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Abstract General relativity extended through a dynamical
scalar quartet is proposed as a theory of the scalar–vector–
tensor gravity, generically describing the unified gravita-
tional dark matter (DM) and dark energy (DE). The imple-
mentation in the weak-field limit of the Higgs mechanism
for the extended gravity, with a redefinition of metric field,
is exposed in a generally covariant form. Under a natu-
ral restriction on the parameters, the redefined theory pos-
sesses in the linearized approximation a residual transverse-
diffeomorphism invariance, and consistently comprises the
massless tensor graviton and a massive scalar one as a DM
particle. The number of adjustable parameters in the full non-
linear theory and a partial decoupling of the latter from its
weak-field limit noticeably extend the perspectives for the
unified description of the gravity DM and DE in the various
phenomena at the different scales.

1 Introduction

The unification of the superficially unrelated phenomena in
nature seems to be the main trend in the contemporary fun-
damental physics. Among such the formally unrelated phe-
nomena there are the so-called dark matter (DM) and dark
energy (DE). While the former is concentrated mainly in
galaxies and the cluster of galaxies, the latter is distributed
all over the world, which results in their quite different man-
ifestations. However, both DM and DE being extremely elu-
sive, they may naturally have their common origin in a mod-
ification/extension of general relativity (GR). The latter is
well known to be the generally covariant (GC) metric theory
of gravity describing in vacuum one physical gravity mode,
the massless two-component transverse-tensor graviton. It
is commonly adopted that GR is not an ultimate theory of
gravity. Nevertheless, it well may serve as a firm basis for a
future (more) fundamental theory. In particular, among the
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conceivable extensions to GR one may distinguish that with
an additional (massive) scalar graviton. Such a GR extension,
in comparison with a number of other ones, will mainly be
addressed to in what follows.1

The masslessness of the tensor graviton is safely ensured
in GR by the conventionally adopted general gauge invari-
ance/relativity. At that, a scalar-gravity mode, contained
a priori in the metric, gets unphysical as a by-product of
the general gauge invariance/relativity. However, to ensure
the generic property of the tensor masslessness it would
suffice for a gravity theory to possess the invariance just
under the volume-preserving/transverse diffeomorphisms
(TDiff’s) [2]. Given this, there could appear in metric one
more physical gravity mode, the scalar one. A theory of grav-
ity based on the explicit GR violation, with the residual TDiff
invariance and an extra scalar mode contained in metric, was
proposed in the non-GC form in [3–5] and further elabo-
rated in [6]. In the explicitly GC form, such a theory was
proposed in [7] and developed in [8–10]. At that, the explicit
GR violation was treated as a raison d’être for the appear-
ance of the gravitational DM.2 To such an interpretation,
GC preservation proves to be crucial. The emergent scalar-
graviton DM proved to possess the generic properties con-
ventionally assigned to DM. In particular, due to the coherent
field of scalar gravitons there exists in vacuum a halo-type
solution with a constant asymptotic rotation velocity [9,10].
Similarly to the black holes (BH’s), serving as a signature for
plain GR, the halo-type objects may serve as a signature for
GR extended through the scalar graviton. Associated with
the local scale invariance, the respective scalar graviton was
called previously a systolon [10]. To ensure the GC preserva-
tion one should inevitably introduce a nondynamical scalar

1 For a review on the extended theories of gravity, see, e.g., [1].
2 The term “GC violation”, used previously in [7] and later, is more
appropriately substituted here by the “GR violation” [10].
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density (of an unknown nature).3 This is the simplest theory
realizing the scenario of the explicit GR violation with the
gravity DM.

A more detailed study of the gravity DM may though
require an extension of the scenario beyond the minimal
one. Irrespective of DM, the general second-order effective
Lagrangian with the explicit GR violation in the non-GC
form was proposed in [11]. In the GC form, such a Lagrangian
was obtained in the context of a nonlinear model in [12]. Sim-
ilarly to the minimal case, to maintain GC under the explicit
GR violation it is necessary to introduce a nondynamical
affine connection expressed minimally through a quartet of
the scalar fields. Such a proliferation of the uncontrollable
nondynamical quantities in a semi-dynamical model makes
one uneasy, both phenomenologically and theoretically, and
may result in some conceptual problems. It would thus be
desirable to make the effective field theory of gravity fully
dynamical by converting the nondynamical quantities, mini-
mally the scalar quartet, to the dynamical ones. A dynamical
scalar quartet in the context of the space-time four-volume
element was proposed originally in [14]. For an implementa-
tion of the Brout–Englert–Higgs (BEH) mechanism for the
massive tensor gravity it was introduced in [15]. A special
representation for the gravity Higgs fields in terms of the
scalar quartet was proposed in [16] and worked out in [17].
It helps to solve some problems inherent to the massive mod-
ification of GR. Such a representation, with a modification
hereof, is used for the consistent treatment of a more critical
extension to GR in the present paper.

The paper develops the preceding results due to the author
on the scalar-graviton/saystolon DM [7–10], modifying the
semi-dynamical model to a fully dynamical theory. First of
all, a general gravity kinetic Lagrangian, quadratic in the
derivatives of the metric, in an explicitly GC form [12] is
used instead of the minimal one. Besides, the explicit GR
violation, with a nondynamical affine connection, is aban-
doned due to a dynamical scalar quartet. In Sect. 2, the full
nonlinear theory of the quartet-metric (QM) GR, or, for short,
the quartet-metric gravity (QMG) is considered. The GC
frameworks for the unification of the gravity DM and DE are
worked out. A coupled system of the classical field equations
FE’s for metric and the scalar quartet is presented. The mini-
mal totally dynamical GR extension, in comfort with the pre-
vious semi-dynamical results [9,10], is considered in more
detail. In Sect. 3, the weak-field (WF) theory corresponding
to the full nonlinear one is considered. The implementation
of the BEH mechanism for the scalar-vector-tensor gravity

3 A nondynamical scalar density for a four-volume element appeared
originally in the unimodular relativity (UR) [13]. Though inevitable in
UR for GC, such a scalar density is nevertheless often missed, tacitly
implying the special coordinates, as well as the absence of the scalar-
density singularity (not necessarily fulfilled in a more general case).

in the arbitrary metric and quartet backgrounds is explicitly
demonstrated in a GC form. The linearized approximation
(LA) for the most general version of the theory, as well as for
its natural reduction insuring TDiff invariance, is then con-
sidered. The latter case, being unitary and free of ghosts and
the classical instabilities, is argued to consistently comprise
the massless tensor graviton and a massive scalar one as a
DM particle. The nearest and far-away prospects for QMG
are shortly discussed in Conclusion.

