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Abstract In this paper, we investigate conformal Killing
vectors (CKVs) admitted by some plane symmetric space-
times. Ten conformal Killing’s equations and their general
forms of CKVs are derived along with their conformal fac-
tor. The existence of conformal Killing symmetry imposes
restrictions on the metric functions. The conditions impos-
ing restrictions on these metric functions are obtained as
a set of integrability conditions. Considering the cases of
time-like and inheriting CKVs, we obtain spacetimes admit-
ting plane conformal symmetry. Integrability conditions are
solved completely for some known non-conformally flat and
conformally flat classes of plane symmetric spacetimes. A
special vacuum plane symmetric spacetime is obtained, and
it is shown that for such a metric CKVs are just the homoth-
etic vectors (HVs). Among all the examples considered, there
exists only one case with a six dimensional algebra of special
CKVs admitting one proper CKV. In all other examples of
non-conformally flat metrics, no proper CKV is found and
CKVs are either HVs or Killing’s vectors (KVs). In each of
the three cases of conformally flat metrics, a fifteen dimen-
sional algebra of CKVs is obtained of which eight are proper
CKVs.

1 Introduction

The general theory of Relativity is governed by the highly
non-linear Einstein’s Field Equations (EFEs). Due to this
non-linearity, it is quite difficult to find exact solutions of
EFEs. A list of physically interesting exact solutions of
EFEs is documented in [1]. In order to understand an exist-
ing link between the structure of spacetime and the gravita-
tional interaction, exact solutions of EFEs can be classified
according to different symmetries possessed by the space-
time metrics representing them. In general Relativity, these
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spacetime symmetries are of interest because their existence
is directly related to the presence of conservation laws [2].
Apart from general Relativity, existence of conservation laws
are also of pivotal interest for all physical systems which are
expressed in terms of the invariance property of physical sys-
tems under a continuous symmetry. In particular, a physical
system admits energy conservation law if it is invariant under
time translation. An analogue of energy conservation law in
General Relativity is defined by the invariance property of
spacetime metric under a time translation. In Relativity, con-
servation laws determine physical characteristics possessed
by the solutions of the Einstein filed equations, which are
symmetries represented by vector fields associated with local
diffeomorphisms [3]. These symmetries represented by vec-
tor fields are associated with local diffeomorphisms that char-
acterize certain types of geometrical structures [3]. A KV is
an example of such symmetry and it preserves the spacetime
metric tensor. On the other hand, it is not always possible
to find conservation laws via KVs. In such cases, conformal
transformations are employed that may provide conservation
laws not given by KVs. Geometrically, these conformal trans-
formations leave the light cone structure and Maxwell’s law
of electromagnetic theory invariant. Conservation laws pro-
vided by conformal transformations are interpreted in terms
of existence of conformal conservation laws or conformal
KVs. As an example, we can consider the famous Friedman
metrics for which there does not exist a time translational
invariance giving well defined energy conservation law, it
does admit a conformal time translational invariance pro-
viding a conformal analogue of energy conservation. A set
of well-known symmetries may include HVs (along which
the metric tensor is preserved up to a constant scale factor),
CKVs (along which the metric tensor up to a conformal fac-
tor is preserved) and affine vectors (preserving geodesics as
well as affine parameter). Among these symmetries, consid-
erable interest is shown in conformal symmetry. Along the
null geodesics, conformal symmetry produces constant of
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motion for massless particles. Apart from their classification
by such symmetries, the solutions of EFEs are also catego-
rized according to Petrov types of the curvature and Segree
types of the energy-momentum tensor. A detailed study of
such a work is found in [1]. It is important to note that the
Lorentzian metrics with the plane symmetry can be of Petrov
type D or O [1].

In the past, the conformal symmetry was considered
merely a mathematical tool in integrating the EFEs and
its physical applications in cosmology and astrophysics
remained unnoticed [4]. Recently, some work has appeared
that explores the use of conformal symmetry in astrophysics
and cosmology. Chrobok et al. [5] made an assumption for
temperature vector to be a CKV in the theory of irreversible
thermodynamical processes and produced some interesting
results. Bohmer et al. [6] verified that the conformal factor
for conformally symmetric spacetime with non-static vec-
tor fields can be interpreted in terms of tangential veloc-
ity of the test particle moving in a circular orbit. Using an
assumption of spherical symmetry that admits one-parameter
group of conformal vector, Mak et al. found an exact solu-
tion describing the interior of a charged strange quark star [7].
Also Usmani and others, proposed an astrophysical model,
known as gravastar that admits a CKV [8]. In short, con-
formal symmetry has wide ranging applications, in under-
standing both physical as well as geometrical properties of
spacetime physics.

Whereas spacetime symmetries are mostly used in under-
standing the physics of Lorentzian geometries, a considerable
attention has also been given to studying Killing, homothetic
and conformal symmetries in ultra-hyperbolic geometry. In
a recent paper [9], all Killing’s symmetries in complex HH-
spaces with cosmological constant � are found. The explicit
complex metrics admitting null Killing vectors are inves-
tigated along with some Lorentzian and ultra-hyperbolic
slices of these metrics [10]. Chudecki studied the confor-
mal Killing’s equations and their integrability conditions for
expanding hyper-heavenly spaces with � in spinorial for-
malism [11]. Chudecki et al. also provide a detailed study of
proper CKVs in self-dual Einstein spaces [12].

