamic description on the event horizon. First
of all, obtaining Eq. (8) is based on the following clues: (i)

The FRW universe is a dynamic spherically symmetric space-
time, so the horizon of its spacetime should be related to the
trapping horizon (analogous to the dynamic black hole). (ii)
Furthermore, the surface gravity defined under the frame of
the unified first law [11,12] is related to the ratio ṘA/RA, so it
is reasonable that we assume the surface gravity on the event
horizon is related to the ratio ṘA/RA in the frame of Clausius
relation. (iii) The concept of the event horizon of the FRW
universe is similar to that of the black hole whose thermody-
namics has been accepted generally, so the event horizon of
the universe should be described by thermodynamics.

Second, the form of Eq. (8) is simple and can be reduced
to the form which has been obtained in Ref. [8] in the model
of the flat Q-spacetime, so Eq. (8) is the correct choice and
has the physical explanation of the surface gravity.

Third, we get the conclusion that the first law of thermo-
dynamics holds on the event horizon based on Eq. (8). This
is an important result which shows the equivalence between
the first law of thermodynamics on the event horizon and the
Einstein equation in Einstein gravity. Because of the con-
ceptual similarity between the black hole horizon and the
event horizon of the universe, if we accept the thermody-
namic description of the black hole horizon, then we should
agree with the thermodynamic description of the event hori-
zon of the universe. What is more, we have successfully con-
structed the Hawking temperature and shown the validity of
the first law of thermodynamics on the event horizon in the
FRW universe.

3 Evolution of the universe based on the first law
of thermodynamics on the event horizon including
the quantum correction

By redefining the Hawking temperature (Eq. (9)), we confirm
the validity of the first of thermodynamics on the event hori-
zon in the above section. In the following sections, we take
the first law of thermodynamics δQ = T dS on the event hori-
zon as the fundamental starting point to derive the dynamic
evolution equations of the universe.

In this section, we will consider the quantum correction
of the entropy of the event horizon and derive these evolu-
tion equations of the universe including quantum correction
effects.

As we have pointed out in the Introduction, the property
of the event horizon of spacetime is similar to that of a black
hole. Due to the similarity, we take the form of the quantum
corrected entropy of a black hole as the entropy of the event
horizon [26–30],

S = A

4L2
p

+ α ln

(
A

4L2
p

)
, (14)
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where α is a constant and L p = √
h̄G/c3 is the Planck length.

According to Ref. [26], α ∼ O(1). Thus we obtain

T dS = HR3
E

G

(
1 + αL2

p

πR2
E

) (
k

a2 − Ḣ

)
dt, (15)

and the energy flux is

δQ = 4πR3
E H(ρ + p)dt. (16)

Based on the first law of thermodynamics δQ = T dS, we
get

(
k

a2 − Ḣ

)(
1 + β

R2
E

)
= 4πL2

p(ρ + p), (17)

where β = αL2
p

π
is a constant. This is the Friedmann equation

with a quantum correction describing the evolution of the
universe (we will discuss it later).

Now, in order to see the evolution properties of the uni-
verse clearly, we take the scale factor a(t) = tc(c > 1) and
employ G to denote L2

p. Thus, the radius of the event horizon
turns into RE = c

c−1 H
−1 and Eq. (17) turns into

(
k

a2 − Ḣ

)
(1 + λH2) = 4πG(ρ + p), (18)

where λ = β( c−1
c )2 is a constant. Compared with the stan-

dard Friedmann equation, we see that this equation has an
extra term λH2, which is caused by the quantum correction.
At present, this term is very small, that is, λH2 � 1, so we
can obtain

k

a2 − Ḣ = 4πG(ρ̃ + p̃), (19)

where we redefine the effective energy density ρ̃ and the
effective pressure p̃,

ρ̃ = (1 − λH2)ρ (20)

and

p̃ = (1 − λH2)p, (21)

respectively. On the other hand, the continuity equation for
the effective perfect fluid is

˙̃ρ + 3H(ρ̃ + p̃) = 0. (22)

Substituting Eqs. (20)–(22) into Eq. (19) and integrating the
resulting equation, we finally obtain