2 Full nonlinear theory

2.1 Quartet-metric gravity

An underlying theory of gravity and space-time, whichever
it might be, should inevitably manifest itself on an observ-
able level as an effective field theory to match with GR and
the conventional field theory for the ordinary matter. Thus
in searching for such a fundamental theory, one should, con-
ceivably, look first for the respective effective theory. The
latter is to be generically characterized by a set of fields and
symmetries ruling the interactions of the fields. Let us thus
assume that the effective field theory of the extended grav-
ity superseding GR is described by the dynamical fields of
metric gμν and a scalar quartet Qa , a = 0, . . . , 3, with an
action

S =
∫

LG(gμν, Qa)
√−g d4x, (1)

where g = det(gμν) and LG is an effective Lagrangian.4 The
latter is assumed to have a GC form and to be invariant under
a global internal Lorentz symmetry SO(1, 3) acting on the
indices a, b, etc., with the invariant Minkowski symbol ηab.
It is understood that the signature of ηab determines the sig-
nature of gμν . The physical meaning of the extra variables
Qa will be clarified later on. Here we only mention that pre-
cisely these variables are responsible for the unified gravity
DM and DE. Without loss of generality, LG may generically
be decomposed into three parts depending on the appearance
of the derivatives of metric:

LG = Lg(∂λgμν) + �K (∂λgμν, Qa) − V (Qa). (2)

An additional dependence directly on gμν to ensure GC is
tacitly allowed, too. The part Lg is a Lagrangian of the pure
metric gravity, with �K and V meaning, respectively, the
hard/kinetic and soft/potential admixtures to the pure metric
gravity. The order of the derivatives of Qa depends on the
context (see below). At that, the appearance of Qa without
derivatives is forbidden due to the assumed shift symme-
try Qa → Qa + Ca , with the arbitrary constants Ca . The

4 Accordingly, in d space-time dimensions there should occur d-plet-
metric gravity.
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more tightly localized kinetic contributions are to be associ-
ated with the gravity DM, while the more loosely distributed
potential ones with the gravity DE, roughly in compliance
with their observational abilities to the spatial clusterization.
The gravity DE and DM may thus be treated as the two facets
of a single dark substance (DS), with the phenomenon of the
unified origin of such a DS due to the common Qa referred
to as the dark unification. Besides, after choosing a classical
background and expanding the fields around the background,
the scalar-quartet admixtures result in the appearance of the
extra gravity degrees of freedom (d.o.f.’s) presenting the DS
particles. We consider the various contributions to LG in
more detail.

2.2 Pure metric gravity

Similarly to the plain GR, one may take for the pure metric
gravity the minimal GC Lagrangian of the second order in
the derivatives of metric:

Lg = −κ2
g

2
R. (3)

Here R is the Ricci curvature scalar, κg = 1/(8πG N )1/2

the reduced Planck mass and G N the Newton constant. In
what follows, we put κg = 1. A GR modification, with a
GC Lg dependent only on metric, e.g., f (R), is a priori con-
ceivable, too. The more crucial GR extensions are due to the
admixtures of Qa considered below.

2.3 Hard/kinetic extension

This kind of the GR extension is produced by the effective
operators of the second order in the metric derivatives, like-
wise Lg . Instead of the derivatives of metric, one may equiv-
alently use the Christoffel connection built of gμν :

	λ
μν = 1

2
gλκ(∂μgνκ + ∂νgμκ − ∂κ gμν), (4)

so that ∂νgμρ = gρλ	
λ
μν + gμλ	

λ
ρν . To preserve GC, the

kinetic effective Lagrangian �K should depend on the dif-
ference of 	λ

μν and an auxiliary affine connection γ λ
μν (for

simplicity, symmetric) [12]:

Bλ
μν = 	λ

μν − γ λ
μν. (5)

Such an auxiliary connection may minimally be taken as
follows:

γ λ
μν = ∂2 Qa

∂xμ∂xν

∂xλ

∂ Qa

∣∣∣∣
Qa=Qa(x)

≡ Qλ
a∂μQa

ν , (6)

where Qa
μ ≡ ∂ Qa/∂xμ and Qμ

a ≡ ∂xμ/∂ Qa |Qa=Qa(x),
with Q ≡ det(∂ Qa/∂xμ) �= 0 or ∞ for the invertibility,
xμ = xμ(Qa). It is the latter requirement which picks out
Qa from other conceivable scalar fields. Assign to the extra

variables Qa the dimension of length and the meaning as
follows. Namely, assume that the vacuum is a kind of a phys-
ical medium modeled (ideally) by an affine-connected (i.e.,
possessing by an affine connection) manifold endowed with
the absolute/affine (i.e., defined modulo the Lorentz transfor-
mations and translations) coordinates Qa . At that, the con-
ventional GR deals only with the relative/observer’s coor-
dinates xμ undergoing the arbitrary (continuous) transfor-
mations among themselves.5 The quantities qα ≡ δα

a Qa ,
insuring γ

γ
αβ(q) ≡ 0, define the distinguished observer’s

coordinates coinciding with Qa . With respect to the arbi-
trary xμ, the distinguished qα are the dynamical quantities,
with Qα

μ = ∂qα/∂xμ and Qμ
α = ∂xμ/∂qα|qα=qα(x) being

the frames relating these coordinates. In reality, the vacuum
may have singularities, with the transition between the two
kinds of coordinates being singular on a set of points (includ-
ing, generally, the infinity). The extension of the set of the
dynamical variables beyond the metric is tamed eventually
by the expansion of the general gauge invariance/relativity
onto the whole this set, leaving the total number of the inde-
pendent field variables still equal to ten (as in the metric
alone).

