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Abstract In this paper, we analytically investigate the prop-
erties of holographic superconductors in higher dimensions
in the framework of Born–Infeld electrodynamics taking
into account the back-reaction of the spacetime using the
Sturm–Liouville eigenvalue method. In the background of
pure Einstein and Gauss–Bonnet gravity, based on a pertur-
bative approach, we obtain the relation between the criti-
cal temperature and the charge density. Higher values of the
back-reaction and Born–Infeld parameters result in a harder
condensation to form in both cases. The analytical results
are found to agree with the existing numerical results. We
also derive an expression for the condensation operator in d
dimensions which yields a critical exponent of 1/2.

1 Introduction

It is well known that weakly coupled superconductors can be
described with great accuracy by the BCS theory of super-
conductivity [1], which is based on the fact that the interac-
tion between electrons resulting from the virtual exchange of
phonons is attractive when the energy difference between the
states of the electrons is less than the energy of the phonon.
However, progress in this field in the last few decades has
made it clear that this microscopic theory fails in under-
standing the pairing mechanism in materials (like high Tc
cuprates) which are strongly coupled. The pairing mecha-
nism and the normal state of the system before the onset of
superconductivity has been eluding theorists for a long time
and hence forces one to think about other alternative theo-
ries. One such alternative theory is provided by the AdS/CFT
correspondence.
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The AdS/CFT correspondence proposed by Maldacena
[2] has drawn the attention of condensed matter theorists
because of its remarkable ability to address issues in strongly
interacting systems by exploiting results obtained in a weakly
coupled gravitational system. The duality [2–5] provides an
exact correspondence between gravity theory in a (d + 1)-
dimensional AdS spacetime and a conformal field theory
(CFT) sitting on the d-dimensional boundary of this space-
time. In recent years, it has provided a holographic descrip-
tion of properties of s-wave superconductors, namely, the
holographic superconductor phase transition [6–8], the holo-
graphic Fermi liquid [9,10] and the holographic insula-
tor/superconductor phase transition [11]. This model con-
sisting a black hole and a complex scalar field minimally
coupled to an abelian gauge field is observed to form a scalar
hair below a certain critical temperature Tc due to the break-
ing of a localU (1) gauge symmetry near the black hole event
horizon [6–13].

A number of studies have been carried out on various holo-
graphic superconductor models based on the framework of
Maxwell electrodynamics [14–26] as well as non-linear elec-
trodynamics [27–34], namely, Born–Infeld electrodynamics
[27]. For example, in [14], a holographic dual description of a
superconductor had been provided via a second order phase
transition in which the condensate determined the energy
gap formed due to frequency dependent conductivity below
a critical temperature. In [15], analytical techniques had been
employed to investigate the properties of holographic super-
conductors (in particular in elucidating the nature of the
ground state) in the framework of Maxwell electrodynamics.
Further, the Mermin–Wagner theorem suggests that the phase
transition may be affected by higher curvature corrections.
Investigations in this direction led to the introduction of a
new analytic method in [16], the so-called matching method,
which is based on the solution to the field equation near the
horizon and near the asymptotic region and then matching
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the two solutions at some intermediate point. Several prop-
erties like critical exponents [18], various condensates [24]
had been studied in the framework of Gauss–Bonnet grav-
ity [19] (which takes into account the effect of higher curva-
ture corrections) analytically as well as numerically [20–26].
The analytical study of properties of holographic supercon-
ductors in Einstein gravity in the framework of Born–Infeld
electrodynamics was first carried out in [31] using the Sturm–
Liouville (SL) eigenvalue approach. The physical motivation
of looking at the leading order corrections coming from the
Born–Infeld coupling parameter is to investigate the effects
due to higher derivative corrections of gauge fields on the
order parameter condensation.

The Gauss–Bonnet (GB) gravity [35–37] has attracted a
lot of attention among gravity theories with higher curva-
ture corrections. As mentioned earlier, the study of curvature
corrections in (3 + 1)-dimensional holographic supercon-
ductors has been of some interest because of the Mermin–
Wagner theorem which forbids continuous symmetry break-
ing in (2+1) dimensions. In [16,32] analytical studies in GB
gravity have been carried out using the matching as well as
the SL method thereby revealing that higher curvature correc-
tions make the formation of the scalar hair harder. However,
these studies are based on the probe limit which neglects
the back-reactions of matter fields on the spacetime metric
[38–42].

In this paper, we shall study the properties of holographic
superconductors in higher dimensions in the framework of
Born–Infeld electrodynamics away from the probe limit
using the SL eigenvalue approach. In particular we obtain
the relation between the critical temperature and the charge
density of holographic superconductors in d dimensions in
the framework of Einstein and GB gravity and then study
the d = 5 case. We have presented the plots of Tc vs. ρ1/3,
which clearly show that the inclusion of any of the param-
eters, namely, the Born–Infeld parameter, the GB coupling
parameter and the back-reaction of the matter fields on the
spacetime metric makes the scalar hair formation harder. Our
analytical results agree with studies carried out in the litera-
ture using the matching method [43]. We further investigate
the relation between the condensation operator and the criti-
cal temperature. We compute an expression for the condensa-
tion operator in d dimensions and then study the effects of the
Born–Infeld and Gauss–Bonnet parameters in the presence
of back-reactions in d = 5 dimensions.

This paper is organised as follows. In Sect. 2, we provide
the basic holographic set up for the holographic supercon-
ductors in the background of a d-dimensional electrically
charged black hole in anti-de Sitter spacetime. In Sect. 3,
taking into account the effect of the Born–Infeld electro-
dynamics and the back-reaction of the matter fields on the
spacetime metric in Einstein and Gauss–Bonnet gravity, we
compute the critical temperature in terms of a solution to

the Sturm–Liouville eigenvalue problem. In Sect. 4, we ana-
lytically obtain an expression for the condensation operator
in d dimensions near the critical temperature. We conclude
finally in Sect. 5.

