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Abstract We explicitly construct fractals of dimension
4−ε on which dimensional regularization approximates
scalar-field-only quantum-field theory amplitudes. The con-
struction does not require fractals to be Lorentz-invariant in
any sense, and we argue that there probably is no Lorentz-
invariant fractal of dimension greater than 2. We derive
dimensional regularization’s power-law screening first for
fractals obtained by removing voids from 3-dimensional
Euclidean space. The derivation applies techniques from ele-
mentary dielectric theory. Surprisingly, fractal geometry by
itself does not guarantee the appropriate power-law behav-
ior; boundary conditions at fractal voids also play an impor-
tant role. We then extend the derivation to 4-dimensional
Minkowski space. We comment on generalization to non-
scalar fields, and speculate about implications for quantum
gravity.

1 Introduction

Is “dimension deficit” really the correct physical meaning of
the parameter ε in dimensional regularization? The only way
to prove it is by explicitly constructing a fractal spacetime
on which dimensional regularization approximates quantum-
field amplitudes. Introducing such a construction for scalar-
only quantum-field theories is the purpose of this paper.

Ideally, this is the first step in a longer research program
aimed at extending this construction to non-scalar fields.
Even if that does not materialize, the scalar construction
should be of interest in its own right, as it casts a fresh light
on the foundations of dimensional regularization, one of the
cornerstones of modern quantum-field theory. After all, other
schemes such as Pauli–Villars and lattice regularization have
well-defined physical meanings that enable scientists to ben-
efit from intuition established in a variety of other domains.
Why not dimensional regularization?
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The remainder of this paper is organized as follows. Sec-
tion 2 presents essential concepts and argumentation about
dimensional regularization and fractals, and sets the stage
for the constructions and derivations that follow. Section 3
derives the power-law screening characteristic of dimen-
sional regularization for propagators on fractals defined by
removing voids from 3-dimensional Euclidean space, in
order to establish basic intuition and lines of argumenta-
tion. The results of Sect. 3 apply techniques from elementary
dielectric theory. Surprisingly, fractal geometry by itself does
not guarantee the power-law behavior required for dimen-
sional regularization; boundary conditions at fractal voids
also play an important role. Section 4 extends Sect. 3 to frac-
tals in 4-dimensional Minkowski space. Note that in Sect. 4
the fractals themselves are not Lorentz invariant, but that is
alright because (see below) anisotropy in fractal power-law
scaling appears to have no impact on dimensional regular-
ization for small ε (we will in fact argue that there is no
such thing as a relativistically invariant fractal with dimen-
sion greater than 2). Section 5 contains a discussion of weak-
nesses in our reasoning, as well as prospects for generaliza-
tion to non-scalar fields, and speculation about implications
for quantum gravity.

2 Preliminaries about dimensional regularization and
fractals

Dimensional regularization [1] for scalar fields amounts to
changing the momentum-space volume element d4 p in Feyn-
man diagrams to |p/μ|−εd4 p, where |p| is the Minkowski
norm of momentum p, ε is positive and μ is a fixed scale. The
important thing is that the multiplier behaves like a fractional
power of the scale factor as p scales to infinity along any fixed
direction. That is what turns logarithmic divergences in p into
poles in ε. This has the same effect as multiplying the scalar
propagator (instead of the integration volume) in momentum
space by |p/μ|−δ , where δ = ε/2, because the only diver-
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gent loops have two scalar propagators. For this reason, the
goal of the fractal constructions that follow is to show that
scalar propagators in fractal spacetimes exhibit screening of
the form |p/μ|−δ in momentum space for large momentum p
or, as appropriate, |xμ|+δ in position space for small position
x and non-negative δ (more precisely, when quantum ampli-
tudes are defined by path integrals over random fractals [see
below] obtained by removing voids from linear spacetime,
then the quantum amplitudes, when ensemble-averaged over
random fractals, numerically correspond to Feynman dia-
grams in the underlying integer-dimensional linear spacetime
with propagators screened as described above).

