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Abstract We study physical processes around a rotating
black hole in pure Gauss—Bonnet (GB) gravity. In pure GB
gravity, the gravitational potential has a slower fall-off as
compared to the corresponding Einstein potential in the same
dimension. It is therefore expected that the energetics of a
pure GB black hole would be weaker, and our analysis bears
out that the efficiency of energy extraction by the Penrose-
process is increased to 25.8 % and the particle acceleration is
increased to 55.28 %; the optical shadow of the black hole is
decreased. These are in principle distinguishing observable
features of a pure GB black hole.

1 Introduction

From all generalizations of Einstein gravity what distin-
guishes the Lovelock gravity is its remarkable property that
the equation of motion always remains second order. This
happens despite the Lagrangian being polynomial in the Rie-
mann curvature. It is the underlying differential geometric
structure that is responsible for this unique remarkable prop-
erty, discovered by Lovelock [1]. The Lovelock action S,
which is a homogeneous polynomial of degree N in Rie-
mann curvature, reads

2 e-mail: ahmadjon@astrin.uz
b e-mail: farruh@astrin.uz
¢ e-mail: nkd @iucaa.ernet.in

de-mail: ahmedov@astrin.uz

¢ e-mail: zdenek.stuchlik @fpf.slu.cz

s=[v=e (Z chN) d"x, (M
N

where the Lagrangian is given by
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and Ay are coupling constants.

In this action N = 0, 1, 2, .. ., respectively, correspond to
An, the usual cases of Einstein—Hilbert, Gauss—Bonnet, and
so on. However, higher order Lovelock terms in the action
make a non-zero contribution only in dimensions D > 4.
That is, Lovelock is the natural higher dimensional general-
ization of Einstein gravity.

It is well known that particle physics theories, in particu-
lar string theory, call for higher dimensions as demanded by
physical symmetries. Besides, one of us had also articulated
some purely classical considerations for higher dimensions
[2—4]. One of the most convincing arguments goes as follows
[4]. It is customary to consider high energy effects of a theory
by taking a higher power of the basic variable. In the case
of gravity, the basic physical entity is the Riemann curva-
ture, and hence, to take into account high energy effects, we
should include higher powers of it in the action. However, if
we demand that the equation of motion should not change its
second order character, then we are uniquely led to the Love-
lock action, which is pertinent only in higher dimensions.
That is, high energy effects of gravity are accessible only in
higher dimensions. Thus it makes a good case for studying
gravity in higher dimensions.

Note that in the above action there is a sum over N and
each term has a dimensionful coupling constant which cannot
be determined because experiment can determine only one
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constant. To make the problem tractable, it was assumed, for
obtaining dimensionally continued black holes [5], that all
the couplings were given in terms of the unique ground state
An. On the other hand, there is a strong case for pure Love-
lock gravity [6,7] where there is only one Nth order term
in the action with Ap. That is, it does not include even the
usual Einstein—Hilbert term. This has the remarkable unique
property that gravitational dynamics is distinguished in all
odd and even dimensions [7]. In all odd D = 2N + 1 dimen-
sions, gravity is kinematic meaning the Nth order Lovelock
analog Riemann tensor vanishes whenever the corresponding
Ricci tensor vanishes [8]. This of course includes the usual
3 dimensions for which the Riemann tensor is entirely given
in terms of the Ricci tensor, showing the kinematic property
of Einstein gravity for N = 1. It is thus a universal feature
of pure Lovelock gravity. We will therefore adhere to the
pure Lovelock generalization for exploring gravity in higher
dimensions.

Rotating black holes are by far the most exciting objects,
as they offer a rich arena of interesting physical processes of
astrophysical importance in the usual 4 space-time dimen-
sions. These include high energy exotic objects like quasars
and active galactic nuclei (AGNs) with their energetic jets,
energy extraction processes by the Penrose process [9] and
its magnetic version [6, 10—14] and Blandford—Znajek mech-
anism [15] and particle acceleration [16] as well as optical
shadowing of black hole; see, e.g., [17-23].