As discussed above, the CKVs are motions along which
spacetime metric remains unchanged up to a scale factor. A
CKV is considered as a global smooth vector field V over
a manifold W, such that for smooth conformal function ψ :
W → � of V, the relation Ve;d = ψ ged + Ned holds, where
ged are metric tensor components and Ned = (−Nde) is the
bivector of V . Mathematically, this relation is given by:

L
V

ged = 2ψ ged , (1.1)

where L
V

represents Lie derivative along the vector field V and

ψ depends on the chosen coordinate system. In a coordinate
frame, Eq. (1.1) takes the simple form,

ged,s V s + gds V s
,e + ges V s

,d = 2ψ ged , (1.2)

where a comma in subscript represents partial derivative. If ψ

becomes constant, the vector V reduces to a HV and in case
ψ vanishes, the vector becomes KV. The maximum num-
ber of CKVs for conformally flat spacetimes are discussed
by Eisenhart [13] and Schouten [14]. Hall et al. published a
remarkable paper [15], proving that the maximum dimension
of CKV algebra in non-conformally flat spacetime is seven,
while for conformally flat spacetimes it is fifteen. Kramer
et al. considered certain assumptions (in relation with Lie
algebra) in terms of rigidly rotating stationary axisymmet-
ric perfect fluid spacetimes admitting CKVs and concluded
that under such restrictions EFEs do not have a solution
[16]. Maartens et al. obtained CKVs for both conformally
flat and non-conformally flat static spherically symmetric
spacetimes [17]. These results show that when the space-
time is non-conformally flat, it admits at most two proper
CKVs. In addition, they concluded that eleven proper CKVs
exist when the spacetime is conformally flat. Shabbir et
al., investigated CKVs admitted by Bianchi type VIII and
IX and spatially homogeneous rotating spacetimes [18,19].
They showed that spatially homogenous rotating spacetimes
do not admit proper CKVs. Considering Robertson-Walker
spacetime; Martens et al. obtained CKVs that are neither
normal nor tangent to spacelike homogeneous hypersurfaces
[20]. Moopanar and Maharaj investigated CKVs in non-static
spherically symmetric spacetimes [21]. Considering shear
free spherically symmetric spacetimes, Moopanar et al. gave
a complete discussion of conformal geometry without spec-
ifying the matter content [22]. Furthermore, Saifullah et al.
investigated conformal motions of plane symmetric static
spacetimes and found that no proper CKV exist when the
plane symmetric static spacetime is non-conformally flat
[23]. More recently, CKVs are also studied for different
spacetime metrics in teleparallel theory of gravitation, such
as static cylindrically symmetric, Bianchi type I and static
plane symmetric spacetimes [24–26].

In general relativity theory, CKVs have wide range of
applications. They play their role, not only at the geomet-
ric level, but also at the kinematics and dynamics levels [27].
Kinematic variables such as rotation, expansion and shear
can be studied under the assumption that a spacetime admit
CKVs. The CKVs help us in the investigation of such vari-
ables by imposing certain restrictions on them. These vari-
ables are then used to produce well known results, some of
which can be seen in [17,28,29]. Conformal Killing vectors
have an important role at dynamics level as well. Some phys-
ically plausible solutions of Einstein’s field equations have
been obtained in [30–33] under the assumption that the space-
time admit CKVs. At the geometric level it is well understood
that application of CKVs makes possible coordinate choice
to simplify the metric. This fact can be seen in [2,34]. The
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wide range applications of CKVs in astrophysics and cos-
mology (as discussed above) and at geometric, dynamics and
kinematic levels motivated us to explore the CKVs of plane
symmetric non static spacetimes. The results obtained in this
paper can further be applied to study the dynamical and kine-
matic properties of the spacetime under consideration.

This paper is organized as follows: In Sect. 2, we write ten
conformal Killing’s equations in a plane symmetric space-
time and derive a general form of CKV components and
the conformal factor ψ. In Sect. 3, we list conditions that
are imposed on the form of CKVs. These particular forms
include timelike and inheriting CKVs. Section 4 is devoted to
obtaining CKVs for certain plane symmetric spacetime met-
rics. In particular, Sect. 4.1 gives the method in which CKVs
are obtained in some special non-conformally flat plane sym-
metric spacetimes, while in Sect. 4.2, we show how CKVs
are obtained in some conformally flat plane symmetric space-
times. A brief summary and discussion of the results is given
in the last section.

2 General form of conformal killing equations and
conformal killing vector components

We take the most general line element of plane symmetric
spacetimes in its usual (t, x, y, z) coordinates as [1],

ds2 = −e2A(t,x)dt2 + e2C(t,x)dx2 + e2B(t,x)[dy2 + dz2],
(2.1)

where A, B and C are functions of t and x only. The metric
(2.1) admits a minimal set of three independent spatial KVs
given by ∂y, ∂z and z ∂y − y ∂z . In this minimal set the first
two KVs represent conservation of linear momentum along
‘y’ and ‘z’ directions, whereas the third represents conserva-
tion of angular momentum. In case the above metric becomes
static, it admits an additional timelike KV ∂t . Expanding Eq.
(1.2) with the help of Eq. (2.1), we have the following system
of ten coupled partial differential equations,

