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Abstract High-energy elastic diffraction of nucleons is
considered in the framework of the simplest Regge-eikonal
approximation. It is demonstrated explicitly that the effective
transverse radius of nucleon in this nonperturbative regime
is ∼ 0.2 ÷ 0.3 fm and much less than the transverse size of
the diffractive interaction region.

1 Introduction

Elastic diffractive scattering of hadrons is one of the
most interesting and important areas of high-energy hadron
physics: in pp collisions the fraction of elastic diffraction
events in the total number of events is very high (from more
than 15 % at the ISR to about 25 % at the LHC). However,
the main problem related to this sector of strong interac-
tion physics is the fact that the characteristic distances for
diffractive interaction of hadrons are of order 1 fm, so that
perturbative QCD is inapplicable. Hence, one has to search
for some approaches not related to pQCD directly, to pro-
vide an at least qualitative description of the corresponding
high-energy observables.

One of the most natural theoretical frameworks which
helps to deal with the nonperturbative sector of hadron
physics is Regge theory, wherein the interaction of hadrons is
described in terms of exchanges by reggeons (off-mass-shell
and off-spin-shell composite particles). In Ref. [1] a simple
Regge-eikonal model for high-energy elastic diffraction of
nucleons was examined. In this model, the standard eikonal
representation of the nonflip scattering amplitude [2],

Tel(s, t) = 4πs
∫ ∞

0
db2 J0(b

√−t)
e2iδ(s,b) − 1

2i
, (1)

δ(s, b) = 1

16πs

∫ ∞

0
d(−t)J0(b

√−t)δ(s, t)
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(here s and t are the Mandelstam variables and b is the impact
parameter), is exploited together with the single-reggeon-
exchange approximation to the eikonal (Born amplitude) in
the kinematic range s � {m2

p, |t |}:

δ(s, t)=δP(s, t)=
(
i+tg

π(αP(t)−1)

2

)
�P

2(t)

(
s

s0

)αP(t)

,

(2)

where s0 = 1 GeV2 and αP(t) is the Regge trajectory of
a pomeron (a C-even reggeon, which absolutely dominates
over other reggeons at the SPS, Tevatron, and LHC energies).
More details, regarding the Regge-eikonal approach, can be
found in [2] or, partly, in the appendix.

In [1] the unknown functions αP(t) and �P(t) are con-
sidered independent and treated with the help of some
simple test parametrizations which are fitted to the data.
Formally, the used parametrizations have provided a sat-
isfactory description of the available experimental data at√
s > 500 GeV and −t < 2 GeV2. However, a ques-

tion emerges about possible correlation between the behav-
ior of αP(t) and �P(t) at low t , since both functions
have a strong impact on the t-behavior of the scattering
amplitude.

Such a correlation exists and can be taken into account
explicitly. As a consequence, it becomes possible to extract
from the data valuable information concerning the effective
transverse radius of nucleon in the nonperturbative regime of
high-energy diffractive scattering.

2 Structure of the pomeron Regge residue

First of all, we should note that in the framework of the
Regge-eikonal approach the pomeron exchange contribu-
tion into the eikonal of nucleon–nucleon elastic scattering
appears as
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δP(s, t)=
(
i + tg

π(αP(t)−1)

2

)
g2

P(t) πα′
P(t)

(
s

2s0

)αP(t)

,

(3)

where α′
P(t) originates from the pomeron propagator (see

the appendix) and, in general, the factor 2−αP(t)πα′
P(t) is not

related to the pomeron–nucleon coupling. In the literature
this factor is usually included into the corresponding Regge
residue [2]: g2

P(t)2−αP(t)πα′
P(t) ≡ �P

2(t). The real part of
the eikonal has simple poles at those values of t where the
pomeron Regge trajectory takes on even integers: αP(M2

j −
iM j� j ) = j = 2n (here j , Mj , and � j are the glueball spin,
mass, and decay width). The existence of such poles provides
the corresponding glueball resonance contributions into the
t-channel amplitude.

If to consider gP(t) as a nontrivial unknown function
of t , then expressions (2) and (3) are equivalent from the
standpoint of description of data. However, the replace-
ment gP(t) → �P(t) degrades the physical transparency
of the model, since the shortened form (2) ignores the evi-
dent correlation between the behavior of the pomeron Regge
residue and the pomeron Regge trajectory. Moreover, if the
t-dependence of gP(t) is weak at low t , then usage of (2)
instead of (3) leads to the loss of physical information.