The possibility to obtain ultra-high energy particles and
the appearance of Keplerian discs orbiting Kerr superspinars
have been studied in [24,25]. Keeping in view the physi-
cal richness and astrophysical significance of rotating black
holes, it would be pertinent to probe these interesting prop-
erties for higher dimensional rotating black holes. As argued
above, in higher dimensions, pure Lovelock gravity enjoys
an unique special position in view of its universal charac-
teristics for all odd and even dimensions. It would therefore
be pertinent to study interesting physical and astrophysical
phenomena for a pure Gauss—Bonnet (GB) rotating black
hole in 6 dimensions. Apart from the astrophysical motiva-
tion for this study, there is a fundamental question as to what
shape gravitational dynamics takes in higher dimensions. For
instance in Einstein gravity, the gravitational field becomes
stronger as the dimension increases, which implies that there
can exist no bound orbits in dimensions greater than 4, while
for pure Lovelock gravity, it becomes weaker with dimen-
sion and hence bound orbits continue to exist in all even
dimensions [26].

Very recently, a rotating black hole metric has been
obtained [27] to describe an analog of a Kerr black hole in
pure GB gravity in 6 dimensions. Though it is not an exact
solution of the pure Lovelock vacuum equation, it has all the
desirable and expected features and it satisfies the equation in
the leading order. Some causal structures in Gauss—Bonnet
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gravity have been analyzed in [28]. In this paper, we wish
to study the energetics of a pure GB rotating black hole by
employing this metric. Our study yields results which are in
tune with the general properties of a rotating black hole and
hence it further lends support to the metric for its viability.

Note that Einstein gravity is vacuous in two, kinematic
in three, and becoming dynamic in four dimensions. It is
pure Lovelock of order N = 1. The universalization of
this general gravitational feature means that gravity should,
respectively, be vacuous, kinematic, and dynamic for D =
2N,2N + 1,2N + 2. This uniquely picks out pure Love-
lock gravity; i.e. the gravitational equation in higher dimen-
sions should be pure Lovelock. That is, in all odd and even
D = 2N + 1,2N + 2 dimensions gravitational dynamics
should be similar [29]. This is what has been verified in var-
ious situations; for instance the black hole entropy is always
proportional to square of the horizon’s radius [6,7] and bound
orbits around a static black hole exist only for pure Love-
lock gravity in all even D = 2N + 2 dimensions [26]. This
motivates us to examine this general feature in all possible
situations and that is what we wish to do it in this paper. We
shall therefore study all usual physical processes like energy
extraction, Hawking radiation, optical shadowing, and parti-
cle acceleration for a pure GB rotating black hole [27] and
compare them to that of a rotating black hole in the usual 4-
dimensional space-time. This is the primary aim of the paper.

The paper is arranged as follows: the rotating black hole
metric is discussed in Sect. 2, while in Sect. 3 we analyze
the geodesic equations for circular orbits; this is followed by
a discussion of optical shadowing of a black hole in Sect. 4.
Next section we study emission energy, energy extraction
processes through the BSW effect and the Penrose process.
We conclude with a discussion. Throughout the paper, we
use a system of units in which the GB coupling constant and
velocity of light are set to unity.

2 Pure GB rotating black hole metric

We wish to consider a pure Gauss—Bonnet rotating black
hole in the critical 6 dimensions (in odd D = 5 GB grav-
ity is kinematic; i.e. GB flat and it becomes dynamic in even
D = 6[7]). There does not exist an exact solution of pure GB
vacuum equation for an axially symmetric space-time repre-
senting arotating black hole. This is simply because the equa-
tions are very formidable to handle. However, for Einstein
gravity in 4 dimensions there is the well-known Newman—
Janis algorithm for converting a static black hole into a rotat-
ing one without solving the equation. This may, however, not
be applicable for GB gravity and in higher dimension [30].
Second, one of us [31] has recently obtained the Kerr met-
ric by appealing to the two simple physical considerations.
First, it should incorporate Newton’s law in the first approxi-
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mation, and second, one is free to choose the affine parameter
for a null curve and hence the radial coordinate is chosen as
the affine parameter for a radially falling photon. For this,
one begins with an appropriate spatial geometry, which has
ellipsoidal symmetry, and then implements these two com-
mon sense inspired physical considerations. What results is
the metric [27] considered here. This may describe a rotating
black hole, though it is not an exact solution of a pure GB
vacuum equation; yet it has all the features of the usual Kerr
metric. It, however, does satisfy the equation in the leading
order. It has all the characteristics of a rotating black hole
in the case there exists an ergosphere, and we have the right
limits; for a = 0 it reduces to a pure GB static black hole,
while M = 0 leads to flat space. It is therefore a perfectly
appropriate metric for studying a rotating black hole in pure
GB gravity. We shall thus employ this rotating black hole
metric for studying its various physical properties.