H2 + k

a2 = 8πG

3
(1 − λH2)ρ. (23)

This is another Friedmann equation under the quantum cor-
rection. In order to see the properties of the accelerated

expansion of the universe clearly, we combine Eqs. (19) and
(23) and get the result

ä

a
= −4

3
πG(ρ + 3p)(1 − λH2)

= −4

3
πG(ρ + 3p) + 4

3
πG(ρ + 3p)(λH2). (24)

Comparing with the equation ä
a = − 4

3πG(ρ+3p), which
can be obtained by the Einstein equation, we find that Eq. (24)
has an extra term, 4

3πG(ρ + 3p)(λH2). From the above
derivation, we know λ ∼ O(L2

p), so the extra term con-
tains the factor L2

pH
2, which represents quantum correction

effects.
It should be noticed that the equation describing the evo-

lution of the universe in the whole history is Eq. (17). From
this equation, we know that the evolution of the universe
depends on the event horizon RE , and the term β/R2

E cannot
be ignored at the early time. So this equation does not only
show physical consistency with the classical limit but it also
describes quantum effects which are described by the event
horizon. Hence we can conclude that the thermodynamical
description based on the event horizon under the redefinition
of Hawking temperature is more general than the Einstein
equation in describing the dynamic evolution of the universe.

4 Evolution of the universe based on the first law of
thermodynamics on the event horizon in the f (R)
theory

In this section, we will investigate the evolution property
of the universe in the theory of f (R) gravity. According to
Eq. (10), the energy flux is

δQ = 4πR3
E H(ρ̄ + p̄)dt, (25)

where ρ̄ = ρ + ρg is the total energy density of the matter
energy density ρ and the effective gravity energy density ρg ,
and p̄ = p+ pg is the total pressure of the matter pressure p
and the effective gravity pressure pg . In this gravity theory
the relation of entropy–area [5,31] is

S = A f ′(R)

4G
. (26)

Hence

T dS = f ′(R)H

(
k

a2 − Ḣ

)
R3
E

G
dt. (27)

Based on the first law of thermodynamics, we get the follow-
ing equation:
(

k

a2 − Ḣ

)
f ′(R) = 4πG(ρ̄ + p̄). (28)
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However, ρ̄ and p̄ cannot be determined just by the first law of
thermodynamics. So this evolution equation of the universe
also cannot be determined just by thermodynamics alone.

In order to determine the total energy density ρ̄ and the
total pressure density p̄, we employ the variational principle.
In f (R) gravity, the Einstein–Hilbert action can be written
as

S =
∫

d4x
√−g( f (R) + 2κ2Lm), (29)

where κ2 = 8πG. We employ f to denote the function f (R)

in the following content. Using the variational principle δS =
0, we obtain

Gμν = κ2
(

1

f ′ T
(m)
μν + 1

8πG
T (g)

μν

)
≡ κ2Tμν, (30)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor, T (m)

μν =
(ρ + p)uμuν + pgμν is the energy-momentum tensor of the
matter, and

T (g)
μν = 1

f ′

[
f − R f ′

2
gμν + ∇μ∇ν f

′ − gμν∇2 f ′
]

(31)

is the energy-momentum tensor of the gravity. Then we get
the effective gravity energy density ρg and the effective grav-
ity pressure pg ,

ρg = 1

8πG

(
R f ′ − f

2
− 3H f ′′ Ṙ

)
(32)

and

pg = 1

8πG

(
f − R f ′

2
+ f ′′′ Ṙ2 + f ′′ R̈ + 2H f ′′ Ṙ

)
,

(33)

respectively.
Thus, substituting Eqs. (32) and (33) into Eq. (28), we

finally get the Friedmann equation in the FRW universe,
(

k

a2 − Ḣ

)
f ′+ 1

2
(H f ′′ Ṙ− f ′′′ Ṙ2− f ′′ R̈) = 4πG(p+ p).

