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Abstract Itispointed out that the current form of the extrin-
sic equation of motion for a particle constrained to remain
on a hypersurface is in fact a half-finished version; for it is
established without regard to the fact that the particle can
never depart from the geodesics on the surface. Once this
fact is taken into consideration, the equation takes the same
form as that for the centripetal force law, provided that the
symbols are re-interpreted so that the law is applicable for
higher dimensions. The controversial issue of constructing
operator forms of these equations is addressed, and our stud-
ies show the quantization of constrained system based on the
extrinsic equation of motion is preferable.

1 Introduction

The motion of a particle on a curved hypersurface is an
exactly solvable model to examine various problems such as
higher-dimensional gravity [1], the dark energy/matter prob-
lem [2], the quantization of constrained motions for a non-
relativistic particle [3—7] and for a relativistic fermion [8,9],
and many curvature-induced effects in lower-dimensional
systems and nanostructures [10-15], etc. We are familiar
with both the geodesic equation from the intrinsically curved
surface and the equation of motion from the extrinsically
Euclidean space [5,6], but no relationship in between has
been seriously explored. From the point of geometry, the
geodesic equation can be independent from the extrinsic
world, but the motion of the particle from the extrinsic view
can never be independent from the geodesics that the particle
follows.

In an N dimensional Euclidean space EV spanned by N
mutually orthogonal unit vectors e; (i = 1,2,..., N), we
can embed it as a hypersurface described by a constraint
f(r) = 0 where f(r) is some smooth function of position
r = x'e; and the Einstein summation convention of sum over
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repeated indices is hereafter assumed. For a non-relativistic
particle, with mass u, that is constrained to remain on the
hypersurface, there are two equations of motion for the par-
ticle. One is well known, given by the differential equation
for a geodesic line C determined by

dZut(s) o du®(s) duP(s) 0
ds? @B s ds 7

where {u*} (u=1,2,..., N — 1) are the N — 1 local coor-
dinates, and s stands for the arc-length along C, and I’a’g are
Christoffel symbols of the second kind. Another one is quite
well known [5,6], given by the differential of the velocity
v = dr/dr with respect to time ¢,

ey

d

5v_—n(v-Vn~v), 2)
where n = V f(r)/ |V f(r)| is the local unit normal vector
on the surface at point r = r (), and V = e/3/dx’ is the
usual gradient operator. Though both Egs. (1) and (2) have
the salient feature of not containing the mass w, the possible
difference between them is more interesting and challenging.
Some authors claim the two to be identical but no justification
is available [5]. In order to obtain a proper form of Eq. (2)
in quantum mechanics, it is usually assumed [6,16] that Eq.
(2) has a direct correspondence in quantum mechanics once
the velocity is rewritten in terms of momentum v = p/u,
with possible ordering distributions of the momentum p and
position-dependent functions Vn and n, in the Heisenberg
picture,

d _ p-Vn-p
a’ = n( n ) )

However, on the one hand, Eq. (1) is purely from intrinsic
geometry, from which we know that the Dirac quantization of
the constrained systems cannot be fulfilled throughout [17].
On the other hand, Eq. (3) contains mutually dependent com-
ponents of the momentum p because the motion lies on the
tangential plane to the surface so that n - p = 0. Thus in
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quantum mechanics, we have inequivalent forms of (3) [16].
In other words, Eq. (1) under-describes the motion of the
particle and must be enlarged, while Eq. (3) over-describes
it; it must be used with some constraints. Therefore, a proper
form of the equation of motion for the particle in classical
mechanics is worthy to be investigated. In quantum mechan-
ics the meaning of Eq. (3) is under dispute. For instance,
Hamma et al. [4] and Ikegami et al. [5] showed that from
the constraint equation f(r) = 0 we could not build up a
satisfactory theory and we must start from another constraint
equation d f (r)/dt = 0, but Weinberg [6] thought that Eq.
(3) should be as true as it is in classical mechanics.!

In Sect. 2, the generalized form of the centripetal force law
(CFL) which incorporates both Eqgs. (1) and (3) is given. In
Sect. 3, the quantization problem of the constrained motion
on the surface is addressed. Though there is no explicit use
of the Dirac formalism for a constrained system, our explo-
rations are in fact within it because we further develop the
results (1)—(3) that are based on the Dirac formalism. In Sect.
4, a brief conclusion and discussion are presented.