Treating the high-energy elastic scattering of nucleons
in the same way as the lepton-proton elastic scattering, we
define the quantity gP(0) as the effective “pomeron charge”
of nucleon, while the ratio gP(t)/gP(0) should be considered
as the nucleon “pomeron form factor”. By analogy with the
extraction of the proton charge radius from the proton charge
form factor, one can extract the effective transverse “pomeron
radius” of the nucleon from gP(t). Hence, a possible weak
t-dependence of this quantity at low t could be interpreted as
the effective transverse (quasi-)pointlikeness of the nucleon
in the high-energy diffractive scattering regime.

Let us recall that although QCD itself does not predict
the behavior of αP(t) in the diffraction domain (0 < −t <

2 GeV2), this function is expected to satisfy the following
conditions [2,3]:

dnαP

dtn
> 0 (n = 1, 2, . . . ; t < 0), lim

t→−∞ αP(t) = 1. (4)

The first condition originates from the dispersion relations
for Regge trajectories (if not more than one subtraction is
needed), and the second one follows from the natural pre-
sumption that at high values of the transferred momentum
the exchange by a pomeron turns, due to asymptotic free-
dom, into the exchange by two noninteracting gluons, which
can be considered in the same way as the exchange by two
photons. At high energies such Born amplitudes behave as
∼ s1 [4].

Thus, if the effective transverse radius of nucleon is small,
then, in view of restrictions (4), the t-dependence of eikonal
(3) is determined mainly by the Herglotz function αP(t). Con-
sequently, the quality of the description of the differential

cross section dσ
dt = |T (s,t)|2

16πs2 becomes extremely sensitive to
the quantitative behavior of αP(t) at low negative t . Such
a sensitivity implies that the procedure of fitting αP(t) and
gP(0) to experimental angular distributions in a wide enough
kinematic range could be considered as an implicit extraction
of these quantities from the data.

3 Fitting to the experimental data

Let us reconsider the model from [1], having singled out the
factor 2−αP(t)πα′

P(t) in the Regge residue, as in (3):

αP(t) = 1 + αP(0) − 1

1 − t
τa

, �P(t) → gP(t) = gP(0)

(1 − agt)2 .

(5)

The results of fitting αP(t) and gP(t) to the experimen-
tal differential cross sections at

√
s > 500 GeV and 0.005

GeV2 < −t < 2 GeV2 [5–14] are presented in Tables 1,
2, and 3 and Fig. 1. The deviation of the model predic-
tions from the pp elastic scattering data in the dip region at√
s = 62.5 GeV [15] can be explained by the noticeable

contribution of secondary reggeons into the real part of the
eikonal. A detailed discussion of this matter can be found in
[1].

The D0 data [16] were not included into the fitting pro-
cedure, since they have a normalization uncertainty about

Table 1 The parameter values obtained via fitting to the high-energy
differential cross-section data

Parameter Value

αP(0) − 1 0.109 ± 0.017

τa (0.535 ± 0.057) GeV2

gP(0) (13.8 ± 2.3) GeV

ag (0.23 ± 0.07) GeV−2

Table 2 The quality of description of the data [5–14] on the angular
distributions of nucleon–nucleon scattering
√
s (GeV) Number of points χ2

546 ( p̄ p; UA1, UA4, CDF) 231 253

630 ( p̄ p; UA4) 17 11

1800 ( p̄ p; E710) 51 16

7000 (pp; TOTEM, ATLAS) 201 188

Total 500 468
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14.4 %. If to multiply them by a factor 0.92, the quality of
the description becomes much better (see Table 4). The same
can be said regarding the unrenormalized CDF data at

√
s =

1800 GeV [17], which are inconsistent with the E-710 data.

Table 3 Predictions for the pp total and elastic cross sections and
the forward logarithmic slope of the corresponding differential cross-
sections
√
s (GeV) σtot (mb) σel (mb) B (GeV−2)