(34)

On the other hand, the continuity equation for the effective
perfect fluid in f (R) gravity is

˙̄ρ + 3H(ρ̄ + p̄) = 0. (35)

Combining Eqs. (34) and (35), we obtain another Fried-
mann equation,

H2 + k

a2 = 8πG

3 f ′

[
ρ + 1

8πG

(
R f ′ − f

2
− 3H f ′′ Ṙ

)]
.

(36)

These Friedmann equations, Eqs. (34) and (36), are the same
as those of Refs. [5,32], which describe the evolution of the
universe in other ways. Therefore, the equivalence between

the first law of thermodynamics on the event horizon and
Friedmann equations of the FRW universe with any spatial
curvature holds not only in Einstein gravity but also in f (R)

theory. This implies that the thermodynamical description is
general in describing the evolution of the universe. Besides,
it is also indicated that the FRW universe can be described
by the equilibrium thermodynamics on the event horizon in
f (R) gravity.

5 Generalized second law of thermodynamics of the
universe bounded by the event horizon

The generalized second law of thermodynamics of the uni-
verse bounded by the event horizon in Einstein gravity has
been investigated in Ref. [33], in which the authors assume
that the universe can be described by the equilibrium thermo-
dynamics. But in this paper, we have shown the validity of the
first law of thermodynamics on the event horizon in Sect. 2,
namely the universe bounded by the event horizon can be
described by the equilibrium thermodynamics. This conclu-
sion is particularly important for f (R) gravity, because it
has been pointed out that the spacetime in f (R) gravity is
described by the nonequilibrium thermodynamics if one uses
the usual Hawking temperature [18]. Next, using the method
of Ref. [33], we will present the generalized second law of
equilibrium thermodynamics of the universe bounded by the
event horizon in Einstein gravity and f (R) gravity.

For the holographic dark energy (DE) model [15] the den-
sity of holographic DE of the universe bounded by the event
horizon is

ρD = 3c2

8πG
R−2
E , (37)

where c is a numerical constant. The equation of state of
holographic DE can be written as

pD = ωDρD, (38)

where pD is the thermodynamic pressure of the holographic
DE and ωD is not necessarily a constant.

The two components in the matter system are non-
interacting, so they satisfy the energy conservation equations

ρ̇d + 3Hρd = 0 (39)

and

ρ̇D + 3H(ρD + pD) = 0 (40)

separately, where ρd is the energy density of dust matter (for
dust matter, its pressure pd is 0).

According to Eq. (10), the energy flux is

δQ = 4πR3
E H(ρd + ρD + pD)dt. (41)
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In Sect. 2, we have shown the validity of the first law of ther-
modynamics on the event horizon, so we have equilibrium
thermodynamics, and the effective temperature of the matter
(dust matter and DE) distribution can be considered to be the
same as that of the event horizon [33–35]. Thus we can use
the following Gibbs relation [34–36]:

TEdSm = dEm + pDdV, (42)

where Sm and Em are the entropy and energy of the matter
distribution. We obtain the following equation:

dSm = 4πR2
E

TE
(ρd+ρD+ pD)dRE + HR3

E

TE

(
Ḣ− k

a2

)
dt,

(43)

where the relations Em = 4
3πR3

E (ρd +ρD) and V = 4
3πR3

E
are used. Substituting Eqs. (37) and (38) into Eq. (40), we
get

dRE = 3

2
RE H(1 + ωD)dt. (44)

Hence the change of the total entropy Stot = Sm + SE , where
SE is the entropy of the event horizon, which is determined
by Eq. (13), is

dStot

dt
= 6πR3

E H

TE
(ρd + ρD + pD)(1 + ωD). (45)

We see that the result is the same as that of Ref. [33]. When
the holographic DE satisfies the weak energy condition

ρD + pD = (1 + ωD)ρD ≥ 0, (46)

the generalized second law of thermodynamics will be valid
for the universe bounded by the event horizon.