2 Basic formalism

Our basic starting point is to write down the action for the
formation of scalar hair on an electrically charged black hole
in d-dimensional anti-de Sitter spacetime. This reads

S =
∫

dd x

√−g

2κ2

(
R − 2� + α

2
(R2 − 4RμνRμν

+RμνλρRμνλρ) + 2κ2Lmatter

)
(1)

where � = −(d−1)(d−2)/(2L2) is the cosmological con-
stant, κ2 = 8πGd is the d-dimensional Newton gravitational
constant and α is the Gauss–Bonnet coupling parameter.

The matter Lagrangian density is denoted by Lmatter and
reads

Lmatter = 1

b

(
1 −

√
1 + b

2
FμνFμν

)

− (Dμψ)∗Dμψ − m2ψ∗ψ (2)

where Fμν = ∂μAν − ∂ν Aμ; (μ, ν = 0, 1, 2, 3, 4) is the
field strength tensor, Dμψ = ∂μψ − iq Aμψ is the covariant
derivative, and Aμ and ψ represent the gauge field and scalar
field, respectively.

We now assume that the plane-symmetric black hole met-
ric with back-reaction can be written in the form

ds2 = − f (r)e−χ(r)dt2 + 1

f (r)
dr2 + r2hi jdx

idx j (3)

where hi jdxidx j denotes the line element of a (d − 2)-
dimensional hypersurface with zero curvature. The Hawking
temperature of this black hole, which is interpreted as the
temperature of the conformal field theory on the boundary,
is given by [44]

TH = f ′(r+)e−χ(r+)/2

4π
(4)

where r+ is the radius of the horizon of the black hole.
The ansatz for the gauge field and the scalar field is now

chosen to be [14]

Aμ = (φ(r), 0, 0, 0), ψ = ψ(r). (5)

The above ansatz implies that the black hole possesses only
electric charge.
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The equations of motion for the metric and matter fields
calculated with this ansatz read
(

1 − 2α f (r)

r2

)
f ′(r) + (d − 3) f (r)

r
− (d − 1)r

L2 + 2κ2r

d − 2

×
[
f (r)ψ ′(r)2 + q2φ2(r)ψ2(r)eχ(r)

f (r)

+m2ψ2(r)
q2φ2(r)ψ2(r)eχ(r)

f (r)
+ 1

b

(
(1− bφ′(r)2)−

1
2 − 1

)]
= 0,

(6)(
1 − 2α f (r)

r2

)
χ ′(r)

+ 4κ2r

d − 2

(
ψ ′(r)2 + q2φ2(r)ψ2(r)eχ(r)

f (r)2

)
= 0, (7)

φ′′(r) +
(
d − 2

r
+ χ ′(r)

2

)
φ′(r) − d − 2

r
beχ(r)φ′(r)3

−2q2φ(r)ψ2(r)

f (r)
(1 − beχ(r)φ′(r)2)

3
2 = 0, (8)

ψ ′′(r) +
(
d − 2

r
− χ ′(r)

2
+ f ′(r)

f (r)

)
ψ ′(r)

+
(
q2φ2(r)eχ(r)

f (r)2 − m2

f (r)

)
ψ(r) = 0 (9)

where a prime denotes the derivative with respect to r . The
fact that κ �= 0 takes into account the back-reaction of the
spacetime. Without any loss of generality, this limit also
enables one to choose q = 1 since the rescalings ψ → ψ/q,
φ → φ/q and κ2 → q2κ2 can be performed [45].

We now proceed to solve the non-linear equations (6)–(9).
In order to do this we need to fix the boundary conditions for
φ(r) and ψ(r) at the black hole horizon r = r+ (where
f (r = r+) = 0 with e−χ(r=r+) finite) and at the spatial
infinity (r → ∞). For the matter fields to be regular, we
require φ(r+) = 0 and ψ(r+) to be finite at the horizon.

Near the boundary of the bulk, we can set e−χ(r→∞) → 1,
so that the spacetime becomes a Reissner–Nordström–anti-
de Sitter black hole. The matter fields there obey [16]

φ(r) = μ − ρ

rd−3 (10)

ψ(r) = ψ−
r
− + ψ+

r
+ (11)

where


± = (d − 1) ± √
(d − 1)2 + 4m2L2

2
. (12)

The parameters μ and ρ are dual to the chemical potential and
charge density of the conformal field theory on the boundary.
We choose ψ− = 0, so that ψ+ is dual to the expectation
value of the condensation operator J at the boundary.

Under the change of coordinates z = r+
r , the field equations

(6)–(9) become(
1 − 2αz2 f (z)

r2+

)
f ′(z) − (d − 3) f (z)

z
+ (d − 1)r2+

L2z3

− 2κ2r2+
(d − 2)z3 ×

[
z4

r2+
f (z)ψ ′(z)2 + φ2(z)ψ2(z)eχ(z)

f (z)

+m2ψ2(z)
φ2(z)ψ2(z)eχ(z)

f (z)

+1

b

⎛
⎝

(
1 − bz4

r2+
φ′(z)2

)− 1
2

− 1

⎞
⎠

⎤
⎦ = 0, (13)

(
1 − 2αz2 f (z)

r2+

)
χ ′(z) − 4κ2r2+

(d − 2)z3

×
(
z4

r2+
ψ ′(z)2 + φ2(z)ψ2(z)eχ(z)

f (z)2

)
= 0, (14)

φ′′(z) +
(

χ ′(z)
2

− d − 4

z

)
φ′(z) + d − 2

r2+
beχ(z)φ′(z)3z3

−2r2+φ(z)ψ2(z)

f (z)z4

(
1 − bz4eχ(z)

r2+
φ′(z)2

) 3
2

= 0, (15)

ψ ′′(z) +
(

f ′(z)
f (z)

− d − 4

z
− χ ′(z)

2

)
ψ ′(z)

+r2+
z4

(
φ2(z)eχ(z)

f (z)2 − m2

f (z)

)
ψ(z) = 0 (16)

where a prime now denotes the derivative with respect to z.
These equations are to be solved in the interval (0, 1), where
z = 1 is the horizon and z = 0 is the boundary. The boundary
condition φ(r+) = 0 now translates to φ(z = 1) = 0.

