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Abstract Axion production due to photon–axion mixing
in tangled magnetic fields prior to the recombination epoch
and magnetic field damping can generate cosmic microwave
background (CMB) spectral distortions. In particular, the
contribution of both processes to the CMB μ distortion in the
case of resonant photon–axion mixing is studied. Assuming
that the magnetic field power spectrum is approximated by a
power law, PB(k)∝kn with spectral index n, it is shown that
for magnetic field cut-off scales 172.5 pc ≤λB ≤4×103 pc,
the axion contribution to the CMB μ distortion is subdomi-
nant in comparison with magnetic field damping in the cos-
mological plasma. Using the COBE upper limit on μ and
for the magnetic field scale λB � 415 pc, a weaker limit in
comparison with other studies on the magnetic field strength
(B0 ≤ 8.5 × 10−8 G) up to a factor 10 for the DFSZ axion
model and axion mass ma ≥2.6×10−6 eV is found. A fore-
cast for the expected sensitivity of PIXIE/PRISM on μ is also
presented.

1 Introduction

During the last decades intensive studies have been done
regarding the existence and nature of a primordial magnetic
field at both small and large scales. Its existence could have
a strong impact in different cosmological scenarios, such as
big bang nucleosynthesis (BBN), structure formation, CMB
temperature anisotropy etc. In general, in all those scenarios,
it is possible to probe its existence only indirectly, namely
through the coupling of the magnetic field with the cosmolog-
ical plasma. Consequently, based on information that we have
on BBN, CMB temperature anisotropy etc., it is possible to
speculate about the magnetic field structure and estimate its
strength at a given scale. In particular, the CMB temperature
anisotropy has been one of the most important benchmarks

a e-mail: damian.ejlli@lngs.infn.it

to test the existence of primordial magnetic fields. Indeed,
an ubiquitous, anisotropic, and homogeneous magnetic field
with strength at present time B0 � 3 × 10−9 G would create
the observed CMB temperature anisotropy due to anisotropic
expansion of the Universe [1–3]. For a general review on cos-
mological magnetic field, see Refs. [4–9].

In the presence of a large scale magnetic field, CMB pho-
tons can in principle convert into axions or other similar par-
ticles due to their coupling with the magnetic field. In Refs.
[10,11] we have studied such a mechanism in the presence of
a large scale uniform (spatially homogeneous) magnetic field
and applied it to CMB spectral distortions and temperature
anisotropy. However, several interesting questions arise as
to what happens in the case when the background magnetic
field is not homogeneous (tangled magnetic field). Does the
magnetic field have an impact on the spectral distortions? Is
the impact of the magnetic field on the spectral distortions
dominant or subdominant with respect to photon–axion oscil-
lations?

As in the case of density perturbations in the primor-
dial baryonic plasma suffering from Silk damping, we can
expect that a spatially varying magnetic field can couple to the
baryon plasma and dissipate energy. This would eventually
lead to the damping of the primordial magnetic field spec-
trum on different scales [12,13]. In general, a distinguishing
feature of a non-homogeneous magnetic field in comparison
with an uniform field is that the former can have an impact
on the CMB by distorting its spectrum. Indeed, it has been
shown in Ref. [14] that a spatially varying stochastic mag-
netic field may significantly dissipate in the cosmological
plasma prior to the recombination epoch. By dissipation, the
magnetic field energy would transform into kinetic energy
of the cosmological plasma and in turn the plasma’s kinetic
energy would be efficiently transformed into heat due to high
shear viscosity of the plasma. In the limit when the photon
mean free path lγ is smaller than the magnetic field mode
λ, lγ � λ, Alfvén, slow, and fast magnetosonic waves with
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λ < dγ are effectively dissipated, where dγ = (lγ t)1/2 is
the photon diffusion length and t is the cosmological time.

In the case when there is an energy injection into the
cosmological plasma such as conversion of magnetic field
energy into heat, electrons gain energy and the electron tem-
perature Te becomes higher than the photon temperature T ,
Te > T . Depending on the redshift at which the magnetic
field energy is converted into heat, this effect would eventu-
ally lead to CMB spectral distortions if energy is injected for
redshift z � 2×106. For an early treatment of CMB spectral
distortion see Refs. [15,16]; for further developments see
Refs. [17–26], and for production mechanisms of spectral
distortions see Refs. [27–30].