The stationary axisymmetric metric for pure GB rotating
black hole in the standard Boyer—Lindquist coordinates reads
(27]

A b))
ds? = —ldr — a’sin® 0d¢ 1> + Zer

+ 2d0? + 20162 1 2y — adr?

+ r2 cos? G[dxlf + sin® ¥dy?], 3)
with
A=r2ta?— M2,
¥ =r?+a’cos’0, 4)

where M and a have the usual meaning of the total mass and
specific angular momentum of black hole.

The space-time (3) has a horizon when ¢ = const becomes
null; i.e. A = 0, which has the following four roots:

_K L

. _—a2—19—22+ﬁw, )
3'4_T_F
with
C2=3M2—16a2+64Tfl4+4A,

A3 = 2776141\42 — 64a° + 3+/3a*MB,

27
B = ZM2 64a2.

The function under the square root in Eq. (6),
M, C? 3M3 —8a’M

Fi(a. M) =
O T T 8C

is always negative and consequently r3 4 is not real, while
the function under the square root in Eq. (5),

M? C2+ﬁM3—8a2M
a?— = a2 oa iy

Fy(a. M) =
2(a, M) = —¢ 192 8C

is non-negative for the range of the rotation parameter |a| <
3v/3M /16 (see Fig. 4), and equality indicates the extremal
value of the rotation parameter. r1 _ denote the outer and
inner horizons of the hole.

The static limit is defined where the time-translation
Killing vector 53) becomes null (i.e. goop = A —a®sin’ 0 =
0). The region bounded by the outer horizon and the static
limit defines the ergosphere (see Fig. 1), the extent of which
increases with the rotation parameter a of the hole.

3 Geodesics and circular orbits

In order to study particle motion around a 6-dimensional pure
GB black hole we first write the Hamilton—Jacobi equation,

aS 1 aS 09§

9o 1w 90 7
do 2% gxraxv @

for the Hamiltonian [32-34]

S = %mza —Et+Lp+ S, (r) + Se(0)+ W, )+ Ty (W),
(8)

where m is mass, £ and L are the conserved energy and
angular momentum of the particle, respectively.

The issue of the separability of the Hamilton—Jacobi equa-
tion in higher dimensional space-time has been widely stud-
ied in the literature [32-34]. Particularly, the authors of
Refs. [32,33] have shown that the space-time metric (3) is of
Petrov type D.

3.1 Null circular orbits

For null geodesics (when m = 0), one gets the equations of
motion from the Hamilton—Jacobi equation (7),

@ Springer
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M

x/M

Fig. 1 The ergosphere for the different values of the spin parameter a: a/M = 0.1 (left panel),a/M = 0.3 (middle panel),and a/M = aextr /M =
343 /16 (right panel). Red lines indicate the static limit, while dashed blue lines indicate the horizon

dr 2 2
s i —agsin?0) + U102 + D)€ — arLl,
do A

9
d¢ a_ 5 5
y— = - — — 1
- (smze a5> + {107 +aE —aLl,  (10)
d 2
co? g = S Yy ()
do r
d
L 2 VR, (12)
do
do
Y — =40, (13)
do
2 Ay W
00— = 14
% Y3 T PZsin v’ (14
where the new functions R(r) and ®(6),
R =[(r* +a»E —al]®> — AIK + (L — aé)?], (15)
1
© =K — ——[asin® 0 — LT, (16)
sin“ 6

are introduced.

The conserved quantity W exists only when 6 # /2 and
is similar to angular momentum. The so-called Carter con-
stant IC characterizes together with the quantities £, VW, and £
the geodetic motion. The Carter constant is not related to any
isometry of the space-time unlike the conserved quantities &,
W, and L.