62.5 43.0 ± 4.4 7.4 ± 1.2 14.5 ± 0.8

200 53.3 ± 3.8 10.2 ± 1.2 16.0 ± 0.8

546 63.8 ± 3.3 13.2 ± 1.0 17.3 ± 0.9

1800 78.5 ± 3.4 17.8 ± 1.0 19.1 ± 1.0

7000 98.4 ± 5.4 24.5 ± 1.8 21.4 ± 1.1

8000 100.5 ± 5.7 25.3 ± 1.9 21.6 ± 1.1

13000 108.6 ± 6.9 28.2 ± 2.5 22.5 ± 1.2

14000 109.9 ± 7.1 28.6 ± 2.5 22.6 ± 1.2

32000 124.9 ± 9.7 34.1 ± 3.7 24.2 ± 1.4

100000 148.0 ± 14.1 42.8 ± 5.6 26.6 ± 1.7

4 Justification for usage of the parametrization for αP(t)

Before drawing any physical conclusions from the fitting
results, we should discuss our choice of parametrization for
αP(t). First, the essential nonlinearity of αP(t) from (5),
which, in fact, is not related to this concrete expression but
follows from the restrictions (4), seems to be in contradic-
tion with the observed approximate linearity of the Chew–
Frautschi plots for secondary reggeons. However, we would
like to point out that such a linear behavior of secondaries
takes place at t > 0 and, in principle, is not guaranteed for
t < 0. Moreover, it was determined in the framework of
the BFKL approach [18,19] that secondary Regge trajecto-

ries behave as αR(t) =
(

8αs (
√−t)

3π

)1/2 + O(α
5/6
s (

√−t)) at

high negative t , where αs(μ) is the QCD running coupling.
Hence, in view of the rather high slopes of the corresponding
Chew–Frautschi plots in the resonance region, we have a
very simple alternative: either secondary Regge trajectories
are essentially nonlinear in the diffraction domain, or they

0 0.5 1 1.5 2

0.01

10

10000

1. 107

1. 1010

dσ
dt

, mb GeV 2

p p p p

14

7 102

2.36 104

0.9 106

0.2 108

s, TeV

t, GeV2

0 0.5 1 1.5 2
0.0001

0.1

100

100000.

1. 108

dσ
dt

, mb GeV 2

p p p p

1960

1800 102

630 104

546 106

s, GeV

t, GeV2

0 0.5 1 1.5 2
1. 10 6

0.0001

0.01

1

100

dσ
dt

, mb GeV 2

p p p p

s 62.5 GeV

t, GeV2

10 100 1000 10000 100000.

10

15

20

30

50

70

100

150 σ, mb

p p

p p

s, GeV

total

elastic

Fig. 1 The high-energy evolution of the nucleon–nucleon elastic scattering observables. The dashed lines correspond to the value ag = 0 instead
of ag = 0.23 GeV−2
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Table 4 The quality of description of the data [16,17] not included into
the fitting procedure
√
s (GeV) Number of points χ2

1960 ( p̄ p; D0) 17 55

1960 ( p̄ p; D0, multiplied by 0.92) 17 29

1800 ( p̄ p; CDF) 26 178

1800 ( p̄ p; CDF, multiplied by 0.88) 26 45

are not monotonic functions in the interval −∞ < t < 0. A
detailed discussion of this matter can be found in [20].

Second, we should ascertain that the obtained smallness
of ag (see Table 1) is not related directly to the chosen spe-
cific parametrization for αP(t), since this is crucial for the
main conclusion of the paper. If we consider a simple gener-
alization of (5),

α
(k)
P (t) = 1 + α

(k)
P (0) − 1(
1 − t

τ
(k)
a

)k
, g(k)

P (t) = g(k)
P (0)

(1 − a(k)
g t)2

, (6)

where k takes on integer and half-integer values [the
parametrization (5) corresponds to k = 1], then it is pos-
sible to provide a satisfactory description of the data in a
few cases of this series (see Table 5). The description for
k = 1/2 and k ≥ 3 is unsatisfactory. For any k > 1, we find
that a(k)

g < a(1)
g . Thus, the conclusion we draw below is not

related to the specific form (5) of αP(t) only.
At the very end of this section we would like to note that

although in this paper we restricted ourselves to the simplest
test parametrizations, the quantities αP(t) and gP(t) should,
in general, be treated as unknown functions in the frame-
work of the considered model. Namely, any expression for
αP(t) could be used which is analytic at t < 0 and satisfies
the conditions (4). Certainly, it should provide a satisfactory
description of the available data as well.