2 Dissipation of tangled magnetic field

During the evolution of the universe, it is usually assumed
that the conductivity of the cosmological plasma is infinite.
In this case the field amplitude scales as B ∼ B0a−2(t)
where a is the cosmological scale factor. Even though this
is a good approximation, it does not reflect the more general
case, namely the case of tangled magnetic fields when the
magnetic field dissipates energy. In order to make contact
with the results that follow, we assume that the magnetic
field is generated by random processes (stochastic) in the
early universe during the inflation or radiation epoch and it
evolves according to the following law:

B(x, t) = b0(x, t)
(a0

a

)2
, (1)

where a0 is the cosmological scale factor at the present epoch
and b0(x, t) is the tangled magnetic field of which the ampli-
tude evolves as b = b0 exp(i

∫ t
t0
dt ′ω), where ω is the mag-

netic field mode frequency; see Refs. [12–14]. Moreover, we
assume that the magnetic field is statistically homogeneous
and isotropic with ensemble average

〈bi (k)b∗
j (q)〉 = δ3(k − q)Pi j (k)PB(k), (2)

where Pi j is a projection tensor and PB is the power spectrum
of the primordial magnetic field, which in general is assumed
to be a power law, PB = Ckn with C a constant and n the
spectral index of the magnetic field. The constant C is fixed
by taking the spatial average (or ensemble average) of the
energy density of the magnetic field over a volume V ,

ρB(t0) = 〈B0(x)B0(x)〉
2

= B2
0

2
, (3)

with co-moving cut-off wavelength λB = 2π/kλ where kλ

is a cut-off co-moving wave-vector. The cut-off wavelength
(or wave-vector) is in general a free parameter, connected
with the Fourier decomposition of B(x), and in principle can
assume values from zero to infinity. However, for physical

reasons it depends essentially on the generation mechanism
of the primordial magnetic field. In the case of a magnetic
field generated by a causal mechanism, the value ofλB should
be smaller than or equal to the Hubble horizon while in the
case of a magnetic field generated by a non-causal mecha-
nism (in general negative spectral indices) the value of λB

can be greater than the Hubble horizon. As we see below, in
the case of causal mechanisms, we consider λB to be smaller
than or equal to the Hubble horizon during the μ epoch; see
Figs. 1, 2, and 3. In the case of magnetic fields generated by
non-causal mechanisms we set for simplicity λB to be of the
order of Mpc, even though it can be larger than this value;
see Figs. 4b and 5.

With this kind of normalization the magnetic field power
spectrum is given by

PB = B2
0

4π
(n + 3)

(
k

kλ

)n

. (4)

Another possibility of fixing the constant C , which is also
used in the literature, is to use a Gaussian filter e−(k/kλ)2

in
the definition of ρB(t0); see Refs. [31,32]. In this case the
form of PB is different from Eq. (4) but the spatial average
of ρB(t0) remains invariant as it should be. In this work we
shall not adopt this definition.

Let Q̇B indicate the energy loss per unit time of the
magnetic field that would convert into heat in the plasma.
If energy injection (or heat) occurs in the redshift interval
2.88 × 105 ≤ z ≤ 2 × 106, Compton scattering would
eventually create a Bose–Einstein distribution for the pho-
ton spectrum with chemical potential μ.1 The evolution of
the chemical potential with respect to time is governed by
the Sunyaev–Zel’dovich equation [15,16],

dμ

dt
= − μ

tdC
+ 1.4

Q̇B

ρR
, (5)

where tdC = 2.09×1033(1−Yp/2)−1(h2�B)−1(1+ z)−9/2

s is the characteristic time for double Compton scattering.
Here Yp � 0.24 is the helium primordial weight by mass
and h2�B � 0.022 is the density parameter of the baryons
[33].