There is a hitch, however. In Sect. 4 we shall find our-
selves dealing with fractals that are not themselves Lorentz-
invariant. This means that we will really show that propaga-
tors in position space scale as |xμ f (�)|+δ at short distance or
|g(�)p/μ|−δ at large momentum, where � is solid angle in
four dimensions and f or g is some function that is nonzero
almost everywhere. But that is alright as far as Lorentz-
invariance of quantum amplitudes is concerned, because the
function f has no material impact on dimensional regular-
ization for small dimension deficit: Small ε (or δ) ensures
that integration over � does not diverge; and ignoring terms
of order ε and higher ensures that the only quantitative effect
that g has on Feynman integrals is to modify the effective
value of μ, because the O(ε) term in g(�)−ε can only man-
ifest itself by multiplying the 1/ε linear-scale divergence by
the integral of ln[g(�)] over all solid angles.

The constructions in this paper focus on random “take-
away” fractals. Randomness exempts us from the compli-
cations of accidental crystallographic symmetries. For the
purposes of this paper, a random “take-away” fractal is a set
formed by the following recursive procedure: Start with a
linear space of integer dimension D, and a reference void of
volume V . Distribute points randomly throughout space with
arbitrary density ρ, and, centered at each such point, remove
a copy of the reference void. Call this the zeroth iteration.
Now choose an arbitrary scale factor ξ > 1 and define the
kth iteration inductively as follows:

– Distribute points randomly with density ρξ Dk through-
out whatever part of the Euclidean space has not been
removed by preceding iterations.

– Centered at each such point, remove from the k − 1’st
iteration a copy of the reference void linearly scaled by
factor ξ−k .

In the limit of infinite k, what is left has fractal dimension
D+ln(1−ρV )/ ln ξ [2]. The factor (1−ρV ) is the volumet-
ric proportion of iteration k − 1 removed by iteration k, and
the ratio of logarithms is clearly minus a dimension deficit
for physical ρV < 1. (The geometry of the reference void
can have its own probability distribution, but this is more

generality than we require. Also, for small ρV it is unimpor-
tant that voids removed at iteration k might overlap with one
another or with voids removed at earlier iterations.)

A relativistic fractal would have a Lorentz-invariant refer-
ence void. But such a void – bounded by hyperbolic spheres
– would have infinite V . Interestingly, if the starting linear
space had dimension D = 2, a fractal could still be defined.
For example, consider as a reference void the space between
a forward light cone and a mass shell. Basically this is a
central lobe flaring into two wings whose thickness falls
like one over the distance from the vertex. A random dis-
tribution of such voids produces a fractal after just a single
iteration, because there are ρ2πrdr void centers at distance
r from any reference point, and their wing width falls like
1/r (basically, 1/r is analogous to V ξ−Dk in the fundamen-
tal fractal definition, and ρ2πr is analogous to ρξ Dk). For
arbitrary D the number of void centers at distance r is pro-
portional to ρr D−1dr but wing (really a cup lip) width still
falls like 1/r , so the two factors match only for D = 2 and
we conclude that there probably are no relativistic fractals
in higher dimensions. This reinforces the importance of our
earlier discussion of Lorentz invariance vs. nontrivial f or
g. Perhaps this uniqueness of D = 2 is behind the tendency
of renormalization-group flows to converge to 2-dimensional
fractals in reduced models of gravity [3] (Alternatively, one
might construct a relativistic fractal by replacing the idea
of a single infinite-volume Lorentz-invariant reference void
with an appropriately weighted ensemble of voids created
by applying Lorentz boosts to a single finite-volume “seed”
void. But one is driven to the same conclusion about D = 2
because the Lorentz-invariant measure on the set of all boosts
has itself infinite total weight).