5 Discussion

Now let us analyze the outcomes produced.
The description of the nucleon–nucleon diffractive pat-

tern in the considered kinematic range is satisfactory. The

replacement of the fitted value ofag byag = 0, which implies
the neglect of the nucleon shape, disfigures the differential
cross sections (see the dashed lines in Fig. 1). However, this
distortion decreases with energy and does not become catas-
trophic already at the LHC energies. It is a consequence of
the fact that, although we did not fix the nucleon transverse
radius, it has turned out rather small. Indeed, the form factor
gP(t)/gP(0) = (1 − agt)−2 corresponds to a certain effec-
tive transverse distribution in the impact parameter repre-
sentation: f (b) = (4πa3

g)
−1bK1(b/ag), where K1(x) is the

modified Bessel function. The effective transverse radius of
the nucleon obtained via an average over this distribution,√〈b2〉 ∼ 0.2 ÷ 0.3 fm, is noticeably smaller than the effec-
tive transverse size of the diffractive interaction region (in
the considered interval of the collision energy

√
2B > 1 fm,

B is the forward logarithmic slope of dσ/dt , which increases
with energy). Such a difference could be interpreted as if the
pomeron were coupled to a very small zone inside nucleon.
Hence, we arrive at the main conclusion:

• The quantitative evolution of the nucleon–nucleon elastic
diffractive scattering observables at ultrahigh energies is
determined mainly by the behavior of the pomeron Regge
trajectory αP(t) and the value of the effective “pomeron
charge” gP(0) of nucleon and rather weakly depends on
the nucleon shape.

The examined single-reggeon-exchange eikonal approx-
imation is expected to be valid at least in the interval 0.2
TeV ≤ √

s ≤ 14 TeV. Therefore, the forthcoming TOTEM
measurements (as well as desirable analogous measurements
at the RHIC) could decrease the uncertainties of the model
degrees of freedom and, thus, improve the phenomenological
estimations as for the nucleon effective transverse radius, and
therefore for the pomeron Regge trajectory and the pomeron
charge of nucleon.
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Table 5 The fitting results for
different variants of
parametrization (6)

Parameter k = 3/2 k = 2 k = 5/2

α
(k)
P (0) − 1 0.108 ± 0.017 0.108 ± 0.017 0.108 ± 0.017

τ
(k)
a (0.708 ± 0.079) GeV2 (0.874 ± 0.100) GeV2 (1.040 ± 0.125) GeV2

g(k)
P (0) (13.1 ± 2.2) GeV (12.6 ± 2.0) GeV (12.3 ± 2.0) GeV

a(k)
g (0.167 ± 0.075) GeV−2 (0.120 ± 0.077) GeV−2 (0.085 ± 0.080) GeV−2

χ2/DoF 0.915 0.93 0.97
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Appendix. Regge approximation for Born amplitude

The eikonal representation (1) itself implies just a replace-
ment of the unknown function of two variables, T (s, t), by
another one, δ(s, t). The key assumption is that the eikonal
is proportional (with high accuracy) to some effective rela-
tivistic quasi-potential of two-hadron interaction. According
to the Van Hove interpretation of such a quasi-potential as
the “sum” over all single-meson exchanges in the t-channel
[21], the eikonal can be represented as

δ =
∞∑
j=0

∑
m j

J
( f1, j,m j )
α1,...,α j (p1,	)

×
D

α1,...,α j ,β1,...,β j

( j,m j )
(	)

m2
j − 	2

J
( f2, j,m j )

β1,...,β j
(p2,	), (A.1)

where
D

α1,...,α j ,β1,...,β j
( j,m j )

m2
j−	2 is the propagator of spin- j meson par-

ticle, m2
j = M2

j − iM j� j (Mj and � j are the meson mass

and decay width), J
( f, j,m j )
α1,...,α j are the corresponding meson cur-

rents of interacting hadrons (index f denotes the sort of the
hadron), 	 is the transferred 4-momentum, p1 and p2 are
the 4-momenta of the incoming particles, and symbol

∑
m j

denotes the summing over all of spin- j mesons with different
masses (which, in what further, will be transformed into the
summing over reggeons).

