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Abstract Several versions of fuzzy four-dimensional de
Sitter space are constructed using the noncommutative frame
formalism. Although all noncommutative spacetimes which
are found have commutative de Sitter metric as a classical
limit, the algebras and the differential calculi which define
them have many differences, which we derive and discuss.

1 Introduction

Various and sundry reasons have been put forward to entice
physicists into spacetime noncommutativity. It has for exam-
ple been argued that noncommutative geometries could
incorporate some aspects of the quantized gravitational field.
There seems further to be no obvious physical reason to
extrapolate the commutativity of coordinates and the corre-
sponding description of spacetime as a manifold to arbitrarily
small length scales. However, if one approaches the task of
defining ‘noncommutative space’ from a physical or physi-
cally useful point of view and not as a purely mathematical
abstraction, there is a long list of properties which one might
like to incorporate in order to be able to use the standard
language of dynamics and symmetries.

Inspired by the fact that the geometry of a smooth man-
ifold can be described in terms of the algebra of smooth
functions defined on it, probably the most plausible starting
point is to define a noncommutative space as an algebra A of
linear operators. This approach in many ways inherits intu-
ition from quantum mechanics. There are other approaches
which rest on insights and constructions from string theory
or conformal field theory, [1-3]. Apart from spacetime, one
always has field equations which involve usually the action
of a Laplace or Dirac operator: one must that is define deriva-
tions. It is not a priori obvious which properties derivations
should possess but a natural condition is the Leibniz rule;
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there are, however, important models in which differential
operators do not obey it [4-6]. At the risk of narrowing down
the class of possible structures, we attempt to extend the
various elements of classical geometry to a simple and well
studied structure such as algebra .A. One important physical
aspect is symmetry: symmetries are in the algebraic frame-
work represented quite natural. Finally, a relevant question
which one has to address is that of the commutative or classi-
cal limit. Given that associative algebras are rigid structures
constrained by the Jacobi identities, it is not clear whether it
is possible to fulfill all these requirements in a physically or
mathematically satisfactory way.

There are indications, both from quantum mechanics and
general relativity, that when introducing a noncommutative
space one should consider not just spacetime that is position
space, but the full phase space. In quantum mechanics phase
space consists of commutative coordinates x* and (here
taken antihermitian) momenta fp, = sk 0d;,. The adjoint
action of momenta p,, on elements f(x) € A of the position
algebra defines the derivations,

[P, [1= (ea f) =8y (O [). (1.1)
in particular
[Po <] = 8. (1.2)

This can be seen perhaps more clearly by using explicitly
the Hilbert space H on which the representation of the algebra
acts: derivations appear as momenta. In a completely analo-
gous way one can interpret the frame derivations e, defined
in the Cartan frame description of geometry,
eq = ek (x)d,, (1.3)
as momenta conjugate to coordinates, again assuming the

adjoint action on the functions of coordinates. The canonical
commutators in the gravitational field change,
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[Pa, x"] = eqxt = el (x), (1.4)
and characterize the curved spacetime because the e, do not
in general commute,

[ea, eﬂ] =CVqp(x)ey. (1.5)
The last relation can be written as a commutator of the
momenta

[Pa. P8] = C7ap(®) Py (1.6)
which acts in the adjoint representation on an arbitrary func-
tion f(x). Quite naturally, noncommutativity in momentum
space is equivalent to curvature in position space. By classi-
cal duality between position and momenta, noncommutativ-
ity in position space then is related to curvature in momentum
space: we thus conjecture that curvature and noncommuta-
tivity are two aspects of the same reality.

‘We mentioned that it is not easy to extend all physical and
geometrical requirements to noncommutative space. A par-
ticularly delicate question in noncommutative geometry is
that of dimension. On a commutative manifold to describe a
point we need n real parameters; this integer is also the dimen-
sion of the tangent space as each vector X can be expanded
as
X = X" (x)d,. 1.7
The set of derivations {X} is a left A-module and the
de Rham differential is uniquely defined. Phase space has
2n-dimensions.

Counting dimensions is different on noncommutative
space and in order to obtain some intuition we point out the
differences which appear in the simplest examples. Let us
take the space M3 of 2 x 2 (or M,, of n x n) complex matri-
ces. As a linear space it has 4 complex, or 8 real dimensions.
The subspace of hermitian matrices has 4 real dimensions,
and a suitable basis is for example given by the Pauli matri-
ces and unity, {ai, I}. However, if we consider the set M,
as an algebra, we need only two o-matrices to generate it,
for example o, and oy, as sz = 1, 0,0y = io;. Therefore
the number of generators of the algebra is 2 and one might
conclude that its dimension is 2 as well. In a similar man-
ner, the infinite-dimensional linear algebra of operators on
the Hilbert space of quadratically integrable functions of one
variable x is generated by two operators, x and d,, or a and
a’.