3 Relation between critical temperature (Tc) and charge
density (ρ)

With the basic formalism in place, in this section we shall
proceed to investigate the relation between the critical tem-
perature and the charge density. To begin with, we first need
to obtain a solution of Eq. (15).

At the critical temperature Tc, ψ = 0, hence Eq. (14)
reduces to

χ ′(z) = 0. (17)

Near the boundary of the bulk, we can set e−χ(r→∞) → 1,
i.e. χ(r → ∞) = 0, which in turn implies χ(z) = 0 from
Eq. (17). The field equation (15) therefore reduces to
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φ′′(z) − d − 4

z
φ′(z) + (d − 2)bz3

r2
+(c)

φ′(z)3 = 0. (18)

To solve this non-linear differential equation, we take
recourse to a perturbative technique developed in [31]. When
b = 0, the above equation becomes

φ′′(z) − d − 4

z
φ′(z) = 0. (19)

Using the asymptotic behaviour of φ(z) (Eq. (10)), the solu-
tion of Eq. (19) reads

φ(z)|b=0 = λr+(c)(1 − zd−3) (20)

where

λ = ρ

rd−2
+(c)

. (21)

To solve Eq. (18), we put the solution for φ(z) with b = 0 (i.e.
φ(z)|b=0) in the non-linear term of Eq. (18). This leads to

φ′′(z) − d − 4

z
φ′(z) − bλ3r+(c)(d − 2)(d − 3)3z3(d−3) = 0.

(22)

Using the asymptotic boundary condition (10), the solution
of the above equation up to first order in the Born–Infeld
parameter b reads

φ(z)=λr+(c)

{
(1 − zd−3) − b(λ2|b=0)(d − 3)3

2(3d−7)
(1 − z3d−7)

}

(23)

where we have used the fact that bλ2 = b(λ2|b=0) + O(b2)

[31], λ2|b=0 being the value of λ2 for b = 0. It is reassuring
to note that the above result agrees with solution of φ(z)
obtained in [31] for d = 4.

3.1 Back-reaction effect in Einstein gravity

For Einstein gravity α = 0, Eq. (13) at T = Tc becomes

f ′(z) − d − 3

z
f (z) + (d − 1)r2

+(c)

L2z3 − 2κ2r2
+(c)

(d − 2)z3

×1

b

⎛
⎝

[
1 − bz4

r2
+(c)

φ′(z)2

]− 1
2

− 1

⎞
⎠ = 0. (24)

Dropping terms of the order of bκ2, Eq. (24) reduces to

f ′(z) − d − 3

z
f (z) + (d − 1)r2

+(c)

L2z3 − κ2z

d − 2
φ′(z)2 = 0.

(25)

Substituting φ(z)|b=0 (Eq. (20)) in the above equation leads
to

f ′(z) − d − 3

z
f (z) + (d − 1)r2

+(c)

L2z3

−κ2λ2r2
+(c)(d − 3)2

d − 2
z2d−7 = 0. (26)

The solution of the metric from Eq. (26) subject to the con-
dition f (z = 1) = 0 reads

f (z) = r2
+(c)

{
1

L2z2 −
(

1

L2 + d − 3

d − 2
κ2λ2

)
zd−3

+d − 3

d − 2
κ2λ2z2(d−3)

}
. (27)

In the rest of the analysis we shall set L = 1. Equation (27)
therefore reads

f (z) = r2
+(c)

z2 g0(z) (28)

where

g0(z)= 1−
(

1+ d − 3

d − 2
κ2λ2

)
zd−1 + d − 3

d − 2
κ2λ2z2(d−2).

(29)

Now we find that as T → Tc, Eq. (16) for the field ψ

approaches the limit

ψ ′′(z) +
(
g′

0(z)

g0(z)
− d − 2

z

)
ψ ′(z)

+
(

φ2(z)

g2
0(z)r2

+(c)

− m2

g0(z)z2

)
ψ(z) = 0 (30)

where φ(z) now corresponds to the solution in Eq. (23). In the
above equation, we shall also consider the fact that κ2

i λ2 =
κ2
i (λ2|κi−1) + O(κ4), which in turn implies that g0(z) reads

like

g0(z) = 1 −
(

1 + d − 3

d − 2
κ2
i (λ2|κi−1)

)
zd−1

+d − 3

d − 2
κ2
i (λ2|κi−1)z

2(d−2). (31)

Near the boundary, we define [15]

ψ(z) = 〈J 〉
r
+
+(c)

z
+F(z) (32)

where F(0) = 1 and J is the condensation operator. Substi-
tuting this form of ψ(z) in Eq. (30), we obtain

F ′′(z) +
{

2
+ − d + 2

z
+ g′

0(z)

g0(z)

}
F ′(z)

+
{


+(
+ − 1)

z2 +
(
g′

0(z)

g0(z)
− d − 2

z

)