In the presence of Qa , one may substitute a non-metrical
affine connection γ λ

μν by a Christoffel one, γ λ
μν = 	λ

μν(γκρ),
similarly to (4). It corresponds to an auxiliary metric (the
affine metric):

γμν = Qa
μQb

νηab, (7)

with the inverse γ μν = Qμ
a Qν

bη
ab, and γ ≡ det(γμν) =

−Q2 �= 0 or ∞ for the invertibility. By this token, for-
mally Qa

μ = γμλη
ab Qλ

b and γμν = γμκγμλγ
κλ. In the dis-

tinguished coordinates qα , the affine metric coincides with
the Minkowski symbol, γαβ = ηαβ (simultaneously with
γ

γ
αβ = 0).6

Being given by the difference between the similarly trans-
formed quantities, the field Bλ

μν is a true tensor and, as such,
may serve to construct a GC scalar Lagrangian. Introducing
a complete set of the independent partial kinetic operators,
bilinear in Bλ

μν :

K1 = gμν Bκ
μκ Bλ

νλ, K2 = gμνgκλgρσ Bμ
κλBν

ρσ ,

K3 = gμν Bκ
μν Bλ

κλ, K4 = gμνgκλgρσ Bμ
κρ Bν

λσ ,

K5 = gμν Bλ
μκ Bκ

νλ, (8)

5 In a sense, it is proposed here a merging, at a next level, of the New-
tonian and GR approaches to gravity and space-time.
6 Stress that QMG is basically a one-metric theory. Using the affine
metric γμν , instead of Qa , is not obligatory, though technically conve-
nient and geometrically clarifying.

123



215 Page 4 of 10 Eur. Phys. J. C (2016) 76 :215

decompose �K as

�K = 1

2

5∑
p=1

εp K p, (9)

with some free parameters εp, p = 1, . . . , 5, presumably
small, |εp| � 1. The two more second-derivative terms lin-
ear in Bλ

μν , gμν∇λBλ
μν and gμν∇μ Bλ

νλ, with ∇λ a covariant
derivative, are omitted due to the imposed invariance under
the reflection Bλ

μν → −Bλ
μν . This is the fully dynamical

GR development of a semi-dynamical approach, the latter
based on the explicit GR violation and a nondynamical γ̂ λ

μν

[12].

2.4 Soft/potential extension

Such a GR extension, implementing the BEH mechanism
for gravity, is produced by the effective operators, poten-
tials, containing metric only without derivatives. To this end,
take as the scalar fields the (dimensionless) SO(1, 3) decou-
plet [16]

�ab = gμν Qa
μQb

ν (10)

incorporating the singlet

� = ηab�
ab = γμνgμν. (11)

Substitute them equivalently by

�̃ab ≡ �ab − 1

4
ηab�,

�0 ≡ � − 4, (12)

so that �̃ ≡ ηab�̃
ab = 0. We supplement �0 by one more

(dimensionless) scalar field

σ =−1

2
ln | det(�ab)|= ln

√−g/|Q|= ln
√−g/

√−γ . (13)

The latter field is precisely the one used previously for the
scalar graviton/systolon [7–10]. The fields �̃ab, �0 and σ

prove to be homogeneous linear in the weak metric field in LA
(see below) and are thus suitable for building a perturbative
potential without a cosmological constant. The latter may be
added, if desired, explicitly. Without loss of generality, the
potential may be presented as follows:

V = 1

8
m2

t

(
�̃ab�̃ab − 3

4
�2

0

)
+ 1

8
m2

0�
2
0

± 1

4
m2

x�0σ + 1

2
m2

σ σ 2 + �V (�̃ab, �0, σ ), (14)

with mt , m0, mx and mσ some mass parameters, and �V a
rest of the potential comprising the higher degrees of �̃ab,
�0 and σ . The particular form of the first term of V and the
meaning of the parameters are to be justified by the compli-
ance with the Fierz–Pauli LA Lagrangian (see below). The
putative terms dependent only on γμν , such as R(γμν), are

absent due to the affine flatness of the space-time manifold,
with γμν reducing in the distinguished coordinates qα to the
Minkowskian ηαβ , hence R(γμν) = 0.

2.5 General diffeomorphism invariance

Ultimately, the independent variables of the theory are gμν

and Qa . The Lie derivatives, defining the dynamical/active
field transformations corresponding to the change of coordi-
nates Dξ xλ = −ξλ, with ξλ an arbitrary shift vector, are as
follows:

Dξ Qa = ξλ∂λQa ≡ ξλQa
λ,

Dξ Qa
μ = ∂μDξ Qa = Qa

λ∂μξλ + ξλ∂λQa
μ,

Dξ Qμ
a = −Qλ

a∂λξ
μ + ξλ∂λQμ

a ,

Dξ gμν = gμλ∂νξ
λ + gνλ∂μξλ + ξλ∂λgμν,

Dξ gμν = −gμλ∂λξ
ν − gνλ∂λξ

μ + ξλ∂λgμν (15)

(and similarly for γμν and γ μν). Henceforth, one can get the
Lie derivatives of other quantities, e.g.,

Dξ

√−g = ∂λ(
√−gξλ) (16)

(and similarly for
√−γ ), with σ transforming thus as a scalar

(as it should):

Dξ σ = ξλ∂λσ. (17)

The same concerns the scalars �ab and �. The Lie derivative
of any quantity may explicitly be expressed in a tensor form
through replacing ∂μ by a covariant derivative ∇μ. In partic-
ular, one gets Dξ gμν = ∇μξν + ∇νξμ, where ∇λgμν = 0
and ξμ = gμλξ

λ, etc. Due to GC, the full nonlinear theory, as
containing only the dynamical fields, is automatically gauge
invariant under the general diffeomorphisms (GDiff’s).7 The
latter ones reduce the number of the independent field com-
ponents in LG up to ten (vs. six in GR). To account for the
gauge degeneracy, a gauge fixing Lagrangian, L F , appropri-
ate for the problem at hand, is to be added. In particular, one
may impose the same gauge conditions on the metric alone
as in GR.