At (t, x) V 0 + Ax (t, x) V 1 + V 0
,0 = ψ(t, x, y, z), (2.2)

e2C(t,x)V 1
,0 − e2A(t,x)V 0

,1 = 0, (2.3)

e2B(t,x) V 2
,0 − e2A(t,x) V 0

,2 = 0, (2.4)

e2B(t,x) V 3
,0 − e2A(t,x) V 0

,3 = 0, (2.5)

Ct (t, x) V 0 + Cx (t, x) V 1 + V 1
,1 = ψ(t, x, y, z), (2.6)

e2B(t,x) V 2
,1 + e2C(t,x) V 1

,2 = 0, (2.7)

e2B(t,x) V 3
,1 + e2C(t,x)V 1

,3 = 0, (2.8)

Bt (t, x) V 0 + Bx (t, x) V 1 + V 2
,2 = ψ(t, x, y, z), (2.9)

V 2
,3 + V 3

,2 = 0, (2.10)

Bt (t, x) V 0 + Bx (t, x) V 1 + V 3
,3 = ψ(t, x, y, z). (2.11)

To solve the above system of ten coupled equations, we first
use some equations to obtain the components V 0, V 1, V 2

and V 3 of the CKV and the conformal function ψ(t, x, y, z).
The whole process is described briefly in the following:

Differentiating Eqs. (2.4) and (2.7) with respect to z, Eqs.
(2.5) and (2.8) with respect to y and Eq. (2.10) with respect
to t and x , we find that V 2

,03 = V 0
,23 = V 1

,23 = V 2
,13 = 0.

Also, subtracting Eq. (2.6) from Eq. (2.9) and differentiating
the resulting equation with respect to y and z and then using
the result in Eq. (2.10), we obtain,

V 2 = y

{
z2

2
G1(x) + zG2(x)

}
+ z2

2
G3(x)

+zG4(x) − y3

6
G1(x) − y2

2
G3(x)

+y P1(t, x) + P3(t, x),

V 3 = y2

2

{
z G1(x) + G2(x)

}
− y

{
z G3(x) + G4(x)

}

+ z3

6
G1(x) + z2

2
G2(x) + z P1(t, x) + P2(t, x),

where Gi (x) and Pk(t, x), i = 1, 2, 3, 4 and k = 1, 2, 3
are functions of integration. Using above expressions in Eqs.
(2.4), (2.5), (2.7), (2.8) and relations V 2

,03 = V 0
,23 = V 1

,23 =
V 2

,13 = 0 simultaneously, we obtain the following form of
CKV components and the conformal factor ψ :

V 0 = e2(B−A)

{
z2

2
P1

t (t, x) + z P2
t (t, x)

}

+e2(B−A)

{
y2

2
P1

t (t, x) + y P3
t (t, x)

}
+ P0(t, x),

V 1 = −e2(B−C)

{
z2

2
P1

x (t, x) + z P2
x (t, x)

}

−7e2(B−C)

{
y2

2
P1

x (t, x) + y P3
x (t, x)

}
+ P4(t, x),

V 2 = d1zy+d2

2
z2+c3z − d2

2
y2 + y P1(t, x) + P3(t, x),

V 3 = −d2zy+d1

2
z2 − c3 y−d1

2
y2+z P1(t, x) + P2(t, x),

ψ(t, x, y, z) = Ct e
2(B−A)

{
z2

2
P1

t (t, x) + z P2
t (t, x)

}

+Ct e
2(B−A)

{
y2

2
P1

t (t, x) + y P3
t (t, x)

}

−e2(B−C)

{
z2

2
P1

xx (t, x) + z P2
xx (t, x)

}

−e2(B−C)

{
y2

2
P1

xx (t, x) + y P3
xx (t, x)

}
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+(Cx − 2 Bx ) e2(B−C)

{
z2

2
P1

x (t, x) + z P2
x (t, x)

}

+Ct P0(t, x)

+(Cx − 2 Bx ) e2(B−C)

{
y2

2
P1

x (t, x) + y P3
x (t, x)

}

+Cx P4(t, x) + P4
x (t, x),

where d1, d2, c3 ∈ � and the functions Pk(t, x), k =
0, 1, 2, 3, 4 and their derivatives arise in the process of inte-
gration and need to be determined. The above CKV compo-
nents and the conformal factor are subject to the following
integrability conditions:

P1
t x (t, x) + {Bt − Ct }P1

x (t, x) + { Bx − Ax }
P1

t (t, x) = 0, (2.12)

P2
t x (t, x) + {Bt − Ct }P2

x (t, x)

+{ Bx − Ax } P2
t (t, x) = 0, (2.13)

P3
t x (t, x) + {Bt − Ct }P3

x (t, x) + { Bx − Ax }
P3

t (t, x) = 0, (2.14)

{2Bx − Ax − Cx } e−2C P1
x (t, x) + e−2A

P1
t t (t, x) + e−2C P1

xx (t, x)

+{ 2Bt − At − Ct } e−2A P1
t (t, x) = 0, (2.15)

{2Bx − Ax − Cx } e−2C P2
x (t, x)

+e−2A P2
t t (t, x) + e−2C P2

xx (t, x)

+{ 2Bt − At − Ct } e−2A P2
t (t, x) = 0, (2.16)