Obviously, in the kinematic range (p1 + p2)
2 ≡ s �

{p2
1,2,	

2, (p1,2	)} the eikonal can be approximated by the
following expression:

δ(s, t) =
∞∑
j=0

∑
m j

h( j,m j )(t)

m2
j − t

( s
2

) j
, (A.2)

where t ≡ 	2, h( j,m j )(t) ≡ F ( f1, j,m j )(p2
1,	

2,

(p1	))F ( f2, j,m j )(p2
2,	

2, (p2	)), and F ( f, j,m j ) is the struc-
ture function at the tensor structure pα1 , . . . , pα j in the

current J
( f, j,m j )
α1,...,α j (p,	). Certainly, the symmetric tensors

J
( f, j,m j )
α1,...,α j should be transverse with respect to 	αk and trace-

less, for the unambiguous interpretation of j as the massive
meson spin, though these transversality and tracelessness are
not used in the leading approximation.

Now let us introduce the single-meson-exchange ampli-
tudes of definite signature:

δ±(s, t) =
∞∑
j=0

∑
m j

(1 ± e−iπ j )
h( j,m j )(t)

m2
j − t

( s
2

) j
. (A.3)

If m2
j and h( j,m j )(t) at even and odd j are the values of some

analytic functions which are holomorphic at Re j > − 1
2 and

behave as O(ek| j |), k < π , at j → ∞, then, under the
Carlson theorem [22], the unilocal analytic continuation of
(A.3) into the region of complex j is possible (the Regge
hypothesis [2]). We denote these functions by m2±( j) and
h±(t, j,m2±( j)), respectively. Via the Sommerfeld–Watson
transform [2,23,24], we replace the sum over j in (A.3) by
the integral over the contour C encircling the real positive
half-axis on the complex j-plane, including the point j = 0,
in such a way that the half-axis is on the right:

δ±(s, t) = 1

2i

∮
C

d j

sin(π j)

∑
m±

(∓1 − e−iπ j )

×h±(t, j,m2±( j))

m2±( j) − t

( s
2

) j
. (A.4)

According to our assumption, the only sources of the inte-
grand singularities in the region Re j > − 1

2 are the zeros
of the functions sin(π j) and m2±( j) − t . Hence, deform-
ing the contour C to the axis Re j = − 1

2 (the behavior of
h±(t, j,m2±( j)) at j → ∞ and Re j > − 1

2 should allow
such a deformation), we obtain

δ±(s, t) = 1

2i

∫ − 1
2 +i∞

− 1
2 −i∞

d j

sin(π j)

∑
m±

(∓1 − e−iπ j )

×h±(t, j,m2±( j))

m2±( j) − t

( s
2

) j +
∑
n

∓1 − e−iπα±
n (t)

sin(πα±
n (t))

×πdα±
n (t)

dt
h±(t, α±

n (t), t)
( s

2

)α±
n (t)

, (A.5)

where the functions α±
n (t) are the roots of the equations

m2±( j) − t = 0 and, thus, they correspond to the eikonal
poles in the complex j-plane. These poles are called Regge
poles, and the functions α±

n (t) are called Regge trajectories.
At high enough values of s the background integral con-

tribution is negligible. As the functions h± can be factorized
into two factors related to each of the interacting hadrons, so
we arrive at the following expression for the eikonal:

δ±(s, t) =
∑
n

ξ±(α±
n (t)) g(1)±

n (t)g(2)±
n (t)

× πdα±
n

dt

(
s

2s0

)α±
n (t)

, (A.6)

where s0 is some scale determined a priori (for example,
s0 = 1 GeV2) and related directly to the factors g(i)

n (t), which
should be interpreted as the effective couplings of reggeons
to the colliding particles. ξ±(α) are the so-called reggeon
signature factors: ξ+(α) = i + tgπ(α−1)

2 and ξ−(α) = i −
ctgπ(α−1)

2 .
The last formula (which is valid, as well, for inelastic

scattering 2 → 2 and for reactions with off-shell particles),
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together with the eikonal representation (1) of the scattering
amplitude, is the essence of the Regge-eikonal approach [2].
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