To solve Eq. (5) we need to know the rate of heat flow into
the plasma due to magnetic field dissipation. It can be shown
that in the photon diffusion limit, i.e. 	−1

γ � λB [12,13]
(where 	γ = σT ne with σT being the Thomson cross section
and ne the number density of free electrons)

1 The chemical potential introduced here is a dimensionless quantity
and is related to the thermodynamical chemical potential μther by μ =
−μther/T .
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(a) (b)

Fig. 1 Exclusion plot in the parameter space B0–λB in the resonant
case due to μ-distortion. In a the exclusion plot for COBE [34] upper
limit on μ and DFSZ axion model for n = 2 is shown and in b the exclu-
sion plot for COBE upper limit on μ and DFSZ axion model for n = 3
is shown. In both a and b the region above the solid line represents

the excluded region without photon–axion mixing, while the region
above the dashed, dot dashed, and dotted lines represents the excluded
region including photon–axion mixing for m̄a = 4.88 × 10−5 eV,
m̄a = 1 × 10−5, and m̄a = 3 × 10−6 respectively

(a) (b)

Fig. 2 Sensitivity plot in the parameter space B0–λB for PIXIE/PRISM [37,38] expected value on μ � 5 × 10−8 and for the DFSZ axion model.
Values of the magnetic field spectral index n and axion mass m̄a are the same as in Fig. 1
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(a) (b)

Fig. 3 In a the exclusion plot in the parameter space B0–λB for COBE
limit on μ < 9 × 10−5 for the KSVZ axion model and n = 2 is
shown and in b the sensitivity plot in the parameter space B–λB for the

PIXIE/PRISM expected value on μ � 5 × 10−8 for the KSVZ axion
model and n = 2 is shown. Values of the axion mass are the same as in
Fig. 1

(a) (b)

Fig. 4 Exclusion plot in the parameter space B0–λB for COBE limit
on μ < 9 × 10−5. In a the region above the solid line is excluded with
no photon–axion mixing included, while the regions above dashed and
dot dashed are, respectively, excluded by the KSVZ and DFSZ axion

models only. In b the exclusion plot for the magnetic field spectral index
n = −2.9 and the DFSZ axion model is shown. The values of the axion
mass are the same as in Fig. 1
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(a) (b)

Fig. 5 Sensitivity plot in the parameter space B0–λB for the PIXIE/PRISM expected limit on μ � 5 × 10−8. In a the sensitivity plot for the KSVZ
axion model and n = −2 is shown, while in b the sensitivity plot for the KSVZ axion model and n = −1 is shown

Q̇B

ρR
= B2

0

2ρR(t0)

(n + 3)

kn+3
λ

∫ kλ

0
dk

kn+4

5(1 + z)	γ (t0)

× exp

(
− 2k2

k2
D(t0)

1

(1 + z)3

)
, (6)

where ρR is the energy density of relativistic particles, t0
denotes the present time, and k2

D(t0) = 15 	γ (t0)/t∗ �
6.27 × 10−19	γ (t0) s−1. The term t∗ is connected to the
thermalization redshift,2 zμ, through the relation t∗ =
5tdC/(4(1 + zμ)5/2). Substituting Eq. (6) into Eq. (5), the
general solution of Eq. (5) in terms of the redshift is given
by

μ(z) = 1.4 B2
0

10 ρR(t0)

(n + 3)

	γ (t0) k
n+3
λ

∫ kλ

0

∫ zi

z
dz′dk kn+4

(1 + z′)4

× exp

(
− 1 + z′

1 + zμ

)5/2

exp

(
− 2k2

k2
D(t0)(1 + z′)3

)
,

(7)

where zi is an initial redshift, zi � zμ, and the term pro-
portional to μ(zi ) is absent, since for zi we have μ(zi ) = 0.

In obtaining Eq. (7) we have used the fact that in the radia-
tion dominated universe dt = −dz 2t∗/(1 + z)3 and z is the
redshift in the radiation dominated universe z � zμ.

2 The thermalization redshift is the redshift that for z ≥ zμ the CMB
spectrum is in thermal equilibrium and for z < zμ the spectrum is a
Bose–Einstein distribution; see Refs. [17–26].

In general it is not possible to find an analytic solution of
Eq. (7) due to the non-trivial form of the integrands. Indeed,
one can recognize that the double integral of Eq. (7) can
be expressed in terms of the incomplete gamma functions,
γ (s, 2k2

λ/k
2
D) where s is an integer that in our case is either

s = (n + 5)/2 or s = (3n + 9)/5. However, it is possible to
consider some limiting cases, which allows to find analytic
expressions in terms of the Euler gamma function 	. Let us
consider the limit k2

λ � k2
D(t0)(1 + zμ)3 and then evaluate

the residual chemical potential at redshift z = 0 (today). In
this limit we get the following relation between the magnetic
field strength B0 and μ:

B0 = 3.19 × 10−6
√

μ

Cn

(
kD
kλ

)−(n+3)/2

G, (8)

where Cn is a constant

Cn = 1.4 	(n/2 + 5/2) 	(3n/5 + 9/5)