2.6 Extended classical field equations

Supplementing the gravity Lagrangian LG by the ordinary
matter one, Lm , and varying the total action with respect to

7 This is what distinguishes the fully dynamical theory from a semi-
dynamical model, where a residual gauge invariance/relativity is deter-
mined, under GC, through fixing the nondynamical fields [10].
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δgκλ and δQa (δQa
μ = ∇μδQa), so that, in particular,

δ�ab = Qa
κ Qb

λδgκλ + 2gκλQa
κδQb

λ,

δ� = ηabδ�
ab = γκλδgκλ + gκλδγκλ,

δγκλ = ηab(Qa
κδQb

λ + Qa
λδQb

κ),

δ
√−γ = (1/2)

√−γ γ κλδγκλ

δ
√−g = −(1/2)

√−ggκλδgκλ,

δσ = δ
√−g/

√−g − δ
√−γ /

√−γ , (18)

with δgμν = −gμκ gνλδgκλ (and similarly for γμν), one gets
a pair of the coupled classical FE’s for QMG in a generic
form as follows:

Gμν ≡ Rμν − 1

2
Rgμν = T K

μν + T V
μν + T m

μν

≡ T D
μν + T m

μν,

∇κ(�K κλQa
λ) = ∇κ

((
∂V

∂�cb
gκληca

−
(

1

2

∂V

∂σ
γ κλ + ∂Lm

∂γκλ

)
δa

b

)
Qb

λ

)
, (19)

where �K κλ ≡ δ�K/δγκλ, with δ/δγκλ a total variational
derivative with respect to γκλ. The variables �̃ab and �0

are assumed to be expressed through �ab. The l.h.s.’s of
FE’s depend on the second derivatives of metric, while the
r.h.s.’s only on the first derivatives. In the spirit of DM, Lm

is assumed to depend on Qa (if any) exclusively through
γκλ, without its derivatives. To eliminate the gauge ambigu-
ity, in solving FE’s one should first fix the coordinates by
imposing an appropriate gauge condition, which will tacitly
be understood. In reality, fixing the coordinate to maximally
simplify the metric FE’s proves to be the most appropriate.8

The l.h.s. in the upper line of (19) is the gravity tensor Gμν

due to Lg , with T D
μν ≡ �T K

μν + T V
μν in the r.h.s. treated as

the energy-momentum tensor of DS. This is, in essence, the
raison d’être for associating the admixtures due to Qa with
DS. The kinetic contribution to T D

μν is

�T K
μν ≡ 1

2

5∑
p=1

εpT K
p μν (20)

where T K
p μν are the partial contributions due to K p:

T K
p μν = 2√−g

δ
(√−gK p

)
δgμν

, (21)

with δ/δgμν designating a total variational derivative with
respect to gμν . A similar expression holds for the canonical

8 On the contrary, choosing the distinguished coordinates qα , super-
ficially convenient, one would lose such a freedom of simplifying the
metric FE’s, what proves to be crucial in looking for the explicit solu-
tions.

energy-momentum tensor T m
μν of the ordinary matter. Like-

wise, the potential contribution to T D
μν is

T V
μν = −2

∂V

∂�ab
Qa

μQb
ν +

(
∂V

∂σ
+ V

)
gμν. (22)

In particular, a nonzero constant part of V would correspond
to a cosmological term. Due to the reduced Bianchi identity,
∇μG μν = 0, the total energy-momentum tensor, Tμν , should
be covariantly conserved:

∇μT μν ≡ ∇μ(T μν
m + T μν

D ) = 0. (23)

Assuming Lm to be independent of Qa , one conventionally
gets with account for the ordinary matter FE’s that ∇μT μν

m =
0. In this case (or in the case of matter vacuum), the DS
contribution should separately be covariantly conserved.

The system of FE’s (19) presents the essence of the fully
dynamical theory. Namely, it may be said that (19) deter-
mines in a self-consistent manner a two-level structure of the
space-time manifold: a basic affine structure and a fine metric
one. The first line of FE’s (19), obtained by varying only gμν ,
remains the same independently of whether Qa are dynami-
cal or not. Thus the first equation (19), determining a metric
structure at a given affine one, is unchanged compared to the
semi-dynamical model. The second equation acts vice versa,
determining the back reaction of the metric structure on the
affine one. At the very least, a self-consistent solution may
be looked for by means of the consecutive approximations
starting from a putative solution (under convergence of the
procedure). The account for the full dynamics should restrict
a prior freedom of choosing an otherwise arbitrary nondy-
namical background in the semi-dynamical approach. For a
special case, this is worked out below.