+
z

− m2

g0(z)z2

}
F(z)
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+λ2

g2
0

{
(1 − zd−3)2 − b(λ2|b=0)(d − 3)3

3d − 7

× (1 − zd−3)(1 − z3d−7)
}
F(z) = 0 (33)

to be solved subject to the boundary condition F ′(0) = 0.
It is now simple to see that the above equation can be written
in the Sturm–Liouville form

d

dz

{
p(z)F ′(z)

} + q(z)F(z) + λ2r(z)F(z) = 0 (34)

with

p(z) = z2
+−d+2g0(z)

q(z) = z2
+−d+2g0(z)

{

+(
+ − 1)

z2

+
(
g′

0(z)

g0(z)
− d − 2

z

)

+
z

− m2

g0(z)z2

}

r(z) = z2
+−d+2

g0(z)

{
(1 − zd−3)2 − b(λ2|b=0)(d − 3)3

3d − 7

×(1 − zd−3)(1 − z3d−7)

}
. (35)

The above identification enables us to write down an equation
for the eigenvalue λ2, which minimises the expression

λ2 =
∫ 1

0 dz {p(z)[F ′(z)]2 − q(z)[F(z)]2}∫ 1
0 dz r(z)[F(z)]2

. (36)

We shall now use the trial function for the estimation of λ2

F = Fα̃(z) ≡ 1 − α̃z2. (37)

Note that F satisfies the conditions F(0) = 1 and F ′(0) = 0.
Using Eqs. (4) and (28), (29), we get the relation between
the critical temperature and the charge density

Tc = 1

4π

[
(d − 1) − (d − 3)2

(d − 2)
κ2
i (λ2|κi−1)

] (ρ

λ

) 1
d−2

. (38)

The above result holds for a d-dimensional holographic
superconductor and is one of the main results in this paper. It
is to be noted that the effect of the BI coupling parameter b in
the critical temperature Tc comes through the eigenvalue λ.
In the rest of our analysis, we shall set d = 5 and m2 = −3.
The choice for m2 yields 
+ = 3 from Eq. (12). Equations
(35) and (38) therefore become

Tc = 1

π

[
1 − 1

3
κ2
i (λ2|κi−1)

] (ρ

λ

) 1
3

(39)

p(z) = z3
{

1 − z4
(

1 + 2

3
κ2
i (λ2|κi−1)

)
+ 2

3
κ2
i (λ2|κi−1)z

6
}

q(z) = −9z5
(

1 + 2

3
κ2
i (λ2|κi−1)

)
+ 10κ2

i (λ2|κi−1)z
7

r(z) = z3
{
(1 − z2)2 − b(λ2|b=0)(1 − z2)(1 − z8)

}
1 − z4

(
1 + 2

3κ2
i (λ2|κi−1)

) + 2
3κ2

i (λ2|κi−1)z
6
. (40)

With the back-reaction parameter κ = 0 and Born–Infeld
parameter b = 0, the trial function (37) and Eq. (40) leads to

λ2
α̃ = 2(18 − 27α̃ + 14α̃2)

6(3 − 4 ln 2) + 16(2 − 3 ln 2)α̃ + (17 − 24 ln 2)α̃2 ,

(41)

which attains its minimum at α̃ ≈ 0.7218. The critical tem-
perature can now be computed from Eq. (39) and reads

Tc = 1

π(λ|α̃=0.7218)
1/3 ρ1/3 ≈ 0.1962ρ1/3, (42)

which is in very good agreement with the numerical Tc =
0.1980ρ1/3 [24].

Now in order to include the effect of the Born–Infeld
parameter b, we set b = 0.01 and rerun the above analy-
sis to get the value of λ2 for b = 0.01

λ2
α̃ = 1.500 − 2.250α̃ + 1.6667α̃2

0.0371037 − 0.0316927α̃ + 0.00845841α̃2 , (43)

which attains its minimum at α̃ ≈ 0.7540. The critical tem-
perature therefore reads

Tc = 1

πλ
1/3
α̃=0.7540

ρ1/3 ≈ 0.1850ρ1/3, (44)

which is in very good agreement with the exact Tc =
0.1910ρ1/3 [32].

Setting b = 0.02 yields

λ2
α̃ = 1.500 − 2.250α̃ + 1.6667α̃2

0.0173545 − 0.0104244α̃ + 0.00173068α̃2 , (45)

which attains its minimum at α̃ ≈ 0.8201. Hence the critical
temperature reads

Tc = 1

πλ
1/3
α̃=0.8201

ρ1/3 ≈ 0.1694ρ1/3, (46)

which is in good agreement with the exact Tc = 0.1851ρ1/3

[32]. A comparison of the analytical and numerical results
for the critical temperature and the charge density in Einstein
gravity with back-reaction parameter κ = 0 is presented in
Table 1.

Now we shall proceed to include the effect of back-
reaction (κ �= 0) in the above analysis. To do this, we shall
increase the value of κ in steps of 0.05. To begin with, we set

Table 1 For back-reaction parameter κ = 0

b α̃ λ2
SL (Tc/ρ1/3)|SL (Tc/ρ1/3)|numerical

0.0 0.7218 18.23 0.1962 0.1980

0.01 0.7540 25.91 0.1850 0.1910

0.02 0.8201 44.08 0.1694 0.1851
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Fig. 1 Tc vs. ρ plot for Einstein holographic superconductors for dif-
ferent choice of parameters κ, b. a The continuous curves correspond to
numerical values whereas the dotted curves correspond to analytic val-
ues for (κ = 0, b = 0), (κ = 0, b = 0.01), (κ = 0.15, b = 0). b All

curves correspond to analytic values for (κ = 0.05, b = 0.01), (κ =
0.10, b = 0.01), (κ = 0.05, b = 0.02), (κ = 0.10, b = 0.02), (κ =
0.15, b = 0.02) (upper to lower)

b = 0 and the back-reaction parameter κ = 0.05. Rerunning
the above procedure using Eqs. (37) and (40) leads to