{2Bx − Ax − Cx } e−2C P3
x (t, x) + e−2A P3

t t (t, x)

+e−2C P3
xx (t, x)

+{ 2Bt − At − Ct } e−2A P3
t (t, x) = 0, (2.17)

{Bt − Ct }e−2A P1
t (t, x) + {Bx − Cx }e−2C P1

x (t, x)

+e−2C P1
xx (t, x) = 0, (2.18)

{Bt − Ct }e−2A P2
t (t, x) + {Bx − Cx }e−2C P2

x (t, x)

+e−2C P2
xx (t, x) = −d1e−2B, (2.19)

{Bt − Ct }e−2A P3
t (t, x) + {Bx − Cx }e−2C P3

x (t, x)

+e−2C P3
xx (t, x) = d2e−2B, (2.20)

e2A P0
x (t, x) − e2C P4

t (t, x) = 0, (2.21)

{At − Ct } P0(t, x) + {Ax − Cx } P4(t, x)

+P0
t (t, x) − P4

x (t, x) = 0, (2.22)

{Bt − Ct }P0(t, x) + {Bx − Cx }P4(t, x)

+P1(t, x) − P4
x (t, x) = 0. (2.23)

At this stage, we introduce new variablesβi = (β1, β2, β3) =(
y2+z2

2 , z, y
)

and Pi = (P1, P2, P3). In these variables,

the components of the CKV and the conformal factor can
be rewritten in a more convenient form using the Einstein’s
summation convention as,

V 0 = e2(B−A) βi Pi
t + P0, V 1 = −e2(B−C) βi Pi

x + P4,

V 2 = (βi ),2 Pi + d1zy + d2

2
(z2 − y2) + c3z,

V 3 = (βi ),3 Pi − d2zy + d1

2
(z2 − y2) − c3 y,

ψ(t, x, y, z) = Ct e
2(B−A)

βi Pi
t − e2(B−C) βi Pi

xx + (Cx − 2 Bx ) e2(B−C)

×βi Pi
x + Ct P0 + Cx P4 + P4

x .

Like-wise, the twelve integrability conditions given by Eqs.
(2.12)–(2.23) reduce to,

Pi
tx + {Bt − Ct }Pi

x + { Bx − Ax } Pi
t = 0, (2.24)

(2Bx − Ax − Cx ) e−2C Pi
x + e−2A Pi

tt + e−2C Pi
xx

+(2Bt − At − Ct ) e−2A Pi
t = 0, (2.25)

(Bt − Ct ) e2(B−A) Pi
t + (Bx − Cx ) e2(B−C) Pi

x

+e2(B−C) Pi
xx = ki , (2.26)

P0
x − e2(C−A) P4

t = 0, (2.27)

(At − Ct ) P0 + (Ax − Cx )P4 + P0
t − P4

x = 0, (2.28)

(Bt − Ct )P0 + (Bx − Cx )P4 + P1 − P4
x = 0, (2.29)

where ki = 0, −d1, d2, for i = 1, 2, 3 respectively. In
order to solve the above integrability conditions completely,
we impose certain restrictions either on the metric functions
or the CKV components. To this end, we restrict the com-
ponents of the CKVs to admit a particular form and present
results in the next section.

3 Conformal killing vectors of particular forms

(I) In this section, we discuss some cases in which CKVs
admit a particular form in which the timelike CKV is orthog-
onal to the orbits of the planar symmetry, i.e. with only t and
x components. Assuming a suitable coordinate transforma-
tion, which preserves the form of metric given by Eq. (2.1),
allows one to assume that the CKV has only a temporal com-
ponent. In this case, the CKV becomes a purely timelike
vector, i.e. V = ( V 0, 0 , 0 , 0). For consistency, we must
have Pi = P4 = d1 = d2 = c3 = 0 and V 0 = P0. The
integrability condition given by Eq. (2.27) then implies that
V 0 = P0(t). Since P0 �= 0, Eqs. (2.29) and (2.28) respec-
tively give Bt = Ct and (At − Ct ) P0 + P0

t = 0. Integrating
the later equation instantly yields P0 ∝ eC−A, indicating
existence of a timelike CKV parallel to the time like vector
ua, defined as ua = e−Aδa

0 .

(II) In their paper, Herrera et al. [35] introduced a con-
dition LV ua = ψ ua, where ua is taken as four velocity of
the co-moving fluid. This condition is called the inheriting
condition. Here, we use this condition for a timelike vec-
tor ua = e−Aδa

0 . The above mentioned inheriting condition
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LV ua = ψ ua, in expanded form can be written as:

ua,b V b + ub V b
,a = ψ ua . (3.1)

Solving Eq. (3.1), it is easily found that V 0
,i = 0 for i =

1, 2, 3, whereas V 0 = V 0(t) and the corresponding con-
formal factor takes the form ψ = At V 0 + Ax V 1 + V 0

,0.