2.7 Minimal extension

As a minimal kinetic contribution to the quartet GR exten-
sion, one may consider the operator

K1 = gμν∂μ ln

√−g

|Q| ∂ν ln

√−g

|Q| (24)

where |Q| ≡ | det(Qa
μ)| = √−γ . This restricted case

presents a fully dynamical generalization of the semi-
dynamical model for the scalar-graviton/systolon DM, with a
nondynamical γ̂ and the explicit GR violation [7–10]. Under
the GR extension exclusively through K1(σ ) and V (σ ),
there is a parity between the numbers of the independent
variables in the full nonlinear theory and in its LA, both
being seven (see below). The quartet enters only through√−γ = |Q|, irrespective of gμν . Under the metric varia-
tion, γ thus remains unvaried. Hence the scalar-graviton part
of the metric FE’s in vacuum, obtained previously in the
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semi-dynamical model [9,10],

ε1∇κ∇κσ + ∂V/∂σ = �0e−σ , (25)

remains unchanged. In the above, �0 is an integration con-
stant arising due to the reduced Bianchi identity. To restrict
himself by a conventionally adopted scalar field σ decaying
at the spatial infinity, one should put �0 = 0. On the other
hand, with K1 dependent on Qa exclusively through σ , the
quartet part of FE’s in vacuum becomes as follows:

∇λ

(
(ε1∇κ∇κσ + ∂V/∂σ)Qλ

a

) = 0. (26)

Combining the two equations one gets the consistency con-
dition:

�0∇λ(e
−σ Qλ

a) = (�0/
√−g)∂λ(

√−ge−σ Qλ
a) = 0. (27)

Several static spherically symmetric solutions of the metric
part of FE’s at V = 0 in the semi-dynamical model are
presented in [10]. Their prolongation to the fully dynamical
theory is as follows.

2.7.1 Compact cosmic objects

Let first �0 = 0. In this case, Qa remains still unrestricted
except for a singular in the spatial origin |det(Qa

μ)| = √−γ .
The latter is given through metric and σ by an exact solu-
tion to the first part of FE’s (19) under the regular at the
spatial infinity boundary conditions, similarly to the semi-
dynamical model. The proper affine structure can be chosen
to be δ-wise flat (i.e., flat with exclusion of the time-like line
spreading through the spatial origin).9 Hence, a wide class
of the compact cosmic objects, filled with the scalar gravi-
tons/systolons as DM, found in the semi-dynamical model
remains still appropriate in the fully dynamical theory. In
distinction with the BH’s of GR, these objects are allowed
even in the absence of the ordinary matter, being caused by
singularities of the space-time itself (henceforth we call this a
dark fracture (DF) [10]). Modifying BH’s of GR, DF’s may
possess by a quite different structure of the event horizon.
Note that DF’s can still be mimicked by BH’s of GR with
a (massless) scalar field (though of unknown nature). One
more kind of the cosmic objects in vacuum peculiar, as DF’s,
exclusively to QMG (and to its semi-dynamical counterpart)
is as follows.

2.7.2 Extended cosmic objects

Let now �0 �= 0. This case corresponds to the extended
cosmic objects in the vacuum, the dark halos (DH’s), peculiar
exclusively to QMG (or to its semi-dynamical counterpart).
Under a regular boundary condition in the spatial origin, γ is

9 Conceivably, this ambiguity may be eliminated by treating DF’s as a
limiting case of the more general cosmic objects (see below).

determined in the chosen (due to fixing a gauge for metric)
observer’s coordinates xμ from the first part of FE’s (19) by
the metric and σ , as in the semi-dynamical model [9,10]. In
view of (13), e−σ = √−γ /

√−g, Eq. (27) gives

∂λ(
√−γ Qλ

a) = 0, (28)

with the metric gμν falling off. We consider the static spheri-
cally symmetric solutions to the metric FE’s, with γ = γ (r),
r the distance from the origin. Transforming the expressions
from the original coordinates xμ = (x0, xm), m = 1, 2, 3,
to the distinguished ones qα = (q0, qm), given by q0 =√−γ x0, qm = xm , wherein γ = −1, one gets the solution
Qa = δa

αqα , implying in the previously fixed coordinates xμ

the scalar quartet Qa = (Q(0), Q A):

Q(0) = √−γ x0, Q A = δA
k xk, (29)

where A = 1, 2, 3. For ∂μQa ≡ Qa
μ = (Q(0)

μ , Q A
μ) one thus

gets

Q(0)
0 = √−γ , Q(0)

m = −γ ′

2
√−γ

x0nm,

Q A
0 = 0, Q A

m = δA
m, (30)

and then for its inverse Qμ
a = (Qμ

(0), Qμ
A):

Q0
(0) = 1√−γ

, Qm
(0) = 0,

Q0
A = −γ ′

2γ
x0δk

Ank, Qm
A = δm

A , (31)

where γ ′ = dγ /dr , nm = xm/r and nm = δmknk .
Equation (28) is satisfied, indeed. The affine metric γμν =
Qa

μQb
νηab in the original coordinates is as follows:

γ00 = −γ, γm0 = γ0m = −1

2
γ ′x0nm,

γml = −δml − 1

4γ
γ ′2(x0)2nmnl (32)

with det(γμν) = γ (r), indeed. In line with γ , this met-
ric is irregular at the spatial infinity. In the arbitrary xμ,
all this fields correspond to Qa obtained according to the
transformation law for scalars. Clearly, in the distinguished
coordinates qα , where γ = −1, the affine metric reduces
to γαβ = ηαβ , the Minkowski symbol, with γ

γ
αβ = 0. The

DH space-time possesses thus by the flat affine structure as
the pseudo-Euclidean space-time, but, in distinction with the
latter, by a non-flat metric structure. The principal differ-
ence between the two space-times is due to a singularity of
DH’s at the spatial infinity. The metric structure, obtained
in the semi-dynamical model, remains still valid (supple-
mented by the proper affine structure) in the fully dynami-
cal theory. Hence, all the properties of the galaxy soft-core
DH’s, built exclusively of the scalar gravitons/systolons as
DM, arrived at previously, remain in force. With account
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for the asymptotic 1/r -behavior of the attractive force in
DH’s [9,10], the latter ones constitute the separate asymp-
totically confined “mini-universes” (in neglect by the edge
effects).