If we consider, on the other hand, a set of inner derivations
{X} on matrix space M,

(1.8)

pr:[pvf]’ D € My,
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we see that it is of dimension 3 (that is, n2 — 1 in M,,) because
[I, £1 = 0.0On anoncommutative space the set of derivations
isno longer aleft module, thatis, f X is not a derivation along
with X because it does not satisfy the Leibniz rule. There-
fore in order to determine dimension of the tangent space
we have to ‘count’” momenta p as a linear space over the
real or complex numbers. Consequently, the dimension of
the tangent space always differs from dimension (the num-
ber of generators) of the algebra itself. We see thus that the
notion of dimension does not have a precise meaning and
speaking of it we usually try to relate it to the commutative
limit of a given noncommutative geometry. A further reason
is that we wish to interpret a specific algebra as a noncom-
mutative space independently of its representation, whereas
linear dimension is related to dimensionality of representa-
tions.

The noncommutative frame formalism [7] solves this
problem in the following manner. On A a differential d can be
defined for all vector fields in analogy with the commutative
case,
df(X)=Xf. (1.9)
But as we have seen, the linear space of all vector fields is
‘too big’: we can redefine d by restricting it on a subset {e, }
of the set of all derivations. Thereby we define the tangent
space. Let {0} be the set of 1-forms dual to e, 6% (eg) = 5/‘;‘.
Then a restriction of d is defined by
df = (eq )6%. (1.10)
The set of 1-forms is a bimodule, that is, along with 6%, f0%,
and 0% f are 1-forms. Duality is equivalent to the ‘frame
condition’
[f.0%]=0, VfeA (1.11)

Vector fields can always be given as commutators (1.8),
but momenta p may not belong to position algebra A. Coordi-
nates and momenta together generate phase space. A peculiar
property now is that dimension of phase space is in general
not equal to 2x dimension of spacetime. This comes about
because of noncommutativity of coordinates: for the Heisen-
berg algebra for example, that is, the two-dimensional Moyal
space where

[x, y] =1, (1.12)
we can take p, =iy, py = —ix, and we get
[pi,xj] =4/, (1.13)
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the flat frame. In this case phase space is identical to posi-
tion space. Similar situation we have for matrix algebras M,
because on M,, all derivations are inner. We thus see that in
the noncommutative frame formalism by the choice of the set
{eq} we effectively fix the dimension of spacetime (defined
as dimension of its tangent space). This choice is by no means
unique and reflects the property that the differential d on an
algebra is not unique either.

An important characteristic of the noncommutative frame
formalism is that, if momenta generate the same algebra as
coordinates, that is, if all derivations are inner, they must
satisfy a quadratic relation,
2P spups — FPsps — Kpy =0, (1.14)
where P*/ 5, FP,5, and Kp, are constants. This relation
follows from stability of Eq. (1.11) under the differential,
df =—10,f1, 6=—pat”, (1.15)
and the constraint d> = 0. We stress the simplicity and impor-
tance of these equations as well as their content. On the one
hand they define differential calculi on an arbitrary algebra in
much the same way that the de Rham calculus is defined on a
smooth manifold. On the other hand we see immediately that
the calculus is not unique; each choice of the momenta con-
sistent with (1.14) gives a different d. Finally, (1.11) allows
one to interpret 1-forms 6% as the moving frame assuming
that the frame components of the metric are constants, for
example
g% =P, (1.16)
In the commutative case there are no restrictions from
the commutators or from the associativity of the product;
momenta are necessarily external and from (1.5) we see that
there is no analog of (1.14).

2 Noncommutative de Sitter space, I

We saw in the previous section that the frame formalism
gives a definition of differential general enough to include
commutative manifolds, quantum-mechanical phase space
and noncommutative matrix spaces. Its main constituent is
the moving frame which naturally incorporates geometry. To
see whether this formalism can indeed describe noncommu-
tative gravity we proceed by examples which fulfill previ-
ously mentioned requirements and have a certain relevance
in physics. We discussed in previous papers [8—10] various
rotationally invariant noncommutative spaces. In this paper
we give examples of algebras with spherical symmetry which
can be considered as fuzzy versions of cosmological metrics:

de Sitter and Friedmann—Robertson—Walker. We find several
versions of noncommutative four-dimensional de Sitter space
which have different spectral and symmetry properties, but
the same limiting classical metric. Another common feature
which they share is that one needs to make some kind of
dimensional extension to obtain a smooth noncommutative
space.