This suggests that P0 depends on t only, with Pi
t = 0 for

i = 1, 2, 3. Also, whereas the integrability condition given
by Eq. (2.27) suggests thatP4

t = 0, the remaining integrabil-
ity conditions take the form:

{Bt − Ct }Pi
x = 0, (3.2)

(2Bx − Ax − Cx ) Pi
x + Pi

xx = 0, (3.3)

(Bx − Cx ) e2(B−C) Pi
x + e2(B−C) Pi

xx = ki , (3.4)

(At − Ct ) P0 + (Ax − Cx )P4 + P0
t − P4

x = 0, (3.5)

(Bt − Ct )P0 + (Bx − Cx )P4 + P1 − P4
x = 0. (3.6)

From Eq. (3.2) it is easy to note that two possibilities arise,
namely, Bt − Ct �= 0 and Bt − Ct = 0. A complete solution
of the integrability conditions is found in the first case, while
in the second case the solutions are arbitrary and will not be
presented.

Using Bt − Ct �= 0 in Eq. (3.2), it is immediately noticed
that Pi

x = 0. Using this fact in Eq. (3.4), one find that ki = 0.
Now subtracting the remaining Eqs. (3.5) and (3.6) give:

(Bt − At )P0 + (Bx − Ax )P4 + P1 − P0
t = 0. (3.7)

After some manipulations, it is easily found that the CKVs
and their corresponding conformal factor take the form,

V 0 = P0, V 1 = P4, V 2 = (βi ),2 Pi + c3z,

V 3 = (βi ),3 Pi − c3 y,

ψ(t, x, y, z) = Ct P0 + Cx P4 + P4
x ,

subject to a solution of Eq. (3.7). Here it is worth noting
that one CKV is the usual KV giving rotational symmetry
z∂y − y∂z , while all other CKVs are arbitrary functions of t
and x.

4 Conformal killing vectors of some special plane
symmetric spacetime metrics

In this section, we investigate certain CKVs for some special
classes of plane symmetric spacetime metrics. These space-
time metrics are chosen from the literature and are obtained
either by solving the EFEs under certain assumptions or by
imposing some symmetry restrictions on the spacetime met-
ric. It is worth mentioning here that throughout this section,
the constants ci are numbered so that c1, c2, c3 represent the

three spatial KVs ∂y, ∂z and z ∂y − y ∂z respectively, repre-
senting two linear momentum (along y and z) and one angular
momentum conservations (along x). Also in the static case,
c0 is chosen to correspond with the timelike KV ∂t , giving
energy conservation.

4.1 Non-conformally flat plane symmetric spacetimes and
their conformal killing vectors

Case (I): To solve the integrability conditions found above
completely, we consider a plane symmetric non-conformally
flat metric [36],

ds2 = −x2+2
√

2dt2 + dx2 + x2(dy2 + dz2). (4.1)

The above metric is static and admits at least four independent
KVs ∂t , ∂y, ∂z and z ∂y − y ∂z . The minimal set of KVs rep-
resents existence of energy conservation, two linear momen-
tum conservations (along y and z) and angular momentum
conservation. The non-zero anisotropic energy-momentum
tensor components for the metric represented by Eq. (4.1)

are given by T00 = 1
4 x

√
2−1, T11 = 3+2

√
2

x2 , T22 = T33 =√
2+1
4 x−2(

√
2+1). The CKVs and the associated conformal

factor admitted by the above metric are given by,

V 0 = − c4

2
√

2
x−2

√
2 − c4√

2
t2 − √

2c5t + c0,

V 1 = c4x t + c5x

V 2 = c3z + c1, V 3 = −c3 y + c2,

ψ(t, x, y, z) = c4 t + c5,

where c0, c1, c2, c3, c4, c5 ∈ �. This result reveals that the
above plane symmetric metric given by Eq. (4.1) admits six
independent CKVs of which one is proper CKV given by

−
(

1
2
√

2
x−2

√
2 + 1√

2
t2

)
∂t + xt ∂x . Also the dimension of

the homothetic symmetry group is five with one proper HV
given by −√

2t ∂t + x ∂x . Note also that the dimension of the
isometry group is four. Now a CKV is called special CKV if
ψ;ab = 0 [3]. This suggests that the above CKVs are special
CKVs. A six dimensional group of CKVs give the generators
of the conformal symmetry group:

X0 = ∂t , X1 = ∂y, X2 = ∂z, X3 = z∂y − y∂z,

X4 = −
(

1

2
√

2
x−2

√
2 + 1√

2
t2

)
∂t + x t ∂x ,

X5 = −√
2t ∂t + x ∂x ,

Case (II): Another plane symmetric non-conformally flat
metric, admitting self-similarity of second kind [36], is given
by,

ds2 = −dt2 + dx2 + 2t (dy2 + dz2) (4.2)
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This is a non-static metric and admits three independent KVs.
The anisotropic non-zero energy-momentum tensor compo-
nents for this metric are T00 = 1

16t2 , T11 = 5
16t2 , T22 =

T33 = 3
√

2
16 t

−3
2 . As for the integrability conditions are con-

cerned, they are completely solved and the CKVs admitted
by this metric, along with the conformal factor, are given by,

V 0 = 2 c4t, V 1 = 2 c4x + c5, V 2 = c3z + c4 y + c1,

V 3 = −c3 y + c4z + c2, ψ(t, x, y, z) = 2 c4,

where c1, c2, c3, c4, c5 ∈ �. Thus the metric given by Eq.
(4.2) admits five independent CKVs with no proper CKV.
In fact, the CKVs for the metric represented by Eq. (4.2)
are just HVs, where the dimension of homothetic group is
five, with one proper HV given byt ∂t + x∂x + y

2 ∂y + z
2∂z .