2.7.3 Compact-extended cosmic objects

At �0 �= 0, there exist the (approximate) vacuum solutions
to the extended FE’s, singular in the spatial origin and at the
spatial infinity, and possessing, conceivably, by a δ-wise flat
affine structure. These solutions present very peculiar cosmic
objects, the dark lacunas (DL’s) [10], with the compact cores
and extended tails, interpolating between DF’s and DH’s.
Having DF’s in their origin, DL’s could model the galax-
ies (poor of the ordinary matter). Studying such the cosmic
objects (and their matter, rotation and other modifications)
to model the real galaxies could present a future challenge
for QMG.

3 Weak-field limit

3.1 Weak-field expansion

The physics content of a nonlinear field theory, as the quan-
tum one, is reflected by its WF limit. To this end, considering
the expansion around some backgrounds ḡμν and Q̂a , with
gμν ≡ ḡμν + hμν and Qa ≡ Q̂a + χa , one gets up to the
first order in the deviations

gμν ≡ ḡμν − hμν = ḡμν − ḡμκ ḡνλhκλ,

Qa
μ = Q̂a

μ + ∂μχa, Qμ
a = Q̂μ

a − ηabγ̂
μλ∂λχ

b, (33)

with Q̂a
μ = ∂μ Q̂a , Q̂μ

a the inverse to Q̂a
μ, γ̂ μν = Q̂μ

a Q̂ν
bη

ab,
and |hμν |, |χa | � 1. By default, the indices in the WF limit
are raised and lowered by ḡμν and ḡμν , respectively, unless
stated otherwise. The parts Q̂a and χa may be associated with
a mean value and the fluctuations of the absolute/affine coor-
dinates Qa (or thus the distinguished qα = δα

a Qa) relative
to the smoothed observer’s ones xμ. The latter coordinates
are assumed to be fixed by a suitable gauge condition. Ulti-
mately, Q̂a and χa determine, respectively, the classical and
quantum manifestations of DS. In terms of these, one has

�ab = Q̂a
κ Q̂b

λ(ḡ
κλ − hκλ)+ ḡκλ(Q̂a

κ∂λχ
b+ Q̂b

κ∂λχ
a). (34)

To clarify the space-time structure of the WF theory in a GC
form it is more appropriate to deal exclusively with the space-
time notation. To this end, introducing χμ ≡ Q̂μ

a χa (χa =
Q̂a

κχκ ) one gets for �μν ≡ Q̂μ
a Q̂ν

b�
ab (�ab = Q̂a

κ Q̂b
λ�

κλ):

�μν = ḡμν − hμν + ḡμλ∇̂λχ
ν + ḡνλ∇̂λχ

μ, (35)

where

∇̂λχ
μ ≡ (δμ

κ ∂λ + Q̂μ
a ∂λ Q̂a

κ)χκ (36)

is nothing but a covariant derivative with respect to γ̂μν , so
that ∇̂λγ̂μν = 0 (but not for ḡμν). Similarly, for

γμν = Q̂a
μ Q̂b

νηab + (Q̂a
μ∂νχ

b + Q̂a
ν∂μχb)ηab (37)

one gets

γμν = γ̂μν + γ̂μλ∇̂νχ
λ + γ̂νλ∇̂μχλ, (38)

where γ̂μν = Q̂a
μ Q̂b

νηab, with γ̂ μν = Q̂μ
a Q̂ν

bη
ab being its

inverse.

3.2 BEH mechanism for extended gravity

Now, consider some arbitrary backgrounds ḡμν and Q̂a (or,
equivalently, γ̂μν) with the coordinates fixed by a back-
ground gauge condition. Under the additional infinitesi-
mal coordinate transformations through an arbitrary gauge
parameter ζ λ, Dζ xλ = −ζ λ, leaving by construction the
backgrounds invariant, one can find from (15) and (33) for
hμν = ḡμκ ḡνλhκλ and χμ the ensuing gauge transformations

Dζ hμν = ∇̄μζν + ∇̄νζμ,

Dζ χ
μ = ζμ. (39)

Here ζμ = ḡμλζ
λ and ∇̄λ is a covariant derivative with

respect to ḡμν , so that ∇̄λḡμν = 0 (but not for γ̂μν). Fix-
ing further the particular gauge ζ λ = −χλ one arrives at the
quartet field disappearance:

χμ → χ ′μ = 0, (40)

in favor of the metric field redefinition:

hμν → h′
μν = hμν − (ḡμλ∇̄νχ

λ + ḡνλ∇̂μχλ),

h → h′ ≡ ḡμνh′
μν = h − 2∇̄λχ

λ. (41)

It follows henceforth that after such transformations the
whole Lagrangian LG (and, in particular, Lg) gets dependent
only on h′

μν . Due to γμν → γ̂μν , the fully dynamical theory
in the WF limit reduces thus to the semi-dynamical model,
with the redefined metric field h′

μν and the given nondynami-
cal affine connection γ̂ λ

μν(γ̂κλ). In particular, presenting σ as

σ = −1

2
ln | det(�μν)Q̂2| (42)

one gets

σ = ln
√−ḡ/

√
−γ̂ + 1

2
h′, (43)

as in the minimal semi-dynamical model, with ḡ ≡ det(ḡμν)

and γ̂ ≡det(γ̂μν)=−Q̂2. The similar consideration remains
true with account for a matter Lagrangian, Lm .
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This presents an implementation of the BEH mechanism
for the extended gravity: the gauge ζ λ = −χλ totally absorbs
χλ in favor of the four additional gravity d.o.f.’s contained in
h′

μν , chosen as a new dynamical variable. Due to the gauge
invariance, the WF theory in an arbitrary gauge, a WF rem-
nant of L F , still describes the same ten d.o.f.’s (the six tensor
ones originating ultimately from the metric field hμν) and
the four scalar and vector ones (originating from the quar-
tet χμ) incorporating, possibly, the ghosts. Further clarify-
ing the nature of these d.o.f.’s (propagating or not, ghost or
not) depends on a residual gauge invariance/relativity deter-
mined, in turn, by the Lagrangian parameters. This question
is addressed below.