λ2
α̃ = 1.48861 − 2.22721α̃ + 1.15401α̃2

0.057139 − 0.0533188α̃ + 0.0153081α̃2 . (47)

This attains its minimum at α̃ ≈ 0.7195. The critical tem-
perature therefore reads

Tc = 1

π

(
1 − 1

3κ2λ2
κ=0.0

)
λ

1/3
α̃=0.7195

ρ1/3 ≈ 0.1934ρ1/3, (48)

which is in good agreement with the exact Tc = 0.1953ρ1/3

[44]. We repeat our calculations of Tc for the same value of κ

but with different values of b. The critical temperature reads
Tc = 0.1825ρ1/3 and Tc = 0.1672ρ1/3 for b = 0.01, 0.02,
respectively. Next we repeat the same analysis for κ = 0.10
and κ = 0.15.

Figure 1 shows the plot of Tc vs. ρ for Einstein holographic
superconductors for different choice of parameters κ, b. The
plots clearly show that the condensation becomes harder to
form as the values of the back-reaction parameter κ and BI
coupling parameter b are increased.

In Table 2, we present our analytical values obtained by
the SL eigenvalue approach for different sets of values of b
and κ . In Fig. 1, we show the effect of back-reaction as well as
the BI coupling parameters on the critical temperature (Tc).

3.2 Back-reaction effect in Gauss–Bonnet gravity

In this subsection, we study the relation between the critical
temperature and the charge density taking into account the
effect of the Gauss–Bonnet coupling parameter α. It is to be

Table 2 The analytical results for the critical temperature and the
charge density with back-reaction and Born–Infeld parameter in Ein-
stein gravity

κ b α̃ λ2
SL (Tc/ρ1/3)|SL

0.05 0.0 0.7195 18.11 0.1934

0.01 0.7525 25.68 0.1825

0.02 0.8203 43.46 0.1672

0.10 0.0 0.7122 17.75 0.1852

0.01 0.7455 25.02 0.1751

0.02 0.8148 41.73 0.1608

0.15 0.0 0.6995 17.16 0.1718

0.01 0.7345 23.99 0.1634

0.02 0.8024 39.07 0.1506

noted that, since κ and b are very small, we shall neglect
O(bκ2) and higher order terms in our analysis.

In this case, using Eq. (17), Eq. (13) (with α �= 0) reduces
to(

1 − 2αz2

r2
+(c)

f (z)

)
f ′(z) − d − 3

z
f (z) + (d − 1)r2

+(c)

L2z3

− κ2z

d − 2
φ′(z)2 = 0. (49)

Since we are not concerned with terms of the order of bκ2,
we substitute φ(z)|b=0 (Eq. (20)) in Eq. (49). The metric
equation then becomes

f ′(z) − d − 3

z
f (z) + (d − 1)r2

+(c)

L2z3

−κ2λ2r2
+(c)(d − 3)2

d − 2
z2d−7 = 2αz2

r2
+(c)

f (z) f ′(z). (50)
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To solve this non-linear equation, we once again employ the
perturbative technique. First we consider α = 0 for which we

know the solution, namely, f (z)|α=0 = r2+(c)

z2 g0(z). To solve
for α �= 0, we substitute f (z)|α=0 and f ′(z)|α=0 in the right
hand side of Eq. (50). The solution of the above equation
up to first order in the Gauss–Bonnet coupling parameter α

therefore reads

f (z) = r2
+(c)

z2
{g0(z) + 2αg1(z)} (51)

where

g1(z) = 2

d − 1
− zd−1 − (d − 5)zd−1 log z + d − 3

d − 1
z2(d−1)

+
{

2(d − 4)

d − 2
z2(d−2) − 3(d − 3)2

2(d − 2)2 z
3d−5

+ 2(d − 3)2

(d − 2)(d − 1)
z2(d−1)

}
κ2
i (λ2|κi−1 )

+ zd−1
{

77 − 95d + 39d2 − 5d3

2(d − 1)(d − 2)2 − (d − 3)(d − 5)

d − 2
log z

}

×κ2
i (λ2|κi−1 ). (52)

Once again substituting the form ψ(z) near the boundary
(defined in Eq. (32)) in Eq. (30), we obtain

F ′′(z) +
{

2
+ − d + 2

z
+ g′

0(z) + 2αg′
1(z)

g0(z) + 2αg1(z)

}
F ′(z)

+
{


+(
+− 1)

z2 +
(
g′

0(z)+ 2αg′
1(z)

g0(z)+ 2αg1(z)
− d−2

z

)

× 
+
z

− m2

(g0(z) + 2αg1(z))z2

}
F(z)

+ φ2(z)|b=0

r2
+(c) (g0(z) + 2αg1(z))2 F(z) = 0 (53)

to be solved subject to the boundary condition F ′(0) = 0.
The above equation can once again be put in the Sturm–

Liouville form (34) with

p(z) = z2
+−d+2 (g0(z) + 2αg1(z))

q(z) = z2
+−d+2 (g0(z) + 2αg1(z))

{

+(
+ − d + 1)

z2

+
(
g′

0(z) + 2αg′
1(z)

g0(z) + 2αg1(z)

)

+
z

− m2

(g0(z) + 2αg1(z)) z2

}

r(z) = z2
+−d+2

(g0(z) + 2αg1(z))

{
(1 − zd−3)2 − λ2 |b=0 b(d − 3)3

3d − 7

×(1 − zd−3)(1 − z3d−7)

}
. (54)

With the above identification, we can once again proceed to
find the minimum value of the eigenvalue λ2 as in the earlier
section.