2 The generalized CFL unifies both intrinsic and
extrinsic equation of motion

For our purpose, let us first recall the celebrated CFL a =
v?/r for the particle moving on a planar curve, especially on
the 2D circle of radius r, and it can readily be rewritten in
terms of the curvature x (= 1/r) and the Hamiltonian H =
p*/2u = pv?/2 for the free motion without any external
force imposed,

d
Ep =—2H«kn. @)

In fact, Eq. (4) holds true in general provided that ¥ symbol-
izes the first curvature of the geodesic C on the hypersurface
and the Hamiltonian H applies to the free particle on the
surface.

From the differential geometry for the hypersurface, at
the point {u*} on the surface f(r) = 0, we can define the
vectors of the tangential space ry (= dr/du®) and the unit
normal vector n, and these vectors {ry, n} form a complete
set of the coordinates in the vicinity of the surface in the
EN | other than the orthogonal coordinates formed by the

! Compare the formula (9.5.30) in [6], which is in fact identical to Eq.
(3) when V = 0. In the first edition of the book, this formula is mistaken.
It is worthy of pointing out that many formulas in this section of the
first edition were seriously mistaken, including, for instance, (9.5.5),
(9.5.7), (9.5.28) and (9.5.30). One of the present authors (Q. H. Liu)
pointed out some mistakes to the author Professor Weinberg who then
performed an overall examination of the whole section with great care
and acknowledged him in the Addendum for the Second Edition though
misspelling his name as Lu Quanhui (the full name in Chinese order
should be Liu Quanhui).
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fixed Cartesian one {e;}. The first and second fundamental
quantities are gq8 = Iy - Tg and byg = Iep - N = —TIy - Dg,
respectively. The equations of motion for r, and n are in the
EN [18], respectively,

ory

W = F;]Lgrﬂ + ba/gn, (5)
on
87 = —bgl‘ﬁ. (6)

Furthermore, from the differential geometry for curves r(s)
lying on the surface, we can define, respectively, the unit
tangential o and its derivative with respect to s as follows:

dr(s)  Or du® _ du”

_ a8 7
¢ ds du® ds fe ds’ @
¢r _de _ d ( du” ®
ds2 ds  ds \ Y ds )’

First, we limit the curve r(s) to be the geodesic line C. On
the one hand, the first curvature « is defined by [18]

d*r
o=
where the vector m is a unit normal vector of the curve, which
by the convention of the geometry is identical to —n [18,19].
On the other hand, the right-handed side of Eq. (8) becomes,
from (5) and (1),

Kkm, ©))

d du® or, du® duf d%u(s)
—(reo— ) = s FTe—— (10)
ds ds duf ds ds ds?
du® duf
= (Foigru + baﬁn)aﬁ
du®(s) du® (s)

B "Zg ds ds T (n
_b du® duﬁn (12)
s as

Substituting (9) and (12) into both sides of (8), we get, noting
m = —n, the relation between curvature x and the second
fundamental quantities byg,
du® duf (13)
K = —byg————.
op ds ds

We see that the curvature x of the curve is related to the
second fundamental quantities, the extrinsic geometric ones,
of the surface. In geometry, —kn is a geometric invariant
under the parameter transformation {u®“} — {u’ o }

Secondly, taking the derivative of the orthogonal relation
n - r, = 0 with respect to any local coordinate u*, noting
n = n(r(u)), we find

0 d
0= W(n-ry) =ry-Vn-r, +n-87r7,
=Ty -Vn-r, +byy (14)
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ie.
byy = —ry-Vn-r,. (15)

Substituting it into Eq. (13), we have another form of the
curvature k,

. du® du® G re.Vn.r du® du®
K= 70 ds ds b *ds ds
dr dr
= —.Vn-—. 16
ds n ds (16)

Third, since « = dr/ds is the unit tangential vector along
the curve C and so is the ratio p/p = v/v, the expres-
sion p-Vn - p/u can be written within the framework of the
Hamiltonian mechanics and differential geometry,

w=<2.w.£)f’_=<_".vﬂ._">l’_
M p p/) ® ds ds /) pn

= 2k H. (17)

Substituting it into (3), we obtain Eq. (4). Thus, the CFL
holds true universally.