Also, the above metric admits four independent KVs given
by ∂y, ∂z, z ∂y − y ∂z and ∂x . The generators of the five
dimensional group of CKVs are:

X1 = ∂y, X2 = ∂z, X3 = z∂y − y∂z,

X4 = t∂t + x∂x + 1

2
y∂y + 1

2
z∂z, X5 = ∂x .

The above symmetry groups corresponds to three linear
momentum conservation laws given by X1, X2, and X5, one
angular momentum conservation given by X3 and one scal-
ing conservation law. Here, it is important to mention that the
metric given by Eq. (4.2) can also be obtained by solving the
integrability conditions with A(t, x) = 0, Bx (t, x) = 0
and C(t, x) = 0. In this case, the metric becomes,

ds2 = −dt2 + dx2 + (c6t)
2(

c6−c8
c6

)
(dy2 + dz2). (4.3)

Re-defining c6 = 2 and c8 = 1, one recovers the metric
given by Eq. (4.2).

Case (III): Here, we consider plane symmetric spacetime
metric admitting a five dimensional isometry group. This
metric is taken from [37] and is given by,

ds2 = −e
2x
a dt2+dx2+e

2x
b (dy2 + dz2), a �= b �= 0. (4.4)

For the above metric, the non-zero energy-momentum ten-
sor components are given by, T00 = −3

4b2 e
x
a , T11 =

1
4

{
1
b2 + 2

ab

}
, T22 = T33 = e

x
b − x

a

{
1
b2 + 1

ab + 1
a2

}
. In this

case, the conformal factor, ψ(t, x, y, z), becomes zero and
hence the CKVs become same as the KVs given by,

V 0 = b

a
c4 t + c0, V 1 = −c4 b, V 2 = c3z + c4 y + c1,

V 3 = −c3 y + c4z + c2,

The Lie algebra structure of this example and for the coming
examples can be found in [37].

Case (IV): In this case, we have solved the integrability
conditions completely by considering the following plane
symmetric spacetime metric [37]:

ds2 = −e
2x
a dt2 + dx2 + dy2 + dz2, a �= 0. (4.5)

The above metric admits five independent KVs, in which
four are included in the list given in Sect. 2. The non-zero
energy-momentum tensor components for this metric are
T22 = T33 = 1

4a2 e− x
a . For this metric, it is found that the con-

formal factor ψ(t, x, y, z) is zero, and therefore the CKVs
are just KVs as given in [37].

Case (V): In this case, we consider another particular form
of plane symmetric spacetime metric given by,

ds2 = − cos2 x

a
dt2 + dx2 + dy2 + dz2, a �= 0. (4.6)

This metric is also taken from the reference [37], which
admits six independent KVs. The non-zero energy-momentum
tensor components for this metric take the form, T22 = T33 =
− 1

4a2 sec x
a

{
1 + sec2 x

a

}
. Using Eq. (4.6), one can easily

solve the integrability conditions completely to find that it
does not admit proper CKV. We have also solved the inte-
grability conditions completely for the following two plane
symmetric spacetime metrics taken from [37]

ds2 = −dt2 + cos2 t

a
dx2 + dy2 + dz2, a �= 0. (4.7)

ds2 = −dt2 + e
2t
a dx2 + dy2 + dz2, a �= 0. (4.8)

Both metrics admit six independent KVs. On solving the
integrability conditions separately for the above metrics, it is
easily found that the CKVs are same as the KVs obtained in
[37].

Case (VI): In this case, we assume that A = 0 and B and
C are functions of t coordinate only. In the light of these
assumptions, the spacetime metric given by Eq. (2.1) takes
the form,

ds2 = −dt2 + e2C(t)dx2 + e2B(t)[dy2 + dz2], (4.9)

For the above metric, the non-vanishing Ricci tensor compo-
nents are given by,

R00 = −[2B ′′(t) + C ′′(t) + 2B ′2(t) + C ′2(t)], R11 =
e2C(t)[C ′2(t) + 2B ′(t)C ′(t) + C ′′(t)] and R22 = R33 =
e2B(t)[2B ′2(t) + B ′(t)C ′(t) + B ′′(t)]. In order to obtain a
vacuum solution, we require that all the Ricci tensor com-
ponents are zero, i.e., R00 = R11 = R22 = R33 = 0. Solv-
ing these three equations simultaneously, we can easily find

that B(t) = ln
{ 3

2 (m t + c4)
} 2

3 and C(t) = ln(m t + c4)
− 1

3 ,

where m and c4 are constants. The constant c4 can be removed
by an obvious linear change of the t coordinate. Under
this transformation, the metric functions can be rewritten as
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B(t) = ln
{ 3

2 (mt)
} 2

3 and C(t) = ln(m t)− 1
3 . Using these

values of B(t) and C(t), we can completely solve the integra-
bility conditions to find that the conformal factor is constant.
Thus, the components of the CKV in this case take the form:

V 0 = 3c5t, V 1 = 3c5x + c6, V 2 = c3z + c5 y + c1,

V 3 = −c3 y + c5z + c2, ψ = 3c5.

From above, it can be easily seen that there are five inde-
pendent CKVs with no proper CKV. Also, the dimension of
the homothetic symmetry group is five, with one proper HV
and four KVs. In generator form, the proper HV (choosing
c5 = 1) is written as 3t ∂t + 3x ∂x + y ∂y + z ∂z .