Once again using Eqs. (4) and (51, 52), we get the relation
between the critical temperature and the charge density.

It is to be noted that the expression for the critical temper-
ature in GB gravity is identical to the corresponding expres-
sion in Einstein gravity (38). This is because g′

1(z) vanishes
at z = 1. However, their numerical values will be different
since, in GB gravity, the eigenvalues λ will be affected by
the GB coupling parameter α.

Setting d = 5 and m2 = −3, Eqs. (38) and (54) become

Tc = 1

π

[
1 − 1

3
κ2
i (λ2|κi−1)

] (ρ

λ

) 1
3

(55)

p(z) = z3
{

1 − z4
(

1 + 2

3
κ2
i (λ2|κi−1)

)
+ 2

3
κ2
i (λ2|κi−1)z

6
}

+2αz3
{

1

2
(1 + z8) − z4 − 2

3
κ2
i (λ2|κi−1)

(
z4 − z6 − z8 + z10

)}

q(z) = −9z5
(

1 + 2

3
κ2
i (λ2|κi−1)

)
+ 10κ2

i (λ2|κi−1)z
7

+α
{

21z9 − 18z5 − 3z − 4κ2
i (λ2|κi−1)

(
3z5 − 5z7 − 7z9 + 9z11

)}

r(z) = z3
{
(1 − z2)2 − b(λ2|b=0)(1 − z2)(1 − z8)

}
1 − z4

(
1 + 2

3κ2
i λ2|κi−1

) + 2
3κ2

i λ2|κi−1 z
6 + 2α

{ 1
2 (1 + z8) − z4 − 2

3κ2
i λ2|κi−1

(
z4 − z6 − z8 + z10

)} . (56)

To estimate λ2, we first set α = −0.1, κ = 0, b = 0, and
once again use the trial function (37) to obtain

λ2
α̃ = 1.26 − 2.00α̃ + 1.07143α̃2

0.0613835 − 0.0565523α̃ + 0.0160771α̃2 , (57)

which attains its minimum at α̃ ≈ 0.7305. The critical tem-
perature therefore reads

Tc = 1

πλ
1/3
α̃=0.7305

ρ1/3 ≈ 0.208ρ1/3, (58)

which is in very good agreement with the exact Tc =
0.209ρ1/3 [46].
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Table 3 For α = −0.1, b = 0

κ α̃ λ2
SL (Tc/ρ1/3)|SL (Tc/ρ1/3)|numerical

0.0 0.7305 12.940 0.2078 0.2090

0.01 0.7345 12.937 0.2077 0.2089

0.02 0.7302 12.930 0.2074 0.2087

Table 4 For α = 0.0001, κ = 0

b α̃ λ2
SL (Tc/ρ1/3)|SL (Tc/ρ1/3)|numerical

0.0 0.7218 18.2358 0.1962 0.1962

0.01 0.7565 25.8432 0.1851 0.1910

0.02 0.8211 44.105 0.1693 0.1851

Next we include effect of back-reaction. We calculate λ2

for κ = 0.01, b = 0 which attains its minimum at α̃ ≈
0.7345. The critical temperature therefore reads

Tc = 1

π

(1 − 1
3κ2λ2

κ=0.0)

λ
1/3
α̃=0.7345

ρ1/3 ≈ 0.2077ρ1/3, (59)

which is in very good agreement with the exact Tc =
0.2089ρ1/3 [43].

In the tables below, we present the analytical results
obtained by the SL approach for different sets of values of α,
κ and b (Tables 3, 4).

In Fig. 2, the plot of Tc vs. ρ is shown for holographic
superconductors in the framework of Gauss–Bonnet gravity
for different choice of parameters κ, b. The plots clearly
show that the condensation becomes harder to form as the
values of the back-reaction parameter κ , BI coupling param-
eter b and the GB parameter α are increased (Tables 5, 6).

Table 5 The analytical results for the critical temperature and the
charge density with back-reaction and Born–Infeld parameter in Gauss–
Bonnet gravity (α = 0.0001)

κ b α̃ λ2
SL (Tc/ρ1/3)|SL

0.0 0.7205 18.12 0.1934

0.05 0.01 0.7505 25.75 0.1824

0.02 0.8275 42.93 0.1675

0.0 0.7125 17.75 0.1852

0.10 0.01 0.7454 25.04 0.1751

0.02 0.8135 41.70 0.1608

0.0 0.7011 17.16 0.1718

0.15 0.01 0.7318 24.00 0.1633

0.02 0.8025 39.10 0.1505

4 Condensation values and critical exponent

In this section, we shall investigate the effect of BI coupling
parameter and back-reaction on the condensation operator
near the critical temperature for Einstein and GB gravity. To
proceed, we write down the field equation for φ(z) (15) near
the critical temperature Tc (using Eq. (32))

φ′′(z) − d − 4

z
φ′(z) + d − 2

r2+
bφ′(z)3z3 = 〈J 〉2

r2+
B(z)φ(z)

(60)

where B(z) = 2z2
+−4

r
2
+−4
+

F2(z)
f (z) (1 − bz4

r2+
φ′(z)2)

3
2 . Note that we

have kept the general form for the black hole spacetime
( f (z)) which would be later set as the Einstein or the GB
metric. We may now expand φ(z) in the small parameter
〈J 〉2

r2+
as

Fig. 2 a Tc vs. ρ plot for Gauss–Bonnet holographic superconductors
for different choice of parameters α (three sets) with the same value
of κ = 0.0, b = 0. The continuous curves correspond to numeri-
cal values whereas the dotted curves correspond to analytic values for
α = −0.1, α = 0.0001, α = 0.1. Note that for α = 0.0001, the numer-

ical and analytic curves are on top of each other.bAll curves correspond
to analytic values for different choice of parameters (α, κ, b), namely,
(0.0001, 0.05, 0.01), (0.0001, 0.10, 0.01), (0.1, 0.05, 0.01),