By defining ¢ = £/, n = K/£2, and ¢ = W/E and
using Eq. (12) we get for the circular orbits characterized by
R(r) =0and dR(r)/dr =0,

a?Qr +3r'?) +r22r — 5r'/%)
§(r,a) = 7
a(3ri/2 —2r)
8a2r1/2 — r4(2r — 5r1/2)2
a2r —3rl/2)2

; (7)

(13)

n(r,a) =

@ Springer

3.2 Timelike circular orbits

Consider the equation of motion of a test particle with non-
zero rest mass at the equatorial plane (0 = /2, 6 = 0). The
equations of motion take the following form:

dr _5r2 —alyM]r +a’E (VM]r +1)

"o T a2 — M/27302 1 2 (19
dp LA+ (a€ —L)M'/>r=1/2
do a2 — M1/2p32 4 2
2 dr 2 2
"\ do =& — Ver, 1)
where
|M (L —al)?’M'/?
— 2
Vet = m (1 — 7) — T
L2~ a2(E2 — m?)
72 (22)

is the effective potential for radial motion. Note that for the
orbits in the equatorial plane the new conserved quantity W
does not appear in the equations of motion. In Fig. 2 the radial
dependence of the effective potential of radial motion in the
equatorial plane has been shown for the fixed specific value
of the rotation parameter a. The increase of the momentum of
the particle leads to the increase of the peak of the potential:
initially in-falling test particles become bounded or escape
with the increase of the momenta.

The conditions of the occurrence of circular orbits are
dr ,
o= 0, V@) =0.
From these equations, it follows that the energy £ and the
angular momentum £ of a circular orbit of radius . are given

by
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Fig. 2 The radial dependence of effective potential for the differ-
ent values of angular momentum of the particle and rotation param-
eter of the black hole. The left plot corresponds to the case when a
varies and the graphs are plotted for the different values of the rotation
parameter: a/M = 0.1 (dotted line), a/M = 0.3 (dashed line), and

& = [a*(124r — 1)r? —4(Jr — D*@r = 5)r"/?
+ 4ar5/4(a2 — 32y r2)]

x [16a°r/% — (5 — 4/r)*r], (23)
L= [Sr6 —a*(11 + 4/r)r* — 4r1B3/?

+2a%(10 — 113/r — 4r)r"/?

£ (a* — ¥ +rH(20r? + 4a?)]

x [16a252 — (5 — 4ym)r*] 7", (24)

where the + and — signs correspond to the co-rotating and
counter-rotating particles, respectively.

In Fig. 3 we have shown energy and angular momentum of
the co-rotating and counter-rotating orbits in the equatorial
plane for different values of the rotation parameter a. One
can easily see the shift in location of the minimal circular
(MC) orbit marking the existence limit given by the photon
circular orbit and the innermost stable circular orbits (ISCO).
The MC orbit and ISCO come closer to the hole with increase
in a for co-rotating orbits, while the opposite happens for
counter-rotating ones.

The vanishing of the denominator in the expressions for £
and £ marks the location of a photon’s circular orbit or MC
orbit, while for ISCO we have dr/do = e’ff(r) = 0 and

Ui (r) = 0. In Fig. 4 we have shown three regions as dark,
light gray, and white, marking the boundaries of stable, unsta-
ble, and no circular orbits. The inner boundary of light gray
is defined by a photon’s circular orbit and the white region
bounded between it and the horizon is the one where no cir-
cular orbits can exist. This is the region between 3M and 2M
for the Schwarzschild black hole. As expected these regions
are quite similar to that of the 4-dimensional Kerr black
hole.

Vett

r/M

a/M = aexr/M = 3\/§/16 (solid line). The right plot corresponds
to the case when L varies and the graphs are plotted for the different
values of the angular momentum of the particle: L/Mm = 1 (dotted
line), L/Mm =5 (dashed line), and L/ Mm = 10 (solid line)

At this point it may be mentioned that bound orbits cannot
exist for Einstein gravity in dimensions >4 [7] in general, and
in particular their non-existence is shown for a 6-dimensional
rotating black hole in Ref. [35]. For pure Lovelock gravity
they do always exist in all even dimensions, D = 2N + 2

[7].