4.2 Conformally flat plane symmetric spacetimes and their
conformal killing vectors

In this section, we investigate CKVs of some conformally flat
classes of plane symmetric spacetimes. These conformally
flat plane symmetric spacetimes are obtained by imposing
certain conditions on the metric functions or they have been
taken among a wide class of known conformally flat plane
symmetric spacetimes from [37]. It is important to note that,
any conformally flat plane symmetric spacetime will always
admit a fifteen dimensional algebra of CKVs. We show that
various integrability conditions given in (2.24)–(2.29) can
be solved completely for some known conformally flat plane
symmetric metrics obtaining fifteen CKVs in each case.

Case (VII): In this case, we consider the conformally flat
plane symmetric spacetime whose line element is given by
[37],

ds2 = −dt2 + dx2 + e
2x
a (dy2 + dz2), a �= 0. (4.10)

In [37], it is shown that the above metric admits seven inde-
pendent KVs. Solving the integrability conditions given in
Eqs. (2.24)–(2.29), it is easy to find that the above metric
admits a fifteen dimensional algebra of CKVs given by,

V 0 = 1

2a

(
y2 + z2

)
e

x
a

(
−c4e− t

a + c5e
t
a

)

+ z

a
e

x
a

(
−c6e− t

a + c7e
t
a

)

+ y

a
e

x
a

(
−c8e− t

a + c9e
t
a

)
− a

2
e− x

a

(
c4e− t

a − c5e
t
a

)

−e
x
a

(
c10e− t

a − c11e
t
a

)
+ c0,

V 1 = 1

2a

(
y2 + z2

)
e

x
a

(
c4e− t

a + c5e
t
a

)

+ z

a
e

x
a

(
c6e− t

a + c7e
t
a

)

+ y

a
e

x
a

(
c8e− t

a + c9e
t
a

)
− a

2
e− x

a

(
c4e− t

a + c5e
t
a

)

+e
x
a

(
c10e− t

a + c11e
t
a

)
− c12az + c13ay − c14a,

V 2 = c13

2

(
z2 − y2 + a2e− 2x

a

)
+ ye− x

a

(
c4e− t

a + c5e
t
a

)

+e− x
a

(
c8e− t

a + c9e
t
a

)
+ c12 yz + c14 y + c3z + c1,

V 3 = c12

2

(
z2 − y2 − a2e− 2x

a

)
+ ze− x

a

(
c4e− t

a + c5e
t
a

)

+e− x
a

(
c6e− t

a + c7e
t
a

)
− c13 yz − c3 y + c14z + c2,

ψ(t, x, y, z) = 1

2a2

(
y2 + z2

)
e

x
a

(
c4e− t

a + c5e
t
a

)

+ z

a2 e
x
a

(
c6e− t

a + c7e
t
a

)
+ y

a2 e
x
a

(
c8e− t

a + c9e
t
a

)

+1

2
e− x

a

(
c4e− t

a + c5e
t
a

)
+ 1

a
e

x
a

(
c10e− t

a + c11e
t
a

)

For the metric given by Eq. (4.10), the non-vanishing
energy-momentum tensor components take the form,

T00 = −3

4a2 , T11 = 1

4a2 , T22 = T33 = 1

4a2 e
x
a .

From above, it can be easily noticed that out of the fifteen
CKVs, seven are KVs as obtained in [37], while eight are
proper CKVs with no proper HV

Case (VIII): In this case, we consider another conformally
flat plane symmetric spacetime whose metric is given by [37],

ds2 = −dt2 + dx2 + e
2t
a (dy2 + dz2), a �= 0. (4.11)

In [37], it is shown that the above metric also admits seven
independent KVs. The non-zero energy-momentum tensor
components for the above spacetime metric are given by
T00 = 1

4a2 , T11 = −3
4a2 , T22 = T33 = − 1

4a2 e
t
a . On solv-

ing the integrability conditions given by Eqs. (2.24)–(2.29)
for the above metric, we see that it also admits fifteen CKVs
of which seven are KVs [37] and eight are proper CKVs with
no proper HV. The CKVs and the conformal factor obtained
in this case are same as in case (VII) with the only difference
that the variables x and t are interchanged.

Case (IX): In order to deal with this case, we impose cer-
tain restrictions on A and B as functions of x with A = B and
C = 0. In the light of these choices, we obtain a conformally
flat plane symmetric spacetime whose metric is given by,

ds2 = dx2 + e2A(x)[−dt2 + dy2 + dz2]. (4.12)

For this metric, all the Weyl tensor components vanish,
whereas the non-zero energy-momentum tensor components
take the form,

T00 = −1

4
eA(x)

{
4Axx (x) + 3A2

x (x)
}

,

T11 = 3

4
A2

x (x), T22 = T33 = 1

4

{
4Axx (x) + 3A2

x (x)
}

.