(0.1, 0.10, 0.01), (0.1, 0.05, 0.02), (0.1, 0.10, 0.02),

(0.1, 0.15, 0.02) (upper to lower)
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Table 6 The analytical results for the critical temperature and the
charge density with back-reaction and Born–Infeld parameter in Gauss–
Bonnet gravity (α = 0.1)

κ b α̃ λ2
SL (Tc/ρ1/3)|SL

0.0 0.0 0.7080 24.18 0.1872

0.01 0.7665 39.96 0.1722

0.02 0.9375 103.31 0.1470

0.05 0.0 0.7053 23.96 0.1837

0.01 0.7645 39.42 0.1691

0.02 0.9345 100.189 0.1448

0.10 0.0 0.6935 23.30 0.1733

0.01 0.7505 37.88 0.1602

0.02 0.9200 91.67 0.1382

0.15 0.0 0.6705 22.24 0.1566

0.01 0.7390 35.50 0.1463

0.02 0.9010 79.92 0.1278

φ(z)

r+
= λ

{
(1 − zd−3) − b(λ2|b=0)(d − 3)3

2(3d − 7)
(1 − z3d−7)

}

+ 〈J 〉2

r2+
ζ(z) (61)

with ζ(1) = 0 = ζ ′(1).

Substituting Eq. (61) in Eq. (60) and comparing the coef-

ficient of 〈J 〉2

r2+
on both sides of this equation (keeping terms

up to O(b)), we get the equation for the correction ζ(z) near
the critical temperature

ζ ′′(z)−
{
d − 4

z
+3b(λ2|b=0)(d− 2)(d− 3)2z2d−5

}
ζ ′(z)

= λ
2z2
+−4

r2
+−4
+

F2(z)

f (z)
A1(z) (62)

where A1(z) = 1 − zd−3 − 3b(λ2|b=0)(d−3)2

2
{(1 − zd−3)z2d−4 + d−3

3(3d−7)
(1 − z3d−7)}.

To solve this equation, we multiply it by z−(d−4)

e
3(d−2)(d−3)2b(λ2 |b=0)

2d−4 z2d−4
to get

d

dz

(
z−(d−4)e

3(d−2)(d−3)2b(λ2 |b=0)

2d−4 z2d−4
ζ ′(z)

)

= λ
2z2
+−2

r2
+−2
+

z−(d−4)F2(z)

g0(z) + 2αg1(z)
e

3(d−2)(d−3)2b(λ2 |b=0)z2d−4

2d−4 A1(z).

(63)

Using the boundary conditions of ζ(z), we integrate the above
equation between the limits z = 0 and z = 1. This leads to

ζ ′(z)
zd−4 |z→0= − λ

r2
+−2
+

A2 (64)

where A2 = ∫ 1
0 dz 2z2
+−2z−(d−4)F2(z)

(g0(z)+2αg1(z))
e

3(d−2)(d−3)2b(λ2 |b=0)

2d−4 z2d−4

A1(z).
We now write down an interesting relation between ζ ′(z)

and the (d − 3)th derivative of ζ(z) which we shall require
in what follows

ζ (d−3)(z = 0)

(d − 4)! = ζ ′(z)
zd−4 |z→0. (65)

The asymptotic behaviour of φ(z) is given by Eq. (10). Equa-
tion (61) also gives the asymptotic behaviour of φ(z). Hence
comparing these equations, we obtain

μ − ρ

rd−3+
zd−3

= λr+
{
(1 − zd−3) − b(λ2|b=0)(d − 3)3

2(3d − 7)
(1 − z3d−7)

}

+ 〈J 〉2

r+

{
ζ(0) + zζ ′(0) + · · · + ζ d−3(0)

(d − 3)! z
d−3 + · · ·

}
.

(66)

Comparing the coefficient of zd−3 on both sides of this equa-
tion, we get

− ρ

rd−3+
= −λr+ + 〈J 〉2

r+
ζ d−3(0)

(d − 3)! . (67)

From Eqs. (64), (65) and (67), we obtain the relation between
the charge density ρ and the condensation operator 〈J 〉

ρ

rd−2+
= λ

[
1 + 〈J 〉2

r2
++

A2

(d − 3)

]
. (68)

Using Eq. (38) and the definition of λ, we simplify Eq. (68)
to get

〈J 〉2 = (d − 3)(4πTc)2
+

A2[(d − 1) − (d−3)2

(d−2)
κ2
i (λ2|κi−1)]2
+

(
Tc
T

)d−2

×
[

1 −
(
T

Tc

)d−2
]

. (69)

From this we finally obtain the relation between the conden-
sation operator and the critical temperature in d dimensions
for T → Tc

〈J 〉 = βT
+
c

√
1 − T

Tc
(70)

where β =
√

(d−3)(d−2)
A2

[
4π

(d−1)− (d−3)2
(d−2)

κ2
i (λ2|κi−1 )

]
+
.