Perhaps the most natural idea, when we think of construct-
ing noncommutative de Sitter spacetime, is to start from the
Lie algebra of the de Sitter group itself. This idea was in
some detail put forward in [11,12], as a generalization of
the fuzzy sphere construction [13]: we shall in this section
analyze and develop it. Let us briefly recall the fuzzy sphere.
The possibility to interpret the SO (3) group generators x',
i = 1,2,3, as Cartesian coordinates on the sphere is based
on two facts. The first is that operators x' in the irreducible
representations satisfy the Casimir relation,
dij x'x/ = C = const. 2.1

This relation is the same as one which defines embedding
of the two-sphere in the three-dimensional euclidean space.
The second fact which ensures smoothness is a possibility to
define differential calculus. The differential can be written
in form of a noncommutative frame [13], with the momenta
given by

1 .
— i T, a=1,23.
ik (2.2)

Pa =
To justify that (2.2) gives a spherical geometry one can either
calculate the coordinate components of the metric and obtain
the projector to the sphere,

g = ele]s = sl — Xy, (2.3)
or calculate the scalar curvature and obtain a constant. One
can also verify that the generators of rotations are Killing
vectors, in much the same way se as we later do for de Sitter
generators on fuzzy de Sitter space. In addition, there is a
well defined commutative limit: the polynomial expansion
of an arbitrary matrix f € M, (taking that x’ are inthe n x n
irreducible representation),

n—1
1
f= 12(; o Faroax™ .. x4, (2.4)

tends in the limit n — oo to the spherical harmonics expan-
sion of the function f on the sphere.

It seems apparent that this simple idea should be easy
to implement to other maximally symmetric spaces defined
as hyperspheres embedded in higher-dimensional euclidean
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spaces, by using suitable Lie groups and their Casimir rela-
tions. It was applied in [11,14] to obtain 2d and 4d fuzzy
hyperboloids: in four dimensions, however, it is more diffi-
cult to find the appropriate metric structure. We shall in this
section find, within the algebra of de Sitter group SO(1, 4),
two differential structures which give it a metric of the four-
dimensional de Sitter space.

Let us introduce the notation. We have ten generators of
the SO(1,4) group My, o, B = 0,1, ...4; the signature
is nyp = diag(— + + + +). The commutation relations
are

[Map, Mys| = i(May Mps —nas Mgy —1gy Mas +npsMay ).
2.5)

Using Myg one can define a vector W, which is quadratic,

1
W = § €uyin M/ M. 26
[Maﬂ, Wy] = i(nayW;‘} — Ny Wa). 2.7
The SO (1, 4) has two Casimir operators:

1
Q=-3 WM, W = W W (2.8)

In order to understand the properties of the algebra with
respect to rotations in more detail, we adapt the notation
to the SO(3) subgroup and denote the 3-vector indices by
i, j = 1,2, 3. We rename the generators,

1
Li = S €M,

> P; = M4,

Qi = Mpi, R = My.

(2.9)

The commutation relations of the SO (1, 4) are then

[Li,L;] =ie€ijkLi, [Li. Pj]=ieijxPc, [Li, Q;] = ieijk Ok,

[Pi.Lj]=i€ijcPe. [Pi. Pj]=ieijLe, [P, Q;]=18;R,

[Qi. Lj] = i€ijx Ok, [Qi, Pj] = —i8ijR, [Qi, Q)] = —i€ijiLk.,

[R.L;j]=0=i0;. [R.Pj]=iQ;.  [R Q;]=iP;
(2.10)

The algebra can be contracted in various ways. Rescal-
ing P; — Pi/sA, R - R/~/A, for A — 0 we obtain
the Inonii-Wigner contraction to the Poincaré algebra, that
is, the flat limit of the de Sitter algebra: R and P; become
the generators of four-translations, while L; and Q; generate
the 3-rotations and boosts. In this limit @ and W become
the Casimir operators of the Poincaré algebra: the square of
mass and the square of the Pauli—Lubanski vector. Contrac-
tion P, — uP;, Qi — nQi, R = u’R for p — oo gives

@ Springer

phase space in three dimensions with rotations: R becomes
a central element.
In the new notation the components W, are given by

Wo=L;P;=PL;, Ws=-L;Q;i=-0;L;, (211)

Wi = RL; + €jxQ;jPr = RL; — €;x Pj Q. (2.12)

The commutation relations (2.7) can be rewritten as

[Li, Wo] =0, [Li, W4] =0,
[P, Wo] =0, [P, Wy] = —i W,
[Qi’ WO]:_iWi7 [QiaW4]:Ov

Li, W] =ieijWi,
Pi, W;] =i8;;Wa,
Qi, W;] = —i8;Wo,

(2.13)
and for the Casimir operators we obtain
- Q=—-R"—Qi0i + PP +LiL;, (2.14)
W = —(Wo)> + Wi Wi + (Wa)?
= —(Wo)* — [Wo, Qi1 — [Wo. RI”. (2.15)

Unitary irreducible representations of SO(1, 4) are in the
notation of [15—17] divided in four classes. In the Class I, the
quadratic Casimir operator @ > 0 has a continuous range of
values and the quartic Casimir operator is zero, VW = 0. In
the Class Il representations, VW = 0, while Q is discrete, Q =
—(n—1)(n+2),n=1,2,.... The Class III representations
have continuous Q and continuous W, W = s(s + 1)Q +
(s—Ds(s+ 1)(s+2),s =1/2,1,3/2,.... Finally, in the
Class 1V representations both Casimir operators Q and W
are discrete. Note that Eq. (2.15) implies that if Wy = 0, then
the quartic Casimir vanishes, YW = 0.