× 2−(n+5)/2 (6/5) (n + 3). (9)

Here the term kD = kD(t0)z
3/2
μ in Eq. (8) is the scale damped

by one e-fold at redshift zμ. Its corresponding co-moving
wavelength is λD = 2π/kD = 415.5 pc. In the opposite
case, in the limit k2

λ � k2
D(t0)(1 + zμ)3, we get

B0 = 3.19 × 10−6
√

μ

Dn

(
kD
kλ

)
G, (10)
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where Dn is a numerical constant that is given by

Dn = 1.4 	(−6/5)

(
n + 3

n + 5

)
(6/5). (11)

3 Axion contribution to spectral distortion

We have seen that tangled magnetic fields can dissipate
energy and create μ distortion in the early universe. How-
ever, their presence would make possible the transition of
CMB photons into axions.3 In Refs. [10,11] we have derived
the equations of motions for the photon–axion system in the
steady state approximation in the case of a uniform mag-
netic field. Here we calculate the transition probability in the
resonance case in the presence of a tangled magnetic field.
The resonant regime is the axion mass range that makes a
resonant transition in the redshift interval 2.88 × 105 �
1 + z � 2 × 106; see Refs. [10,11] for details. The dif-
ference in this case is that the magnetic field depends on the
position, B(x, t). However, one does not need to calculate
the equation of motion for the density operator ρ̂ again. It is
sufficient to only replace in the equations of motions for ρ̂:
B(t) → B(x, t); then we should take the spatial average of
the transition probability, Pa → 〈Pa〉. Since the transition
probability depends on B2

0 [10,11] and using the fact that
〈B0(x)B0(x)〉 = B2

0 , in the resonant case we get

〈Pa(T̄ )〉 = 5.75 × 10−27 x C2
aγ B2

nG

(
T̄

T0

)3

, (12)

where BnG = (B0/nG), and Caγ is defined as

Caγ ≡
(
E

N
− 2

3

4 + w

1 + w

)
1 + w

w1/2 , (13)

where for w = 0.56, |Caγ | � 4 for E/N = 0 (KSVZ axion
model) and |Caγ | � 1.49 for E/N = 8/3 (DFSZ axion
model). Here w is defined in terms of the mass ratio of up and
down quarks, w = mu/md . For a small chemical potential
μ we can write 〈Pa〉 = μex/(ex − 1) where x = ω/T with
ω being the photon energy and T the CMB temperature. In
this case we can easily find

B0 = 6.76 × 10−11
√

μ

m̄a Caγ

G, (14)

where T̄ and m̄a = ma/eV are, respectively, the resonance
temperature and axion mass. Since we are looking for a spec-
tral distortion in the redshift interval 2.88 × 105 � 1 + z �
2×106, the corresponding resonant axion mass is within the
interval 2.66 × 10−6 eV � m̄a � 4.88 × 10−5 eV [10,11].

Equation (8) gives only the contribution to the μ distortion
from the magnetic field itself. Now we must add to it also

3 In this paper we focus only on the QCD axion (hadronic axions).

the contribution from axion creation from the CMB. Indeed,
adding to Eqs. (8) and (14) we get the following relation
between the magnetic field strength, the μ-parameter, and
λB :

B0 = √
μ

(
1.6 × 10−6 C−1/2

n (λB/λD)
−

(
n+3

2

)

+ 3.38 × 10−11 1

m̄a Caγ

)
G, (λB � λD). (15)

On the other hand, in the limiting case λD � λB and adding
to Eqs. (10) and (14) we get

B0 = √
μ

(
1.6 × 10−6 D−1/2

n (λB/λD)

+ 3.38 × 10−11 1

m̄a Caγ

)
G, (λD � λB). (16)

We notice from Eq. (16) that the magnetic field strength
depends on the spectral index n only through Dn . It is inter-
esting to know at what scales the axion contribution to the μ

distortion is smaller than the magnetic field contribution. In
the case λB � λD we get

λB ≥
(

4.73 × 104 m̄aCaγ

C1/2
n

)2/(n+3)

λD, (λB � λD),

(17)

while in the case λD � λB we get

λB ≤ 2.11 × 10−5 D1/2
n

m̄aCaγ

λD, (λD � λB). (18)