Once again we find that the critical exponent is 1/2 which
agrees with the universal mean field value. We shall now set
d = 5 and m2 = −3 for the rest of our analysis. The choice
for m2 yields 
+ = 3. Equation (70) now simplifies to
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Table 7 The analytical results for the condensation operator and the
critical temperature with back-reaction and Born–Infeld parameter in
Einstein gravity (α = 0)

κ b α̃ λ2
SL A2 β|SL = 〈J 〉

T 3
c
√

1−T/Tc

0.0 0.0 0.7218 18.23 0.101062 238.908

0.0 0.01 0.7540 25.91 0.07864 270.834

0.05 0.0 0.7195 18.11 0.10202 248.959

0.05 0.01 0.7525 25.68 0.07938 287.815

0.10 0.0 0.7122 17.75 0.10508 282.416

0.10 0.01 0.7455 25.02 0.08203 346.824

〈J 〉 = βT 3
c

√
1 − T

Tc
. (71)

The expressions for A1(z), A2 and β simplify to

A1(z) = 1 − z2 − b(λ2|b=0)

2
(1 − z2)

[
12z6 + 1 − z8

1 − z2

]

= (1 − z2)

[
1 − b(λ2|b=0)

2
(1 + z2 + z4 + 13z6)

]

A2 =
∫ 1

0
dz

2z3F2(z)

[g0(z) + 2αg1(z)]e
6b(λ2|b=0)z6A1(z)

β =
√

6

A2

[
π

1 − 1
3κ2

i (λ2|κi−1)

]3

. (72)

Simplifying A2 up to O(b), we obtain

A2 =
∫ 1

0
dz

2z3F2(z)(1 − z2)

[g0(z) + 2αg1(z)]
×

{
1 − b(λ2|b=0)

2
(1 + z2 + z4 + z6)

}
. (73)

In Einstein gravity, the metric term should be g0(z) (because
α = 0). Using Eqs. (29) and (37) and computing A2 with
α̃ = 0.7218 for κ = 0, b = 0, we obtain β = 238.908,
which is in very good agreement with the exact result β =
238.958 [32].

Now we shall proceed to include the effect of the BI param-
eter (b �= 0) and back-reaction (κ �= 0) in our analysis. For
κ = 0, b = 0.01, computing A2 with α̃ = 0.7540, we get
β = 270.834, which agrees wonderfully with the exact result
β = 271.612 [32]. For κ = 0.05, b = 0, computingA2 with
α̃ = 0.7195, we get β = 248.959. In Table 7, we present the
analytic results for Einstein gravity.

In Gauss–Bonnet gravity, we use Eqs. (51, 52) for the
form of the metric. We set the GB parameter α = 0.1 and
κ = 0. Computing A2 with α̃ = 0.7080 for b = 0, we obtain
β = 244.112, which agrees very well with the exact result
β = 243.897 [32]. For b = 0.01, α̃ = 0.7665, we obtain
β = 294.147 which is once again in good agreement with

Table 8 The analytical results for the condensation operator and the
critical temperature with back-reaction and Born–Infeld parameter in
GB gravity (α = 0.1)

κ b α̃ λ2
SL A2 β|SL = <J>

T 3
c
√

1−T/Tc

0.0 0.0 0.7080 24.18 0.096798 244.112

0.0 0.01 0.7665 39.96 0.066669 294.147

0.05 0.0 0.7053 23.96 0.098019 257.863

0.05 0.01 0.7645 39.42 0.067623 323.298

0.10 0.0 0.6935 23.30 0.10255 304.436

0.10 0.01 0.7505 37.88 0.071655 432.956

exact β = 290.107 [32]. In Table 8, we present the analytic
results for the condensation operator for GB gravity.

In Fig. 3, the plot of 〈J 〉
T 3
c

vs. T
Tc

is shown for Einstein gravity

and GB gravity for different choices of κ, b.

5 Conclusions

In this paper, we have analytically calculated the rela-
tion between the critical temperature and the charge den-
sity of higher dimensional holographic superconductors in
the framework of Born–Infeld electrodynamics taking into
account the effect of back-reaction of the matter fields on
the spacetime metric. In particular the relation between the
critical temperature and the charge density holds for a d-
dimensional holographic superconductor and is one of the
main result in this paper. We observe that the condensa-
tion gets hard to form in the presence of the Born–Infeld
parameter. It is also noted that the condensate gets harder to
form in Gauss–Bonnet gravity than Einstein gravity in 4 + 1
dimensions. The inclusion of the effect of back-reaction of
the matter fields on the spacetime metric makes the con-
densate even harder to form. We find that our results are
in very good agreement with the existing numerical results
[43,46]. We also derive an expression for the condensation
operator in d dimensions and then analyse the effects of the
Born–Infeld and Gauss–Bonnet parameters in the presence
of back-reactions in d = 5 dimensions. Our results agree
wonderfully with the available numerical results in the liter-
ature. The mean field value of 1/2 for the critical exponent
is obtained in our analysis.

We would now like to mention the importance of our
results obtained analytically. It is evident that the Sturm–
Liouville eigenvalue method is a powerful analytic approach
to the investigation of holographic superconductors tak-
ing into account the effect of various parameters, namely,
the Born–Infeld parameter and the Gauss–Bonnet coupling
parameter. One of the great advantages of this approach is that
it is also found to be applicable away from the probe limit.
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Fig. 3 a 〈J 〉/T 3
c vs. T/Tc plot for Einstein holographic superconductors for different choices of parameters κ, b. b 〈J 〉/T 3

c vs. T/Tc plot for
Gauss–Bonnet holographic superconductors with GB parameter α = 0.1 for different choices of parameters κ, b

This can be inferred by comparing the analytical results with
the numerical results. It should also be appreciated that the
analytical method is always more reliable than the numer-
ical approach, since the reliability of the numerical results
decreases when the temperature T approaches to zero [8,15].
We further point out that our analytical results obtained by
the Sturm–Liouville eigenvalue method also agree with the
results obtained from an alternative analytic technique known
as the matching method [16,43,47]. Our general result pre-
sented in d dimensions can also be applied for values of
d ≥ 4 for Einstein gravity and d > 5 for Gauss–Bonnet
gravity. Work in the future direction is in progress where we
would like to analyse the same set up immersed in an external
magnetic field [48].
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