Let us discuss possible assignments of coordinates and
momenta. The Casimir relation (2.15) directs us to take W*
as coordinates of a five-dimensional embedding space, and
we shall adopt this identification. The SO(1, 4) generators
Mg as defined are dimensionless, so we introduce
x* =ewe, (2.16)
where the constant £, of dimension of length, will be fixed
later. By definition a noncommutative de Sitter space A is
the algebra generated by x“ in one of the unitary irreducible
representations. The quartic Casimir gives the value of the
cosmological constant,

3
Nap %P = —Pw ==

- (2.17)

The coordinates x* are quadratic in the group generators and
therefore they do not close under commutation: in terms of
the decomposition (2.12) we have
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[x0, xi] = i€jjkl x; P + il Lixq,

[x4, x;] = i€;jrl Qjxp + il Lixo, (2.18)
[x0, xa] = i€ Lix;, [xi, x;]
= i€jjpl (Rxy — Prxo — i Qkxa). (2.19)

These relations are to some extent unsatisfactory because
their right-hand-sides contain, besides coordinates, the group
generators: if only x* appeared, the interpretation would be
much easier. However, this obstruction is not principal: Egs.
(2.18, 2.19) show only that calculations, if nontrivial, will
not be simplified easily and will possibly depend on the rep-
resentation.

Momenta have to fulfill a stricter requirement: they must
close into an algebra which is at most quadratic. In addition,
in order to interpret the frame as a gravitational field,

g% (x) = &% b 8,

(2.20)
we have to require that the frame elements depend on the
coordinates only,

[pa,x*] =5 (x). (2.21)
It is thus clear that W* cannot be the momenta as on the
fuzzy sphere. A natural choice would be to select momenta
among the group generators. If we wish to preserve the full
de Sitter symmetry we shall choose as momenta all Mg,

ipa = A Myg, (2.22)
where the index A, A = 1,...10, denotes antisymmetric
pairs [af]. To get dimensions right we introduced in the last
formula \/K ; we systematically use convention 7z = 1. The
square root of the cosmological constant in (2.22) is in fact
implied by the frame formalism as, when the momenta form
a Lie group,

[pa, psl = CPap pp, (2.23)

the curvature scalar is quadratic in the structure constants,

1

R=7 CABPChap. (2.24)

To be completely accurate we should in fact have put

ipa =+ A Myp, (2.25)
then the normalization of the scalar curvature, R = 4A,
would have given ¢ = 1/3; we will, however, it being sim-

pler, keep (2.22). The constant ¢ we fix as

3
(=kVA,  W=———,
k*A2 (2.26)
where % is the scale of noncommutativity of dimension length
squared. In consequence % enters only in the position com-
mutators,

[0, 2] = K (€ijk PR3 + Pita),
(2.27)

(24, 23] = E (€31 Dj+6 Tk + PiT0),

[x0, 74] = K pizs,

2.28
(25, 2] = K €ijk, (D10Tk — Dr43T0 — Pht6T4)- (2:28)

Therefore the commutative limit is defined as £ — 0.

The given choice of the differential structure might seem
at first sight unusual: we have spacetime of 5 — 1 = 4
dimensions, with the tangent space of 10 dimensions. As
we explained earlier, this comes formally with noncommu-
tativity of coordinates. To understand the meaning of the
introduced differential d we proceed to the metric and the
laplacian. Denoting

ipi=~ALi, ipis3=~APi, ipive=~AQi,

iplo=~AR, i=1,23, (2.29)

and introducing a locally flat metric g% = 4% with sig-
nature (+ + + + + + — — ——), we obtain the following
expressions for the frame components, ¢ = [pa, x“]:

0 0 0 (] 4

e;=0, €,3=0 ej+6=\/Xx] &y = VA x4,
(2.30)

e; = —eijk\/Xxk e;+3 = 8;-\/Xx4

ee=08"VAx" ely=0, .31

4 4 i 4 4 0

€; =0, e ;3=—VAx ¢ =0 ety = VAX°.
(2.32)

From these expressions we can find differentials dx* =
e% 04
A

dx® = VA X010 + VA x*0'°, (2.33)
dx’ = —eijk«/Xxkﬁj + VA xti 3

+ /A x%67 %, (2.34)
dx* = —VA X0 + VA x01°. (2.35)

The spacetime components of the metric, g*# = e‘;‘\egnf‘B ,

a=0,1,2,3,4, are

@ Springer
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—(x1)? = (x)? —xix? —x4x0
go‘/3 =A —xOxJ ( — 92+ D2+ (x4)2) 84 — x/x! —x4x/ ;
—x0x* —xiy4 — (92 4 (x')2
this can be simplified to Therefore the coordinate differentials are given by
g% =3 — AxPx“. (2.36)  dx" = x*0° + x76/, (2.43)
In the commutative limit g*# is singular and reduces to the dx' = (% + x4 6", (2.44)
projector on the four-dimensional de Sitter space defined by dxt = 2080 — xIgi. (2.45)