For f (R) gravity, as we have shown in Sect. 4, the first
law of thermodynamics holds on the event horizon, so Gibbs’
relation (42) can be used. Thus we obtain

dSm = 4πR2
E

TE
(ρd+ρg+ pg)dRE+ HR3

E

TE

(
Ḣ− k

a2

)
dt,

(47)

where we employ the dust as the matter. According to the
definition of the event horizon, RE = a(t)

∫ ∞
t

dt ′
a(t ′) , we get

dRE = (HRE − 1)dt, (48)

so the change of the total entropy is

dStot

dt
= 4πR2

E

TE
(ρd + ρg + pg)(HRE − 1)

+ (1 − f ′)
HR3

E

GTE

(
Ḣ − k

a2

)
. (49)

Substituting Eqs. (32) and (33) into Eq. (49), we get

dStot

dt
= R2

E

2GTE
(ρd + f ′′′ Ṙ2 + f ′′ R̈ − H f ′′ Ṙ)(HRE − 1)

+ (1 − f ′)
HR3

E

GTE

(
Ḣ − k

a2

)
. (50)

So the generalized second law of thermodynamics can be
satisfied as long as the above expression is not less than 0.

Now we would like to make some remarks regarding the
generalized second law of thermodynamics. (i) From the
above derivation, we know that the Gibbs relation (42) is
important in order to obtain the change of the total entropy.
Indeed, we have established the Gibbs relation on the event
horizon in Sect. 2, i.e. the first law of thermodynamics on
the event horizon. By contrast, the authors in Ref. [33] just
assumed the validity of the first law of thermodynamics on
the event horizon and a temperature of the event horizon
whose expression is unknown. (ii) For f (R) gravity, if one
does not redefine the Hawking temperature, then the horizon
is described by the nonequilibrium thermodynamics [11,18].
As we know, the Gibbs relation (42) cannot be used for the
nonequilibrium thermodynamics, so the method in Ref. [33]
is invalid. However, the first law of thermodynamics on the
event horizon holds and the Gibbs relation (42) can be used
in this paper. (iii) For f (R) gravity, the form of the change
of the total entropy is analytical, so it is convenient to dis-
cuss the generalized second law of thermodynamics if some
physical quantities are given.

6 Conclusion

So far, the study of thermodynamics of the event horizon
is rare, while the research of thermodynamics of the appar-
ent horizon has made great progress in the FRW universe.
However, there exists an event horizon since the universe is
in accelerated expansion. What is more, the concept of the
event horizon of the universe is very similar to the horizon
of the black hole whose thermodynamics has been accepted
generally. Hence it is natural and important to study ther-
modynamics of the event horizon in the FRW universe. As
far as we know, the difficulty of studying thermodynamics
on the event horizon is the definition of the temperature. For
example, in Ref. [16] the authors employed the temperature
on the event horizon TE = 1/(2πRE ), whose form is similar
to that of the apparent horizon, and they showed that the first
law of thermodynamics on the event horizon is invalid. In
Ref. [6], the author redefined the Hawking temperature but
the Hawking temperature is not general, and his conclusions
are only suitable for the flat spacetime and some models.

In order to solve these difficulties, we redefine the sur-
face gravity and the corresponding Hawking temperature on
the event horizon. Subsequently, we show the equivalence
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between the first law of thermodynamics on the event hori-
zon and the Friedmann equations of the FRW universe with
any spatial curvature in Einstein gravity. That is to say, the
first law of thermodynamics on the event horizon holds in the
FRW universe with any spatial curvature in Einstein gravity.
This is a very important property, which indicates that the
event horizon can be described by equilibrium thermody-
namics.

Then, starting with the first law of thermodynamics on the
event horizon, we obtain the Friedmann equation including
the quantum correction and show that the evolution of the
universe is related to the event horizon. As an example, we
present the evolution of the universe at present and get the cor-
responding quantum corrected Friedmann equations, which
are consistent with the standard Friedmann equations under
the classical limit. Furthermore, we obtain the Friedmann
equations of the FRW universe with any spatial curvature
in f (R) gravity based on the first law of thermodynamics.
Subsequently, we explore the generalized second law of ther-
modynamics of the universe bounded by the event horizon
and get the conditions which satisfy the generalized second
law of thermodynamics in Einstein gravity and f (R) gravity.
In summary, we conclude that the first law of thermodynam-
ics on the event horizon has a general description in respect
of the evolution of the FRW universe.
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