3 Propagator on fractal derived from Euclidean 3-space

As indicated above, the narrow mathematical objective of
this paper is to derive power-law screening at small dis-
tances or large momenta for wave-equation propagators in
4-dimensional Minkowski space limited by a fractal distri-
bution of voids. To make the thought process as clear as possi-
ble, we build to this objective with three cases of successively
increasing sophistication. The last case is Minkowski space.

For the first case, consider recovering the ln r Green func-
tion for potential theory in two dimensions by limiting three
dimensions to the space between two closely separated par-
allel planes. In school we encounter the problem of a point
charge between two parallel conducting planes, but because
the infinite sequence of image charges involves alternating
signs, the potential does not approach ln r for vanishing
plane separation [4]. If instead of conducting planes – i.e.
constant-value Dirichlet boundary condition – we impose the
other canonical potential-theory boundary condition – zero-
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normal-derivative Neumann – the image charges are in the
same locations but all have identical sign. So they add coher-
ently to produce ln r for vanishingly small plane separation.
Naively, the coefficient of ln r diverges as q/a, where q is the
original point charge and a is plane separation, but a cancels
out because the 2D Green function is meant to be integrated
over the limiting plane, while in 3D it is to be integrated over
the space between the converging planes, and that volume is
proportional to a. This sets a pattern for the cases that follow:
invocation of Neumann boundary conditions modulated by
vanishing volume between voids.

For the second case, consider the Green function at
short distance for potential theory in D = 3-dimensional
Euclidean space limited by a fractal distribution of spherical
voids. If the spheres are small, the field around each primarily
induces an electrostatic dipole [5] with polarizability γk for
the spheres of iteration k. According to dielectric theory [5],
these spheres collectively amplify or shield a distant charge
by a factor

	k =
[

1 + 4πρξ3kγk

1 − 4π
3 ρξ3kγk

]−1

. (1)

Each iteration of the fractal process multiplies the Green
function (potential) of a point charge by this factor in the
space between spheres, but only for iterations whose spheres
are smaller than the distance to the point charge, since larger
spheres do not fit. At the same time, each iteration also mul-
tiplies the point-charge potential by a factor of (1 − ρV ) for
integration volume regardless of sphere size. In other words,
the Green function for point charge q becomes

−q

r

∞∏
k=0

(1 − ρV )	k

lmax∏
l=0

	−1
l (2)

where lmax is the highest iteration whose spheres are larger
than or equal to r . For the infinite product to be well defined,
(1 − ρV )	k must be unity. Thus we discover that spheres
have to come in a mix of boundary conditions so that on
average

4π

3
ρξ3kγk = −ρV

3 − ρV
. (3)

It is elementary to show that polarizability for a spher-
ical void at iteration k is 3V/4πξ3k for Dirichlet bound-
ary conditions and −3V/8πξ3k for Neumann. So Eq. (3)
says that for every iteration the voids must be a mix of
2(4 − ρV )/3(3 − ρV ) Neumann and (1 − ρV )/3(3 − ρV )

Dirichlet. As a result, Eq. (2) reduces to

−q

r
(1 − ρV )lmax . (4)

Since lmax satisfies r ∼ radius of iteration-lmax sphere, pro-
portional to V 1/3/ξ lmax , expression (4) amounts to power-law
screening of the form

( r

V 1/3

)− ln(1−ρV )/ ln ξ

. (5)

The exponent in Eq. (5) is the dimension deficit.

4 Propagator on fractal derived from Minkowski
4-space

In Minkowski space, we must step away from fractals defined
by spherical voids because the wave equation – rather than
Poisson’s equation – prevails. The 4-space wave equation
is governed by initial conditions on 3-dimensional space
and boundary conditions on 2-dimensional walls, in con-
trast with the 4-space Poisson equation, which would require
conditions on the entirety of arbitrarily shaped 3-dimension-
al boundaries. For this reason we now assume cylindrical
voids, parallel to the time axis and 3-dimensionally spherical
in cross-section (or that we are in a Lorentz frame in which
the voids look that way). The fractal is now the distribution
of cross-section 3-spheres in position space; ρ and V now
refer directly to that distribution (Voids parallel to the time
axis also guarantees time-translation invariance and therefore
Hamiltonian quantum dynamics and unitarity).