For the particle that is constrained on an arbitrary N —
1 dimensional space curve f(r(u(s))) = 0, we can prove
the CFL (4) as well. Under the coordinate transformation
{u”}y — {u™} (# {u”}), the two equations (1) and (4) are
completely different for the former transform accordingly
whereas the latter keeps invariant. In other words, Eq. (4) is
geometric invariant whereas Eq. (1) is not, though both are
covariant.

3 Remarks on the quantization problem
of the constrained motion

In quantum mechanics, no momentum p = {px, py, p;}
could be taken to substitute into the term ( p% + pf + p?) /21
so as to get the satisfactory quantum-mechanical operator
H = —i2V2 /20 + V, where V, = —% (L (Trk)?2-
(Trk)?)) is the geometric potential obtained by the con-
fining potential technique [20], with k being the extrinsic
curvature tensor [3,5]. This curvature-induced potential has
been confirmed by experiments [21,22] and may play some
role in understanding of our present universe [2]. An illu-
minative exploration is to compare both sides of Eq. (3) in
quantum mechanics,

i h
[p.H] = ZEO“"V“"’]’ (18)

where H is the quantum-mechanical Hamiltonian containing
the geometric potential, and O[ f] stands for the hermitian
operator of the quantity f. Equation (18) allows for both the
geometric momentum p [20] and the geometric potential V,,,
and the geometric momentum is given by

p—l IH,] - l C[B,ll— lh CS"‘ 5

where the vector operator Vg = r*9,, is the gradient operator
defined on the surface, and —Vg - n = M is the mean cur-
vature [2]. In contrast, the operator O[p - Vn - p] in (18)
gives us many choices as regards the dependence on the
components of position and momentum [16], because we
are free to choose not only independent coordinates but also
momenta; for we have two constrained conditions f(r) = 0
and n - p = 0. It may not be a shortcoming, though. Instead,
the over-description has the remarkable advantage to include
the results predicted by the the confining potential technique
[2,3,5,16,17,20,23-25].

Thus, from the point of view of the operator algebra, a
complete formulation of the quantization of the constrained
motion is still an open problem [4,26]. Our approach sup-
ports Weinberg, whose point is that Eq. (3) holds true in
quantum mechanics [6], and disfavors Homma et al. [4] and
Ikegami et al. [5], whose point is that the satisfactory the-
ory from the constraint equation f(r) = 0 is impossible to
obtain with the Dirac formalism for quantizing a constrained
system. Besides, the statement [5] that Eq. (3) is identical to
Eq. (1) is nevertheless wrong.

However, the quantum mechanical version of CFL (4),

[p, H] = ik (knH + Hxn), (20)

is not applicable unless for very special surfaces such as the
spherical one [2]. This is because this equation contains the
first curvature x of the geodesic curve, which represents a
classical orbit, and its operator version is hard to verify except
when the curvature is a constant. For an N — 1 dimensional
sphere whose k = 1/r, with r being radius, Eq. (20) pre-
dicts an additional energy of V, = (N —1)(N — 3)h2/8mr2,
which is exactly the geometric potential for the sphere

[2].

4 Conclusions and discussions

The study of the CFL can be traced back to Newton in the
17th century, which was a crucial step toward his law of uni-
versal gravitation. In classical mechanics, it is the gravity
that provides the centripetal force responsible for astronom-
ical orbits. However, in modern physics, there is no gravity
but the curved space-time, and the astronomical orbits are
nothing but geodesics in it. However, the general relation-
ship between the CFL and the geodesics has been unknown.
We show that the relationship is surprisingly simple because
the usual form of the CFL is universally applicable pro-
vided the meaning of the symbols in it is reinterpreted.
Therefore, even as there is no gravity but geodesics on a
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curved space, there is a force law that bears striking resem-
blance to the CFL. However, in quantum mechanics, even
though the operator equation corresponding the CFL (4) has
a limited meaning, the equation corresponding to (3) opens
a wider door to establishing a satisfactory quantum theory
within the Dirac formalism for quantizing a constrained sys-
tem.

It is well known that within the Dirac formalism there is
at least no straightforward way starting from the constraint
equation f(r) = Otoreach the geometric potential, and some
even believe that such a way does not exist. We are convinced
that the Dirac formalism is not fully understood yet, and there
is a way within the Dirac formalism to begin with f(r) =0
to get to the geometric potential, which is under intensive
investigations.
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