3.3 Linearized approximation

Consider now the simplest version of the WF theory, when the
metric and quartet backgrounds are globally flat, presenting
evidently a solution to the vacuum FE’s. At least, this can
be treated as an approximation, in neglect by the space-time
curvature, in a region around a nonsingular space-time point.
Moreover, choose the distinguished observer’s coordinates
for the background, q̂α = δα

a Q̂a (Q̂a = δa
αq̂α), where there

simultaneously is fulfilled

Q̂a
α = ∂α Q̂a = δa

α, ḡαβ = γ̂αβ = ηαβ, (44)

with ηαβ the Minkowski symbol, by means of which the
indices are operated upon. In view of �αβ = ηαβ − h′αβ ,
where

h′
αβ = hαβ − (∂αχβ + ∂βχα),

h′ ≡ ηαβh′
αβ = h − 2∂γ χγ , (45)

it follows that

�̃αβ = −(h′αβ − 1

4
ηαβh′),

�0 = −h′, σ = 1

2
h′. (46)

Note that h′
αβ remains invariant under the gauge transfor-

mations (39), while χα disappears at ζ α = −χα . Due to
	̄

γ
αβ = γ̂

γ
αβ = 0, one also gets

Bγ
αβ = 1

2
ηγ δ(∂αh′

βδ + ∂βh′
αδ − ∂δh′

αβ). (47)

Under the requirement of the two background connections
being zero, the (nonlinear) WF limit is nothing but LA.

We choose a complete (up to the total derivatives) set of the
second-order partial kinetic operators in an obvious notation
as follows:

Kt = (∂γ h′
αβ)2, Ks = (∂αh′)2,

Kv = (∂βh′
αβ)2, Kx = ∂αh′

αβ∂βh′. (48)

Expanding the Lagrangian up to the second order in the rede-
fined metric field and eliminating Kt in favor of Lg one gets

LG = (1 + εt )Lg + �Kvs

−1

8
m2

t

(
(h′

αβ)2 − h′2) − 1

8
m2

s h′2, (49)

where

m2
s ≡ m2

0 ∓ m2
x + m2

σ (50)

and

Lg = 1

8
(Kt − 2Kv + 2Kx − Ks),

�Kvs = 1

8
(εv Kv + εx Kx + εs Ks). (51)

In what follows, we will intently preserve the primes to stress
that the metric field at hand is the redefined one, absorb-
ing χα .

The five-to-four projection for the partial constants is as
follows:

εt = 3ε4 − ε5, εv = 4(ε2 + ε4),

εx = −2(ε2 − ε3 + 3ε4 − ε5),

εs = ε1 + ε2 − ε3 + 3ε4 − ε5. (52)

Inverting, one gets

ε1 = εs + 1

2
εx , ε2 = 1

4
εv − λ,

ε3 = 1

4
εv + 1

2
εx + εt − λ, ε4 = λ,

ε5 = −εt + 3λ, (53)

where λ is a small arbitrary parameter. The latter may equiv-
alently be redefined in favor of a linear combination of itself
and εv , εx , and εt . The presence of such an undetermined
parameter results in the partial decoupling of the full non-
linear theory and its WF limit, allowing one, in principle, to
vary the former under choosing the latter. Clearly, the pair
(ε1, εs) constitutes a closed uniquely invertible subset of all
the parameters, with the pure-scalar operator K1 being in this
sense special. Its minimal modification without changing LA
may be obtained by adding in the full nonlinear theory the
terms proportional to λ.

Though after choosing the gauge ζ α = −χα the coordi-
nates in LA are already fixed leaving, generally, the ten inde-
pendent variables h′

μν , LG may still possess in LA a resid-
ual gauge invariance further reducing the number of d.o.f.’s.
Namely, under the Diff’s

Dϕh′
αβ = ∂αϕβ + ∂βϕα, Dϕh′ = 2∂γ ϕγ , (54)
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one gets (up to total derivatives)

Dϕ Kt = −2(∂αϕβ + ∂βϕα)∂2h′αβ,

Dϕ Kv = −(∂αϕβ + ∂βϕα)∂2h′αβ − ∂γ ϕγ ∂α∂βh′αβ,

Dϕ Kx = −∂γ ϕγ (∂2h′ + ∂α∂βh′αβ),

Dϕ Ks = −2∂γ ϕγ ∂2h′, (55)

where ∂2 ≡ ηαβ∂α∂β , as well as

Dϕ(h′
αβ)2 = 2(∂αϕβ + ∂βϕα)h′αβ,

Dϕh′2 = 4∂γ ϕγ h′. (56)

It follows henceforth that Lg is by the very construction
GDiff-invariant, Dϕ Lg = 0, whereas the rest of LG (49)
is always GDiff-variant. Most generally thus, LA possesses
no residual Diff’s. Inclusion of the four scalar components
in the original Lagrangian results in LA in the four more
gravity d.o.f.’s. With no residual Diff’s, all the ten d.o.f.’s
are thus propagating. This may cause some theoretical prob-
lems related with the appearance of the ghost vector graviton,
e.g., the classical instabilities [6]. To abandon this, one may
impose ab initio some restrictions on the parameters of LG ,
discussed below.