(2.15); it projects out the radius vector x,,. When we calculate
the curvature which corresponds to the given frame, as shown
in the appendix, we obtain R = 12A; more generally, using
rescaling (2.25) we have
R =12CA. (2.37)
Quadratic Casimir operator Q is usually related to mass

[20,21]. For a scalar field ® (x) the laplacian and the Klein—
Gordon equation are written as

A® = —n*Bepep® = 0B [pa, [pp, @1l = m?®,
(2.38)

and clearly mass corresponds to the value(s) of Q in the
adjoint representation. In the contraction limit to the Poincaré
group, generators L; and Q; become negligible so the mass
(2.14) reduces to
—Qla—o = —R*+(P)™. (239)
It possible to reduce the number of momenta and the
dimensionality of the tangent space while keeping the metric
of A de Sitter. We introduce another set of momenta
ipo=~AR, ipi=vAPF+0Q) i=123
(2.40)

and denote the correspondingly defined differential by d;
coordinates are the same. The momentum commutators are

[P0, il = —'A B, [pispj]=0. (2.41)
Applying the algebra relations we get now for the frame
elements

~0 =0 4 s L
eo=[po,x = —x", ef):[po,X‘]:O,

& = [ﬁo,x4] =", 59 = [ﬁjvxo] =x/,
i _ | = i
& = 7]

@ Springer

and we easily recognize that variable x° 4+ x* should be intro-
duced as a new coordinate, time. Denoting

7 = —log(x’ 4+ x* (2.46)
we find
dax® +xH =2 +x4H6°, 0% = —dr. (2.47)

The line element becomes in the classical limit that of
de Sitter space,
ds? = —(0°2 + (0")? = —dr? 4 *T dx'dx’. (2.48)
The remaining differential dx* is not independent: its value
follows from the Casimir constraintd (x®xy) = 0. Assuming

that the metric in frame components has the signature (— +
++) for the coordinate components we obtain

—()C4)2 + (xi)Z xi (x4 + )CO) —)C4X0 _ (xi)z

P = Xt +x0 s+ Xt +x0) |.
—xtx0— (2 —x @t a0 @02 4 ()2

(2.49)

Again this is a projector to the hypersphere which projects
out xg.

We achieved to obtain four-dimensional tangent space.
The Laplace operator induced by dis given by

A® = A [R,[R, ®]]—A [P + 0, [P+ Q;, ®]] = m’®,

(2.50)

and although it is not invariant under the full de Sitter group,
it has the correct Poincaré limit under the contraction,
—i?| a0 = —R* + (P)*. (2.51)

The laplacian A invariant under the 3-rotations and boosts,

[0, —R>+P)*] =0.
(2.52)

[, =R+ P)*] =0,
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As shown in the appendix, the scalar curvature related to d
is constant,

~ 3
R=—-A,

: (2.53)

and if we wish to have the usual value 4A for the scalar
curvature we need to redefine the momenta, py — ¢ po
with £ = 16/3. The fact that A is not invariant under the full
de Sitter group indicates that the metric is not invariant too:
indeed this is the case and it can be confirmed by an analysis
of the Killing equations which is done in the appendix.

3 Noncommutative de Sitter space, I1

To construct a four-dimensional de Sitter space we started
in the previous section from the algebra of de Sitter group
SO(1,4). Within this algebra we identified coordinates,
momenta and the moving frame consistently with rules
imposed by the frame formalism: as result we found two
natural realizations of fuzzy de Sitter space. A drawback of
this procedure is the existence of a number of operators which
have no direct physical interpretation, while they cannot be
avoided in calculations: one would prefer to have an algebra
which is as small as possible, minimal.

One method to search for such an algebra is to try to con-
struct it: first, to assume that it exists by making an Ansatz
for the commutation relations; one needs a further Ansatz for
the moving frame, the one that gives the required form of the
metric. Using these two premises one solves the constraints:
the Jacobi, the frame and the compatibility equations. Such
programme can be systematically done only approximately,
in linear order in noncommutativity (otherwise, in the course
of calculations one would have to use the multiplication rules
which one is looking for) and as result one obtains a noncom-
mutative spacetime, that is, an algebra and a calculus. Fol-
lowing this approach we have made in our previous papers
a survey of noncommutative algebras generated by four, five
and six elements, [8—10]. The original motivation was in part
to use interior derivatives, thereby decreasing the dimension
of phase space. The summary of the results dimensionwise
is as follows. The lowest-dimensional spacetime which can
be constructed has four generators (the corresponding phase
space has five), but the metric is necessarily nonstatic: it is
in fact unique. When we add one more generator, that is,
within the set of five-dimensional position algebras, the con-
straints get considerably relaxed and we obtain a large fam-
ily of static spherically symmetric noncommutative geome-
tries.