4 Black hole shadow

In this section we study the optical properties of a black
hole in Gauss—Bonnet gravity. If the bright source is located
behind the black hole then a distant observer is able to
detect only photons scattered away from the black hole, and
those captured by the event horizon form a dark spot. This
dark region, which could be detected and extracted from
the luminous background, is traditionally called the black
hole shadow or silhouette. In practice, the distant observer
at infinity could see a projection of it on the flat plane pass-
ing through the black hole and normal to the line connecting
it with the observer (the line of sight). The Cartesian coor-
dinates at this plane, which are usually denoted by « and B
and called celestial coordinates, give the apparent position of
the shadow image. The celestial coordinates are connected
with the geodesic equations of photons around the black hole
as [39]

. 2., do
a= lim (—ryjsindy— |, (25)
rp—> 00 dr
do
T 2, 26
rognooro dr (26)

with rp — 00, 6y being the inclination angle between the
line of sight of the far observer and the axis of rotation of the
black hole [40]; also see [41].

@ Springer
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Fig. 3 The radial dependence of energy (left) and angular momentum (right) squared of counter-rotating (upper plots) and co-rotating (lower
plots) particle at circular orbits for the different values of the parameter a = 0.1 (solid line), 0.3 (dashed line), and 33 /16 (dotted line), M = 1

Note here that a silhouette of the black hole is observed in
3-D space and here we would like to check the influence of
the extra dimensions to the shape of the black hole shadow.

With the help of the expressions for the impact parameters
derived in Sect. 3 and the equations of motion obtained from
the Hamilton—Jacobi equation (7), one can get d¢/dr and
df/dr, and insert them into Egs. (25) and (26) in order to get
the explicit expressions for the celestial coordinates:

o = —& cschp,

B = i\/n + a2 cos2 Gy — & cot? 6.

27

(28)

We will concentrate here on the special case when the incli-
nation angle 6y = 7 /2 is similar to that for 4-dimensional
Kerr space-time (see e.g. [36,42—44]). Then for the pure GB
6-D rotating black hole we have

o« =t

B =+

To get the boundary of the black hole shadow one can plot
the dependence of the coordinate 8 from the coordinate «;
see e.g. [41]. In Fig. 5, we compare the shadow of a 6-
dimensional black hole in Gauss—Bonnet gravity with one

(29)
(30)

@ Springer

of 4-dimensional Kerr black hole, which are shown for the
different values of the rotation parameter a. The contours
of the shadows of the Gauss—Bonnet black hole for the spin
parameters a = 0, a = dex(/2, and a = aex; are shown in
Fig. 5. One can easily see that the photon sphere is decreased
with the increase of the spin of the black hole in Gauss—
Bonnet gravity. This behavior is exactly the same as in the
Kerr space-time [36].

The observable parameters, as the distortion parameter J;
and radius of the shadow R can be computed numerically
using either Egs. (29) and (30) or images from Fig. 5. The
distortion parameter §; = Ax /R, [36,41], where Ax is the
deviation parameter, which is the distance between the edge
point of the full circle and the edge point of the shadow [41].
Consequently if the rotation parameter is equal to zero, a =
0, then Ax must vanish. On the other hand, if we consider
a rotating black hole, Ax is non-zero and consequently §
depends on the spin parameter of a black hole.

In Fig. 6, the observables R and §; as functions of the
rotation parameter of the black hole are shown when the
inclination angle 6y = /2.

From these plots one may conclude that with the increase
of the spin parameter a of the black hole in Gauss—Bonnet
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Fig. 4 The regions of stable

(dark gray) and unstable (light

gray) circular orbits. The black 0.30

curve indicates the border of e

event horizon of a 6-D

Gauss—Bonnet black hole
0.25
0.20

N

0.15+
0.10 +
0.05
0.00

gravity the shape of the shadow is decreasing, which is sim-
ilar to the Kerr black hole case. The increase of §; with the
increase of the rotation parameter a corresponds to a devia-
tion of the shape of the shadow from a circle.