We can see from Eqs. (17) and (18) that λB does not
depend on the average strength of the magnetic field
B0 but only on n,Caγ , and m̄a . For example for n =
−2.9,−2,−1, 0, 1, 2, 3 we have, respectively, Cn = 1.27,

0.78, 0.77, 1.1, 2.08, 4.93, 14.05 and Dn =0.38, 2.71, 4.07,

4.88, 5.43, 5.82, 6.11. If we consider for example the DFSZ
axion model, n = 2 and axions with mass m̄a = 3.5 ×
10−6 eV, we see that for λB � 415.5 pc, the axion con-
tribution to the μ distortion is subdominant to magnetic
field damping for λB ≥ 172.5 pc. In the opposite limit,
λB � 415.5 pc, we get λB ≤ 4.03 × 103 pc. On the other
hand, if we have μ given by the experiment and ask at what
scales the axion contribution in the B0–λB plane is subdom-
inant to magnetic field damping, we must simply reverse the
inequality signs in both Eqs. (17) and (18); see Fig. 4a.

In Fig. 1 the exclusion plot for the scale averaged mag-
netic field, B0 vs. λB , is shown. In both (a) and (b) the plots
for the upper limit on μ found by COBE [34] are shown.
Here we have chosen magnetic fields with n ≥ 2, which
are generated in the early universe by causal mechanisms
[35]. For such magnetic fields, the field wavelength λ or
λB must be smaller than the Hubble distance at redshift z,
namely λB ≤ H−1(z). Indeed, in Fig. 1 we have chosen
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H−1(zQCD) ≤ λB ≤ H−1(zμ) where H−1(zQCD) ∼ 1 pc
is the QCD co-moving horizon and zμ = 2.88 × 105 (lower
redshift of μ epoch). Our exclusion and sensitivity plots in
Figs. 1, 2, and 3 have been obtained for μ distortion and
n = 2, 3. The region above the solid line is excluded with
no photon–axion mixing taken into account, while regions
above the dashed, dot dashed, and dotted lines are excluded
by taking it into account. The exclusion plot with no photon–
axion mixing has been obtained by using Eqs. (8) and (10)
and extrapolating them until λB → λD .

We can see from Figs. 1, 2, and 3 that when we take into
account photon–axion mixing, there are significant devia-
tions for 200 pc ≤ λB ≤ 103 pc, in comparison with the case
of no photon–axion mixing. Depending on the axion mass
and axion model, deviations range from a factor 2 up to a
factor 11. In our plots we have chosen three representative
axion masses, m̄a = 4.88×10−5 eV, m̄a = 1×10−5 eV, and
m̄a = 3.5×10−6 eV. Axions with mass m̄a = 4.88×10−5 eV
are resonantly produced at the beginning of the μ-epoch,
while axions with mass m̄a ≥ 3.5 × 10−6 eV are experi-
mentally allowed by the ADMX collaboration4 [36]. Axions
with mass m̄a � 3.5 × 10−6 eV give weaker limits on B0 in
comparison with axions with bigger masses. This can be seen
from Eq. (14) where the axion mass is in the denominator.

In the case of the expected limits on μ by future missions
such as PIXIE/PRISM [37,38], our plots are shown as sen-
sitivity plots; see Figs. 2, 3 and 5. For example we can see
in Fig. 2 that PIXIE/PRISM have a much better sensitivity
with respect to COBE in the B0–λB plane. Depending on the
axion mass and axion model the improvement is in general
one or two orders of magnitude. In Fig. 4a plots of Eqs. (14)–
(16) are shown. In this figure we can see the regions where
the axion contribution in the B0–λB plane is dominant or
subdominant. In Figs. 4b and 5 plots for negative spectral
indices, for example n = −2.9 and n = −2, are shown.
In general, magnetic fields with negative spectral indices are
generated by non-causal processes, for example during the
inflationary epoch [4–9].

4 Summary

In this work we have considered the impact of spatially vary-
ing stochastic magnetic fields and resonant photon–axion
mixing on the CMB μ distortion. The contribution of mag-
netic field to the μ distortion depends on the cut-off scale
λB and on the damping scale λD . On the other hand, the
axion contribution is scale independent as can be seen from
Eq. (14). Taking into account the axion contribution to the
μ distortion, in general, one finds weaker limits on the scale

4 To be more precise, the ADMX collaboration did not find any axion
in the mass range 3.3μeV–3.5μeV.

averaged magnetic field B0 in comparison with the case of no
photon–axion mixing included. Our main results have been
shown as exclusion and sensitivity plots in the B0–λB plane,
where the value of the chemical potential has been chosen
either equal to the upper limit found by COBE or equal to
the expected limit of PIXIE/PRISM.