We wish here to generalize the frame Ansatz and the con-
straints of [8] in order to obtain noncommutative cosmolog-
ical spacetimes of the Friedmann—Robertson—Walker type.
Let us briefly introduce the notation and write down the equa-

tions; for all technical details we refer to [8] as calculations
are to some extent analogous. Coordinates are denoted by

0

x’ =t, x4 = p&°, xt =, a=1,2,3. (3.1

Normalized vector £ describes two angular variables, polar
and azimuthal angle; radial coordinate (measuring either the
area of the sphere or the radial distance) is r, time is . The
x% satisfy

Xax4 = p?, (3.2)

therefore the additional fifth coordinate p is analogous to
a radius but of an additional, extra dimension. The &¢ are
the generators of the SO (3) algebra in the irreducible n x n
representation: the momenta p,, are taken to be proportional
to £¢, as on the fuzzy sphere.

We assume that the form of the position algebra A is

.
s8] = Zeese, [g7 0] = [6%.r] =[] = 0.
(3.3)
[pv t] = ikjop, [7’, t] = ikJ,
(3.4)
o, 7] = ikJ*p,

that is, a tensor product so(3) ® A’ where A’ is the algebra
generated by r, ¢, and p. Differential calculus mixes the two
subalgebras: the Ansatz for the frame is given by

0% = —hp~t ey xbdx® + p2 x,07x°, dx® = (hp)~! €9y, xP0°,

0% = gdr, dr = g~ lo%,

60 = fd + kx?6%, dr = 71600 — kf~'x%6°,
3.5

This Ansatz implies, as on the fuzzy sphere,

pdp +dpp =0, (3.6)

that is, p is in the commutative limit a constant. To impose
spherical symmetry we assume that f, g, &, and k, as well
as J, Jo, and Jy are functions of p, r, and ¢ only. We thus
have seven unknown functions, which are to be determined
from the constraint equations. We will consider here only
the case k = 0, which gives the usual diagonal form of the
metric; k # 0 allows one to extend the construction to the
generalized Taub-NUT spaces.

Consistency of the frame with the algebra, the Jacobi, and
the frame constraints gives the following set of equations:

RI*+hi% =0,

(h+ pd,h)J* —hJ =0,

(h+ pd,) IO +1'J = f~ kh?p?,
J 487 (g + pdgl®) =0,

(k + pdyk)J* —kJ =0,

J* =0, JY =0,
JY+ g (gt +4J% =0,
TV NI+ £ =0,
T+ 7N FT = pd, fIh =0,
KJ*+kJ% =0,

3.7)
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where f = 9, f and f’ = 9, f. The equations are coupled
and nonlinear, and thus relatively complicated; but we do not
need to solve them in full generality because of the diffeo-
morphism invariance of the formalism, which can be used
to fix some of the variables. We choose the radial coordinate
such that the area of sphere be 4712, thatis, we puth =r.We
assume further that the metric has the Schwarzschild form,
fg = 1. In the static case, when no function depends on
time, we find a solution

Jr=0, J°=J%p), J=—rip), (3.8)
h=r, f= l = yr F(pr), 3.9)
g

the function F' can be an arbitrary function of its argument.
The corresponding metric in the commutative limit has the
line element

1
ds? = — f2d> + I dr? + r2dQ. (3.10)

Though (3.10) is restricted in its form, it gives a large fam-
ily of solutions. We have seen that in the classical limit p
becomes a constant: therefore taking for example

1 — p2r2
F(pr) = T

and identifying p with the cosmological constant,

(3.11)

A
pPl=vi=7, (3.12)

we obtain the de Sitter metric in static coordinates. As a con-
sequence, we find that the cosmological constant is quan-
tized.

The noncommutative de Sitter space A is in this version
a relatively small algebra, generated by five elements; it is,
in contrast to the spacetime found in the previous section,
closed. But to obtain the phase space we have to extend it by
one generator, ps. Namely from (3.5) and our solution we
see that the momentum p4 has to satisfy

[pa.1=0. [psx?]=0. [psprl=0, (313
and therefore it does not belong to .A. These relations can be
solved, not uniquely, within a larger algebra.

In order to find within this same framework the Friedmann—
Robertson—Walker type solutions, we should include the
dependence on time. It is necessary also to take J* # 0.
Again, instead of attempting to find the most general solu-
tion we seek a particular one, of the form
h=a()r. (3.14)

le? g:a(t)G(r’p)s

@ Springer

We obtain the following set of equations:

8,J% =0, aJ* =0, (3.15)

8J =0, 3.J° =0, (3.16)

al*+aJ’ =0, al* —al =0, (3.17)

O JJI* = 8,J4d — pd,J* I + 03,700 = 0. (3.18)

These equations have a solution similar to (3.8),

=%, J=—r° s=-2.50 319
a

The remaining constraint gives G(r, p) = p, so we find for
the frame
f=1 g=a@)p, h=a()r. (3.20)
The scale factor a(¢) can be arbitrary; the limiting classical
metric is given by

ds? = —dt? + a* (1) (p*dr? + r2d<), (3.21)
where p is as before constant so we can choose p = 1. Taking
for example the exponential function,

a(t) =exp,| =1, (3.22)

N

we obtain the de Sitter space in the FRW form. In general, we
find a family of fuzzy Friedmann—Robertson—Walker geome-
tries.