3.4 Residual transverse-diffeomorphism invariance

To consistently exclude the vector graviton let us require

εv = 4(ε2 + ε4) = 0, mt = 0. (57)

While the first requirement is necessary, the appearance of
the second one is, in a sense, sufficient (see, later on).10 The
Lagrangian in LA now becomes

LG = (1 + εt )Lg + �Ks − 1

8
m2

s h′2,

�Ks = 1

8
(ε̃x Kx + ε̃s Ks), (58)

with the same εt , and the reduced partial constants as follows:

ε̃x = 2(ε3 − 2ε4 + ε5),

ε̃s = ε1 − (ε3 − 2ε4 + ε5). (59)

It follows from (55) that the residual gauge symmetry of LG

in LA increases under such the constraints from the no-Diff
case up to the three-parameter TDiff:

TDiff : ∂γ ϕγ = 0. (60)

The two constraints (57) select the most general theory pos-
sessing in LA by no explicit problems. On the one hand, the
constraints result in the appearance of TDiff. On the other
hand, TDiff ensures these constraints to be natural in the ’t
Hooft’s sense of increasing the residual symmetry. Due to

10 Moreover, under ms �= 0, imposed from the DS considerations, the
simultaneous fulfillment of mt �= 0 may result in ghosts [6].

the increased symmetry, such constraints may survive under
the radiative corrections.11

Under TDiff, to remove in LA the arising gauge ambiguity
one should impose on h′

αβ at the classical level an extra gauge
condition, e.g., [3,4]:

∂α∂γ h′
βγ − ∂β∂γ h′

αγ = 0. (61)

Decomposing h′
αβ as

h′
αβ = h̃′

αβ + 1

4
ηαβh′, (62)

with h̃′ ≡ ηαβ h̃′
αβ = 0, one sees that h′ is unrestricted

by the gauge condition. Moreover, the condition implies
∂γ h̃′

αγ = ∂α f̃ , with f̃ an arbitrary scalar function, indicating

the fulfillment of just three independent restrictions on h̃′
αβ .

At the quantum level, one should add in LA the respective
gauge fixing Lagrangian

L F = α(∂α∂γ h′
βγ − ∂β∂γ h′

αγ )2, (63)

with α a dimensionless gauge parameter. At α → ∞, L F

ensures the classical restriction (61).12 The gauge fixing
Lagrangian additionally eliminates out of LG in LA three
d.o.f.’s leaving seven independent ones, compared to ten
under no-Diff and six under GDiff (realized at ε̃x = ε̃s = 0).
The three further gravity components, the vector ones, will
appear only beyond LA. But having no quadratic propagator
they will just modify the higher-order vertices by means of
the contact interactions.13

While the most general natural TDiff case with ε̃x �= 0
deserves special consideration, let for simplicity ε̃x = 0,
resulting in ε̃s = ε1. This implies one more restriction, ε3 −
2ε4 + ε5 = 0, on the Lagrangian parameters. However, not
increasing the symmetry such a restriction is not natural in
the ’t Hooft’s sense. In the minimal case, one gets

LG = (1 + εt )Lg + 1

2
(∂ας)2 − 1

2
M2

s ς2, (64)

where we have introduced a (dimensionful) physical sys-
tolon field ς ≡ κsh′/2, κs ≡ ε

1/2
1 κg (κg = 1), with a

physical mass Ms ≡ msκg/κs = ms/ε
1/2
1 . Such a partic-

ular case presents a consistent quantum field theory, uni-
tary and free of ghosts [3–5]. It describes the massless
two-component transverse-tensor graviton and its massive
scalar counterpart. Neglecting ms , one can estimate from the

11 Except if TDiff is broken dynamically back to the no-Diff case, with
εv �= 0 and mt �= 0 reappearing due to the quantum effects.
12 For a higher-derivative Lorentz-symmetric gauge, cf. [6]. Alter-
natively, to eliminate just three vector components, not touching the
scalar one, there could to used a Lorentz-non-symmetric gauge. Due
to the residual gauge invariance this should not violate the Lorentz
symmetry.
13 Such an extra linear gauge is an artifact of LA with TDiff. In a general
case, with all the ten d.o.f.’s in play, this gauge should be abandoned.
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anomalous asymptotic rotation velocities in galaxies, v∞,
that ε

1/2
1 ∼ v∞/c ∼ 10−3 [9,10]. It is seen that the limit

ε1 → 0 at a finite mass parameter ms would correspond to
a non-propagating heavy systolon ς , with its physical mass
Ms → ∞. Thus to account for ms �= 0 could be of impor-
tance.

Altogether, the minimal version of QMG given by the
two independent parameters ε1 > 0 and ms �= 0, in prin-
ciple, suffices to encompass both the gravity DM and DE.
The account for ε3 �= 0, resulting, in particular, in the kinetic
mixing ε̃x = 2ε3, would extend the range of the phenomeno-
logical possibilities. Though the tensor gravity in LA remains
the same as for GR (up to the overall normalization), the
additional account for ε4, ε5 �= 0 in the different combi-
nations (under ε2 = −ε4) would modify the tensor gravity
in the full nonlinear theory beyond GR, extending thus the
observational possibilities for DS even further. Finally, the
assumption for εv �= 0 (ε2 �= −ε4) would ruin the residual
Diff invariance in LA up to the no-Diff case (being problem-
atic, as was mentioned). In this case, the number of propa-
gating d.o.f.’s in LA equals ten, the vector part of them being
ghosts.14

4 Conclusion

The consideration given shows that the quartet-metric (QM)
GR (or, otherwise, QMG) may well serve as the theory of
the unified gravitational DM and DE (the gravity DS). Under
the natural (in the ’t Hooft’s sense) restriction on the param-
eters, the theory in LA, being unitary and free of ghosts, as
well as the classical instabilities, consistently comprises the
massless tensor graviton and its massive scalar counterpart,
the systolon, as the DS particle. The sufficient abundance
of the free parameters in the full nonlinear theory and the
partial decoupling of the latter from its WF limit noticeably
extend the prospects for the manifestations of the gravity DS
in the various phenomena at the drastically different scales.
Further theoretical study of the theory, as well as its obser-
vational verification/limitation, is urgent. Accounting as the
effective field theory of gravity beyond GR for the influence
of the vacuum, QM GR (under confirmation) could eventu-
ally pave the proper way toward a (more) fundamental theory
of gravity and space-time.

14 On the contrary, if only εt �= 0, then the residual gauge symmetry in
LA naturally increases up to GDiff, leaving just six propagating d.o.f.’s,
similarly to GR (though under a modified full nonlinear theory).
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