5 Energetics
5.1 Emission energy of 6D rotating black hole

As the next step we plan to calculate the energy emission from
a rotating black hole in higher dimensional Gauss—Bonnet
gravity as [38]

P’E(w)  27°R}

_ , 31
dwdt e?/T — 1 Gb

where w is the frequency of the emission, 7' = (r_%_ —3a%)/
Bmry (r_%r +a?))is the Hawking temperature for the Gauss—
Bonnet black hole (for comparison, T = (r_%r —a?)) drry
(r%L + a?)) is the Hawking temperature of the Kerr black
hole [38]), which can be computed from this expression 7 =
k/2m, and k is surface gravity. R; is the radius of the shadow,

which is shown in Fig. 6 for the second order Lovelock space-
time [38].

The comparison of the energy emission of the rotating
black hole in Gauss—Bonnet gravity and Kerr space-time for
the different values of the spin parameters a = 0.1 (solid
line), a = 0.2 (dashed line), and a = 0.3 (dot-dashed line)
is represented in Fig. 7. The rate of the energy emission
decreases as the rotation parameter increases. The emission
is more intense for the Kerr black hole as compared to the
GB one.

5.2 Particle acceleration through BSW effect

Here first we define the energy E.p, in the center of mass of
a system of two colliding particles with energy at infinity £
and E; in the gravitational field described by the space-time
metric (3) as

EZy = Plioy Pltona- (32)

where p‘éot) = p?‘l) + pf‘z) is the total momenta of particles
1 and 2 with the mass m1, m», respectively. We assume that
two particles with equal mass (m; = my = mo) have an
energy at infinity £1 = E» ~ 1, and consequently

@ Springer
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hole ey = 33 /16 as against aex; = 1 for the Kerr black hole
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Fig. 6 Observables R; and §; as functions of the rotation parameter, corresponding to the shadow of a black hole situated at the origin of coordinates
with inclination angle & = 7 /2 and dimensions d: D = 6 (solid line) and D = 4 (dot-dashed line) [36,37]

]
012}

0.10

d’E (w) /dwdt

0.00 F

Fig. 7 Dependence of the energy emission on the frequency for the
different values of the spin parameter a: a/M = 0.1 (solid line),
a/M = 0.3 (dashed line), a/M = aexir /M = 3\@/16 (dot-dashed

Ecm = moﬁ,/ 1-— gagv‘(yl)vé).

Now using Egs. (19)—(21) we derive an expression for the
center-of-mass energy of particles in collision in the vicinity
of the Gauss—Bonnet black hole:

(33)
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d’E (w) /dwdt
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line). The left panel is for a black hole in the Gauss—Bonnet case and
the right panel is for a 4D black hole in the Kerr space-time [38]
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X \/az —2aly —F(Jr— 1)+ 72
X \/az —2al, — 3(Vr — 1) +r2),

(34)

where weput M = 1l and !y = Li/my, > = Ly/m».

For the extremal rotating Gauss—Bonnet black hole when
a = 3+/3/16 the center-of-mass energy at the horizon has
the following limit:

3 3
EZ. 33 -4l 3V3 — 4y
2(r —>ry) = — ) ] .
2m 33 — 4l 33— 41

(35)

Now we study the maximal energy which can be extracted
through the BSW process [16] discussed in the Introduction
from a rotating Gauss—Bonnet black hole. For this purpose,
first we need to study the energy of the test particle moving on
the innermost stable circular orbit. Then we define the coeffi-
cient of the total amount of released energy of the test particle
on shifting from its stable circular orbit with the radius r. to
the ISCO with the radius risco. The energy release efficiency
coefficient is given by

E(I"C) - E(rlsco)

n = 100 x
E(rc)

(36)
The radial dependence of the efficiency coefficient n for the
different values of the rotation parameter a is shown in Fig. 8.
The maximal energy extraction is for an extremal black hole
for which 7, = r;, and so we obtain the maximal limit as
n 22 55.28%.

5.3 Penrose process

The existence of an ergosphere around the rotating black
hole, where negative energy states for the particles moving

-

—_——

20 25 30 35 40

Fig. 8 The radial dependence of the energy extraction efficiency for
the different values of the rotational parameter: a = 0.1 (dot-dashed
line), a = 0.3 (dashed line), and a = 3«/5/16 (solid line)

along the timelike or null trajectory are present, gives us an
opportunity to consider the energy extraction from the rotat-
ing black hole through a Penrose process. Assume a small
particle A falls down into the ergosphere of the black hole
from far infinity. In the vicinity of the event horizon it splits
into two fragments, B and C. If particle B with the nega-
tive energy with respect to infinity falls into the central black
hole, then the emergent particle C has an energy exceeding
the energy of the incident particle A. We have

o)
WE* —2kE +y + Z(p’)2 + X (p?)?