As before, we want to demonstrate that the fractal has the
effect of multiplying the Lorentz-invariant free-space prop-
agator by an expression similar to (5). We can confine the
demonstration to the vicinity of the light cone, since that is the
only region where the free-space propagator, −q(|x |2+ie)−1

with infinitesimal e, really matters. (Also, we assume the
scalar field is massless because we are only interested in short
distances.) Near the light cone, propagation past a 4-cylinder
looks like a plane wave passing a polarizable 3-sphere. And
as long as the width of the plane-wave pulse � sphere sep-
aration, the basic logic of the dielectric model in Sect. 3 still
applies, leading again to the multiplier (5), because scattered
fields in the near field exactly reproduce statically induced
dipoles (see for example [5, Sec. 9.2]).

If plane-wave pulse-width not � sphere separation, then
presumably scattered waves from nearby spheres are unable
to add coherently, in which case one cannot include the factor
	k for that separation. In this way position-space power-law
screening (5) is augmented by an extra momentum-space
factor

(
ω

ρ1/3

)+ ln(1−ρV )/ ln ξ

(6)

where ω is the source frequency.
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5 Discussion

By focusing on scalar fields, we have begun a longer-term
attempt to provide an explicit physical basis for dimen-
sional regularization. In this paper, dimensional regulariza-
tion emerges as a considerable idealization: It ignores non-
unity f (�)or g(�) for small ε; and fractal screening (Eq. (4))
is really stepwise, not literally a smooth power law (although
perhaps the steps can be eliminated by defining the fractal in
the limit of vanishing ln ξ and ρV with finite ratio). These
non-idealizations clearly depend on details of how the under-
lying fractal is defined.

We readily acknowledge weaknesses in our reasoning. In
particular, it hinges on various approximations and idealiza-
tions, including a reliance on spherical voids or cross sec-
tions, dipole-only responses, and multiplicatively iterative
dielectric calculations.

Generalization to non-scalar fields is by no means ensured,
since they involve not just power-law screening but also non-
trivial component index structure and constraints related to
gauge invariance.

But if the fractal construction really does generalize to all
types of fields (and if it also generalizes to curved geome-
tries), then one can speculate that literally setting spacetime’s
dimension to 4 − ε might render gravity’s renormalizabil-
ity a non-issue without unification with other forces or as-
yet unobserved symmetries (assuming nothing discontinu-
ous but essential happens at ε = 0). Such a scenario has
some numerical plausibility: Consider quantum corrections
to the Einstein–Hilbert Lagrangian (1/2κ2)(−g)1/2R, where
κ2 = 8πG/c4 is proportional to Newton’s constant; g is the
determinant of the metric tensor; and R is the Ricci scalar,
essentially a sum of curvature components. Assume grav-
ity is minimally coupled to matter fields but not otherwise
unified with matter. The simplest induced nonrenormaliz-
able interactions, from coupling to a massless scalar field

[6] or massless photons [7], are in one loop and propor-
tional to (1/ε)(−g)1/2Q, where Q is quadratic in curvature
components. Dimensionally, the generic proportionality con-
stant can only be a geometric-combinatoric number times
L2
P/2κ2, where LP is the Planck length. The tightest “fifth

force” observational bound [8] on R+a2R2 extensions of the
Einstein–Hilbert action (i.e. Q = R2) is a2 < 4 × 10−9 m2,
suggesting ε = L2

P/a2 > 10−61 (ignoring geometric and
combinatoric factors), easily small enough to have escaped
observation. This echoes an earlier suggestion [9] that grav-
ity’s non-renormalizability could be mitigated with a self-
similar distribution of virtual black holes.
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