4 Conclusions

We constructed in this paper, using the noncommutative
frame formalism, essentially two different versions of a non-
commutative four-dimensional de Sitter space. Let us review
and compare them.

The de Sitter spaces constructed in Sect. 2 are based on
the algebra of the de Sitter group SO(1,4). Coordinates
which generate spacetime A are proportional to the 5-vectors
W% (2.6), so in the unitary irreducible representations of the
group, the Casimir relation (2.15) defines four-dimensional
de Sitter space as an embedding in five dimensions. The value
of the quartic Casimir operator is related to the cosmological
constant A and noncommutativity scale %, (2.26); whether A
has a discrete or a continuous spectrum depends on the rep-
resentation. Spacetime A has the somewhat unpleasant prop-
erty that the coordinates do not close under commutation. But
as is explained in the text, this aspect is not essential: what is
really necessary (and sufficient) for a physical interpretation
is that commutators with momenta (2.21), which give the
frame and the metric, can be written in terms of coordinates
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solely. Within A we formulate two differential calculi, both
based on the generators of the de Sitter group, Mg: of course,
other differential structures can be constructed but they give
other geometries. The first calculus has as momenta all group
generators and therefore the corresponding tangent space is
10-dimensional. The second calculus has four momenta and
the tangent space, which is four-dimensional. In both cases
the metric in coordinate components (2.20) is a 5x5 matrix
which projects to the four-dimensional de Sitter space A;
also, the scalar curvature is in both cases constant. The two
calculi have different laplacians: the laplacian A is related
to the quadratic Casimir of the SO(1, 4), which is in field
theories on the commutative de Sitter space usually related
to the mass. The second laplacian A is not invariant under the
full de Sitter symmetry, but it is invariant under the Lorentz
subgroup. We therefore obtain two different Klein—Gordon
equations: in both cases the Inonii-Wigner contraction gives
the usual mass.

Section 3 contains two more versions of a fuzzy de Sit-
ter space, one in the static and another in the FRW coordi-
nates: we can obtain in fact noncommutative versions of all
Friedmann—Robertson—Walker spacetimes. The strategy of
the calculation is in Sect. 3 inverted: instead of fixing the
algebra in advance we search for it, and therefore the posi-
tion space .A which we obtain is always, by definition, closed.
However, it is not minimal: it has 6 — 1 = 5 generators; see
Eq. (3.2). Although the additional variable p is not a Casimir
operator, it is constant in the sense that its differential is zero,
d(p?) = 0. We interpret p as the size of the additional dimen-
sion: classically its value is related, in the cosmological case,
to A and %; see Eq. (3.12). We have not solved, within this
approach, for the full phase space algebra and therefore the
laplacians are missing: equations for p,, are, however given;
see (3.13). One of the problems with searching for algebras
which satisfy equations like (3.13) is that there are ‘too many’
zeros on the right-hand sides, and consequently too many
extensions are possible: it is much easier to solve the Jacobi
identities when they contain nonsingular expressions. This
presents also the main technical difference between the two
approaches presented. On the one hand, the a priori choice
of the algebra of the SO(1, 4) group done in Sect. 2 might
seem to be quite arbitrary: in principle, one would prefer to
have a set of equations and to find a unique solution to them.
But on the other hand it is hard to imagine that, starting from
Egs. (2.40), one would arrive at the de Sitter algebra: there
are many more ‘equally good’ algebras which contain these
equations.

In fact, the algebra of the SO(1,4) (or the SO(2,3))
group seems to be the ideal framework for noncommuta-
tive four-dimensional geometries. It is ‘big enough’ to be a
phase space: the number of its generators is 10 — 2 = 8.
Also, the existence of three independent 3-vectors and one
scalar gives enough room to construct rotationally invariant

spaces: this is seemingly impossible within the algebra of
SO(1, 3). Among various versions of fuzzy de Sitter space
here analyzed, the one based on the de Sitter algebra with the
four-dimensional tangent space is perhaps the most appeal-
ing, because of its dimension. It has an additional merit: it can
be generalized to arbitrary even-dimensional space. Namely,
starting from the SO(1, n) group and its generators Mg,
o, B=0,1,...n, for even n there is a vector
W =€ %" My oy ... My, | a- 4.1
The square of W is the Casimir operator of the highest
rankin SO(1, n). The corresponding Casimir relation defines
an embedding of the n-dimensional hypersphere in a (n+1)-
dimensional space. By analogy with the four-dimensional
case, the choice of

ipi =My +M;y,, =12 .. .n—1,

4.2)

lﬁ() = MOn’

as momenta gives the n-dimensional tangent space. We find
therefore n-dimensional fuzzy de Sitter spacetime in coor-
dinates which give the flat sections, together with the corre-
sponding time-dependent metric.