+ r? cos? 09(19‘”)2 +m? =0, (37)
where the following notations:
w= 2(a4+2a2r2+r4—a2Asin29) F_l, (38)
kK =—=2M"2ar??LXr, (39)
L?2Y(a®sin’ 0 — A) w2
y = — ———, (40)
I" sin r=cos- 0 sin”
I =a?*[(a*> +r>)* + A% — Mr3]sin®6
— A@@> +r)? —a*Asin*o 41)

have been used.

As the particle falls inside the event horizon the change of
the mass of central rotating black hole is defined as M =
E. In principle one can increase the mass of the black hole
increasing the number of the in-falling test particles with
positive energy.

The minimum value of the central black hole mass § M is
achieved for the condition when m = 0, p9 =0, p'” =0,
and p” = 0. Then one can get the expression for the minimum
energy:

Enin = 203)L, (42)

where we have introduced the notation

£03 2aM'/2)?
Qr=-"2| =5

833 |r=r, as+ry
using the values of the mass of the particle and the momenta
for the minimum condition.

Next we discuss the energy extraction efficiency from
Gauss—Bonnet black hole through Penrose process. As in
the case of the BSW process we introduce the coefficient of
efficiency of the Penrose process by

_ Ec—Eg
N A

np x 100, (43)
where E 4 is the energy of the incident particle and E¢ is that
of the emergent outgoing one. Using the energy conservation
law for the particles A, B, and C, one can find the maximal

value of np in the form
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1P (max) = [( I +gu+1/2— 1] % 100. (44)

Evaluating this expression near the event horizon of an
extreme rotating Gauss—Bonnet black hole one can find the
maximal efficiency with the value of 25.8 %. Note that the
energy extraction efficiency for the Penrose process in the
case of an extreme rotating 4-D Kerr black hole was found
to be 20.7 % [13,45].

6 Discussion

The elemental feature of pure Lovelock gravity is that grav-
itational dynamics in all odd and even dimensions is similar.
That is why it is expected that physical processes and effects
around a 6-dimensional rotating pure GB black hole would be
similar to that of a 4-dimensional Kerr black hole. It should,
however, be admitted that the black hole metric we have con-
sidered has all the desired features of a rotating black hole,
but it is not an exact solution of the pure Lovelock vacuum
equation, though. It does, however, satisfy the equation in the
leading order which is computed as follows. Since the met-
ric goes as r~1/2, the Riemann tensor will go as r=3/2 and
then the GB Ricci tensor will go as 7. For the black hole
metric (2), the GB Ricci tensor in fact falls off as r7, two
powers sharper. It could therefore be taken as a good model
for describing a rotating pure GB black hole.

As the gravitational potential is weaker than in the case
of Einstein gravity, its effects are reflected as follows. The
efficiency of the Penrose process decreases and it is reduced
to 7.74 % (it is equal to 29 % for the 4-D Kerr black hole),
while the opposite is in effect on the particle acceleration effi-
ciency, which is increased to 55.28 % (it is equal to 46 % for
the 4-D Kerr black hole). The center-of-mass energy rapidly
grows for a collision of particles falling from infinity into a
rotating GB black hole in the case when the circular orbits
shift arbitrarily close to the horizon. The optical shadow of
a black hole also decreases as a lesser number of photons
get captured, because of the weakening of the field. All these
results are along the lines expected on physical grounds, and
hence they provide strength to the validity and viability of
the space-time metric used. Put another way, this study could
be looked upon as probing the metric in question for its in
principle physical and astrophysical validity.

We had set out to study various physical properties of a
pure GB rotating black hole and show that they are indeed
similar to the rotating black hole in the usual 4-dimensional
physical space-time. All this is in line with the pure Lovelock
gravity paradigm [29] in higher dimensions.
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