In this case, our results are special case of those obtained
for Friedmann-Robertson-Walker metric [20] with x and t
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interchange. The CKVs along with the conformal factor in
this case take the form:

V 0 = c4

2
(t2 + y2 + z2) + c5t z − c6t y + c7z

+c8 y + c9t + (c10t + c11)

×
∫

e−A(x)dx + c4

∫ {
e−A(x)

∫
e−A(x)dx

}
dx + c0

V 1 = −c10

2
eA(x)(−t2 + y2 + z2) + c5zeA(x)

×
∫

e−A(x)dx − c13zeA(x) − c10 y eA(x)

×
∫

e−A(x)dx − c14 yeA(x) + c4teA(x)

×
∫

e−A(x)dx + c9eA(x)

∫
e−A(x)dx + c10eA(x)

×
∫ {

e−A(x)

∫
e−A(x)dx

}
dx

+eA(x)
{c10

2
t2 + c11t + c12

}

V 2 = c6

2
(−t2 − y2 + z2) + c5 yz

+c4t y + c3z + c9 y + c8t + (c10 y + c14)

×
∫

e−A(x)dx + c6

∫ {
e−A(x)

∫
e−A(x)dx

}
dx + c1

V 3 = −c5

2
(−t2 + y2 − z2) − c6 yz

+c4t z + c9z − c3 y + c7t

+(c4z + c13)

∫
e−A(x)dx − c5

×
∫ {

e−A(x)

∫
e−A(x)dx

}
dx + c2

ψ(t, x, y, z) = −c10

2
(y2 + z2)Ax (x)eA(x) + c5ze2A(x)

−c6 ye2A(x) + c5z Ax (x)eA(x)

∫
e−A(x)dx

−c6 y Ax (x)eA(x)

∫
e−A(x)dx

−c13z Ax (x)eA(x) − c14 y Ax (x)eA(x)

+c4t + c4t Ax (x)eA(x)

∫
e−A(x)dx + c10

×
∫

e−A(x)dx + c10 Ax (x)eA(x)

×
∫ {

e−A(x)

∫
e−A(x)dx

}
dx

+c9 Ax (x)eA(x)

∫
e−A(x)dx

+Ax (x)eA(x)
{c10

2
t2 + c11t + c12

}
+ c9

For the above metric, with arbitrary metric function A(x),

we obtain fifteen independent CKVs, of which eight are
proper CKVs while the remaining seven are HVs. Addition-

ally, the above metric admits one proper HV t ∂t + x ∂x +
y ∂y +z ∂z if all constants except c9 appearing in ψ(t, x, y, z)
are zero and Ax (x)eA(x)

∫
e−A(x)dx = constant.

5 Summary and discussion

Considering a general form of a plane symmetric spacetimes
metric, ten conformal Killing’s equations are solved and a
general form of CKVs along with their conformal factor are
obtained subject to twelve integrability conditions. Impos-
ing certain conditions on components of the vector field or
the metric functions, the integrability conditions are solved
completely in Sects. 3 and 4. When subjected to one inte-
grability condition, it is shown that purely timelike CKVs
are admitted. A total of nine cases (consisting of non confor-
mally flat and conformally flat plane symmetric spacetimes)
are considered.

The physical significance of our obtained results can be
established by further investigations that whether there exist
any plane symmetric spacetime admitting CKVs which sat-
isfy the energy conditions, so that they can be used as poten-
tial spacetime metrics. If such plane symmetric spacetimes
exist, then it will be interesting to see if they are known solu-
tions or they belong to a new family of solutions. After our
exploration of the full conformal geometry for plane sym-
metric spacetimes it is now possible to examine the EFEs
comprehensively and find some new solutions with confor-
mal symmetry. In our paper we did not specify any matter
distribution to find the general conformal symmetry. If one
choose particular matter field, the field equations will put
restrictions on dynamics. This fact can be seen in [38] where
authors have shown that CKVs places particular restrictions
on the dynamical behavior of the model and the gravitational
field. Different matter fields are likely to produce different
results, for example the presence of non zero electromagnetic
field may produce new effects which are absent in resulting
for neutral matter.

In this paper we did not solve the EFEs for any matter
field but to analyze the effects of conformal geometry on a
specific matter field we have taken some example metrics
from literature, some of which were obtained by solving the
EFEs. In case-I we have taken metric (4.1) form [36] and
discussed its CKVs. This metric is obtained by solving EFEs
and equation of motion under the assumption that the energy
density ρ and pressure p satisfy an equation p = κ ρ for
κ = −3 ± √

2. Thus case-I show that under these condi-
tions a solution of EFEs exist with six special CKVs, among
which one is proper CKV. The minimal set of KVs represents
existence of energy conservation, two linear momentum con-
servations (along y and z) and angular momentum conserva-
tion. Similarly metric (4.2) of case-II was obtained in [36]
for different choices of the energy density ρ and pressure p.
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In this case we showed that the spacetime metric admit no
proper CKV. We obtained a plane symmetric vacuum solu-
tion of EFEs (case-VI) and it is shown that such metric do
not admit proper CKV. In cases III-V, we only obtained solu-
tions being KVs. In cases VII-IX, some special conformally
flat plane symmetric spacetimes are considered, for each of
which a fifteen dimensional algebra of CKVs is obtained. In
cases VII and VIII, the spacetime metrics admit eight proper
CKVs with no proper HV. Only in case IX, the spacetime
metric admits eight proper CKVs and one proper HV for
some particular choice of the metric functions.

Since, we have explored the general form of the CKV
components, conformal factor and integrability conditions
for plane symmetric spacetime and solved them completely
for some special classes; it may be of interest to extend this
analysis to spacetimes admitting plane conformal symmetry.
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