The other fuzzy de Sitter space based on the SO(1, 4)
group, with 10-dimensional tangent space, is interesting
because it preserves the full de Sitter symmetry. Somewhat
counterintuitive is a large discrepancy of the dimensionalities
of spacetime and tangent space, 4 and 10; though as we dis-
cussed earlier, equality of these two numbers is hardly to be
expected. There are many physical arguments which support
the intuition that at small scales coordinates are noncommut-
ing operators. One can develop a similar intuition regarding
the linear space of differentials: namely, if differentials are
in some way related to the fluctuations of coordinates, there
is no reason why they cannot have ‘more dimensions’ than
coordinates themselves: after all, fluctuations depend on the
states of the system too. Similarly, one can argue that a coor-
dinate restricted to the ‘subspace of a noncommutative man-
ifold’ can fluctuate, besides tangent, in orthogonal directions
too. The difference in dimensions which we have here and
in other cases [13] gives a completely different counting of
the degrees of freedom of fields on a noncommutative space
and it can potentially give very interesting models.

In any case, both SO (1, 4)-based models of fuzzy de Sitter
space can be very useful. Their unitary irreducible represen-
tations are known, and that gives many possibilities for fur-
ther investigation: one can for example discuss the spectra of
the coordinates, coherent states, field theories etc. An equally
important task would be to obtain perturbations as in [22] for
perturbations of the flat space. Finally, fuzzy de Sitter space
proves again that the noncommutative frame formalism is
a good and systematic method to describe noncommutative
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geometries, but also that we need more work to explore all
its properties in order to use it properly.
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Appendix

We give technical details related to the calculations and
results given in Sect. 2; for a more rigorous introduction we
refer to [7]. Both differential calculi considered in Sect. 2
have momenta which close into a Lie algebra. In this case
properties of the space of p-forms simplify: one can show for
example that the frame forms anticommute, 9498 +9BpA =
0, which is not the case in general. The expression for the
scalar curvature is also very simple, see Eq. (2.24), so in
order to calculate it we only need to determine the structure
constants.

If we take as momenta all de Sitter group generators
P, using the enumeration (2.29) we find that nonvanishing
Capc are
Cijk = €ijk,  Ci j+3.k+3 = €ijk>

Cij+6,k+6 = —€ijk, Cit3, j+6,10 = —0ij. (5.1

Nonzero are also all permutations of the structure constants
with the given indices, and C4pc are completely antisym-
metric. Using (5.1) one can easily obtain (2.37). For the sec-
ond set of momenta p, the nonvanishing structure constants
are

Cioj = —Cijo = dij. 5.2)
These constants are neither cyclic nor fully antisymmetric;
they give, however, a constant curvature scalar, (2.53).

The antisymmetry of the structure constants is important
when we calculate the Lie derivative of the metric. The Lie
derivative, with its usual properties, can in general be defined
on noncommutative spaces [7]; we will use it here to check
whether derivations defined by the group generators are also
the Killing vectors. The interior product of a vector field X
and a I-form 7 is given by
ixn =n(X). (5.3)

@ Springer

The action of the Lie derivative Lx can be extended, from
the action on functions,

Lxf=Xf, 54

to the action on 1-forms and their products by linearity, the
Leibniz rule, and the formula
Lx =ixd+diy. (5.5

In particular, using the fact that the frame components of the
metric are constants,

g (GA ® 93) =n"?, (5.6)
we find how Ly acts on the metric:
(Lxg) <9A ® 93) =g (EXGA ® 93)

g (6% ® Lx0"). 5.7)

That is, in order to check whether the vector field X is a
Killing vector,
Lxg =0, (5.8)
we need only to determine £x6% and apply (5.7). Using Eq.

(5.5) we can easily find the Lie derivatives corresponding to
the frame vectors ey,

L., 08 =—-CB,poP. (5.9
We thus have, in the case of the first calculus,
(Leys) (95‘@90) —cB,0 4P, By, (5.10)

that is, all derivations e4 are the Killing vectors and space-
time has the de Sitter group as its symmetry. For the second
calculus this is not the case: we have for example

(Lag) (6° @07) =57,
(.11)

(Cag) (6 @67) =267,

so neither eg nor ¢; are Killing vectors. Rotations, however,
are a symmetry of the metric,
Lx,g=0, (5.12)
where X; f = [L;, f]. This can be confirmed by extrapolat-

ing Eq. (5.9) to the generators of rotations using (5.5) and
the expansions (2.44) and (2.47).
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