In this work we have considered only resonant photon–
axion mixing on generating a non-zero chemical potential.
In the resonant case, the axion mass is not arbitrary but is
connected with the μ epoch redshift, zμ. This constrains the
resonant axion mass in the range 2.66 × 10−6 eV � m̄a �
4.88 × 10−5 eV [10,11]. Axions with masses outside this
interval make a non-resonant transition into photons.

The inferiority of the axion contribution to μ distortions in
comparison with magnetic field damping is scale dependent
as given by Eqs. (17) and (18). Obviously this is parame-
ter dependent and a certain number of approximations are
in order. If we consider a magnetic field generated by a
causal mechanism, n ≥ 2 [35], and axions with a mass
m̄a ≥ 3.5 × 10−6 eV allowed by the ADMX [36] and the
DFSZ axion model, we find that a bigger contribution to the
μ distortion with respect to magnetic field damping occurs
for cut-off scales, λB ≤ 172.5 pc and λB ≥ 4 × 103 pc. In
the B0–λB plane the axion contribution dominates over mag-
netic field damping for a scale of 172.5 pc ≤ λB ≤ 4 × 103

pc. For scales λB � λD , B0 weakly depends on the spec-
tral index n. For example by using Eq. (15) we see that, for
μ < 9 × 10−5, m̄a = 2.66 × 10−6 eV (lower limit of reso-
nant axion mass) and DFSZ axion, the upper limit on the scale
averaged magnetic field is B0 ≤ 8.77 × 10−8 G for n = 2,
B0 ≤ 8.49 × 10−8 G for n = 3, and B0 ≤ 9.81 × 10−8 G
for n = −1. If we had neglected the contribution of a res-
onant photon–axion contribution to μ distortion, we would
get B0 ≤ 1.36 × 10−8 G for n = 2, B0 ≤ 8 × 10−9 G for
n = 3, and B0 ≤ 3.45 × 10−8 G for n = −1. Therefore we
can conclude that for values of the parameters as assumed
above, resonant photon–axion production gives weaker lim-
its on B0 up to a factor in 10 in comparison with the case of
no photon–axion mixing included.

Limits on B0 in the case of the KSVZ axion model are
in general stronger than those from the DFSZ axion model
(for a given axion mass). For example, if we consider axions
with mass m̄a = 4.88 × 10−5 eV (allowed upper limit) and
μ fixed, the contribution of resonant photon–axion produc-
tion to Eqs. (15) and (16) is almost marginal. In the B0–λB

plane the curve corresponding to the KSVZ axion model and
m̄a = 4.88 × 10−5 eV is almost indistinguishable from the
curve corresponding to the case with no photon–axion mix-
ing included. In general, the two curves differ from each other
up to a factor 1.5 for 172.5 pc ≤ λB ≤ 4 × 103 pc.

A forecast for the future PIXIE/PRISM space missions has
been presented. In Fig. 2 we can see the level of sensitivity
in the case where photon–axion mixing is not included and
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in the case when it is. In the former case we find that, for
scales λB � 415.5 pc, PIXIE/PRISM will probe magnetic
fields B0 ≥ 10−10 G, while in the latter case it is parameter
dependent. For axions with masses m̄a ≥ 2.66×10−6 eV, we
find B0 ≥ 2 nG for the DFSZ axion and B0 ≥ 8.8 × 10−10

G for the KSVZ axion. In the case of axions with masses
m̄a = 4.88 × 10−5 eV the contribution of photon–axion
mixing is marginal, as can be seen from Fig. 2.

It is important to stress two things. First in this work we did
not consider any limit from the CMB y distortion, since at the
moment we are currently working on an effective approach
of y distortion in the case of photon–axion mixing. Second,
the contribution of magnetic field damping to the μ distortion
has been derived by using linearized magnetohydrodynamic
equations in the photon diffusion limit [14]. Moreover, we
have extrapolated both Eqs. (15) and (16) for λB → λD .
A detailed behavior of B0 around λD requires a numerical
integration that is beyond the scope of this paper, but we
expect that extrapolated results are very accurate for λB →
λD .
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