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Abstract This paper deals with the steady-state poly-
tropic fluid accretion onto a higher-dimensional Reissner–
Nordström black hole. We formulate the generalized mass
flux conservation equation, energy flux conservation and rel-
ativistic Bernoulli equation to discuss the accretion process.
The critical accretion is investigated by finding the critical
radius, the critical sound velocity, and the critical flow veloc-
ity. We also explore gas compression and temperature profiles
to analyze the asymptotic behavior. It is found that the results
for the Schwarzschild black hole are recovered when q = 0
in four dimensions. We conclude that the accretion process in
higher dimensions becomes slower in the presence of charge.

1 Introduction

The black hole (BH) is one of the celestial objects having such
a strong gravitational pull that the nearby matter, even light,
cannot escape from its gravitational field. There are different
ways to detect BHs in binary systems and the centers of
galaxies, as it cannot be observed directly. The detection of
its effect on the nearby matter is the one way and the most
promising is accretion. In astrophysics, accretion is defined as
the inward flow of matter surrounding a compact object under
the influence of the gravitational field. Recent developments
in the study of quasar luminosity, the relationship among
the masses of massive BHs, and the properties of their host
galaxies motivated the idea of accretion onto BHs [1].

Like most of the substances in the universe, all accreting
matter is in gaseous form. The problem of gas accretion by
a star was first studied by Hoyle and Lyttleton [2] and later
by Bondi and Hoyle [3]. Steady-state spherically symmetric
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accretion was considered in work by Bondi [4] in which a star
was considered at rest at in infinite gas cloud. In his classical
model, he studied the flow of a barotropic fluid in the context
of Newtonian gravity. Michel [5] extended this work in the
framework of general relativity by investigating steady-state
spherically symmetric inflow of gas onto a Schwarzschild
BH. Other important studies in this context are the luminosity
and the frequency spectrum, the effect of a magnetic field on
accreting ionized gases, and accretion onto a rotating BH [6–
8]. Malec [9] investigated relativistic spherically symmetric
accretion onto a BH with and without back reaction. He found
that the relativistic effects raise the accretion mass in the
absence of back reaction.

Shatskiy and Andreev [10] studied accretion onto a non-
rotating compact object in a comoving frame and explored
the dynamics of event horizon formation. Jamil et al. [11]
analyzed the effect of phantom-like dark energy onto a
Reissner–Nordström (RN) BH and found that accretion is
possible only through the outer horizon. Jamil and Akbar
[12] investigated accretion of exotic phantom energy onto
a (2 + 1)-dimensional Banados–Teitelboim–Zanelli (BTZ)
BH and showed that mass accretion due to phantom energy
is independent of the BH mass. Babichev et al. [13] described
steady-state spherically symmetric accretion of a perfect fluid
as well as a scalar field onto a RN BH and found the forma-
tion of a static atmosphere of fluid around a naked singular-
ity. The same authors [14] studied accretion of a spherically
symmetric metric with back reaction and showed that the
metric is of the Vaidya form near the horizon using pertur-
bation. de Freitas Pacheco [15] examined relativistic as well
as non-relativistic accretion onto a RN BH using two equa-
tions of state (EOSs) and found that the accretion was slightly
affected in the first case, while in the second case it reduced
up to 60 % as compared to the schwarzschild BH (for the
extreme RN case). Sharif and Abbas [16] investigated phan-
tom accretion onto a magnetically stringy charged BH and
found that the BH does not transform into an extremal BH
or a naked singularity.
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Recently, Park and Ricotti [17] studied the increase in
luminosity and growth rates of BHs moving at a supersonic
speed. Gaspari et al. [18] suggested that the cooling rates are
tightly linked to the BH accretion rates (ṀBH ≈ Ṁcool,core)
in the galactic core. Karkowski and Malec [19] studied steady
accretion onto a BH that is immersed in a cosmological uni-
verse and found that dark energy may halt this type of accre-
tion. Babichev et al. [20] investigated the interaction of dark
energy with a Schwarzschild as well as an RN BH and gave
physical reasons of the decrease in mass due to the accretion
of phantom energy. Ganguly et al. [21] examined the process
of accretion on a 4-dimensional string cloud and found an
increase in the accretion rate with respect to the string cloud
parameter.

The study of gravity in a theory such as braneworld (which
implies the existence of extra dimensions) has attracted many
people in the last few decades. This theory is based on the
fact that a (3+1)-dimensional brane is embedded in a (4+n)-
dimensional spacetime with n compact spacelike dimensions
[22]. It is suggested that in braneworld theory, the effects
of quantum gravity can be observed in the laboratory at
TeV energies. Also, these theories recommend that higher-
dimensional BHs can be produced in large hadron collid-
ers and cosmic ray experiments. With the development of
higher-dimensional theories [23], it would thus be interest-
ing to study BHs in higher dimensions.

Tangherlini [24] was the pioneer in the generalization of
the Schwarzschild BH in higher dimensions. Dadhich et al.
[25] found the first static spherically symmetric BH solu-
tion in higher dimensions in the context of the braneworld,
which has the same structure as a 4-dimensional RN BH. The
physics of higher-dimensional BHs is very different from
and richer than in four dimensions [26]. Accretion in higher
dimensions onto TeV-scale BHs was first studied by Giddings
and Mangano [27] in a Newtonian background. Sharif and
Abbas [28] investigated phantom energy accretion onto a 5-
dimensional charged BH and found the validity of the cosmic
censorship hypothesis. John et al. [29] examined steady-state
accretion onto a higher-dimensional Schwarzschild BH and
found a decrease in the accretion mass. Debnath [30] stud-
ied accretion onto a higher-dimensional charged BTZ BH
assuming a modified Chaplygin gas as accreting matter and
found that initially the BH mass increases and then decreases
to a certain finite value for the phantom stage.

In this paper, we study steady-state accretion onto a D-
dimensional RN BH using the technique of Michel [5] as
well as Shapiro and Teukolsky [31]. The paper is organized
as follows: in Sect. 2, we study analytic relativistic perfect
fluid accretion onto an RN BH in higher dimensions. Sec-
tion 3 investigates accretion on critical points. We also study
critical accretion with a polytropic EOS and obtain expres-
sions for gas compression and the temperature profile near

horizon. Finally, we summarize and discuss the results in the
last section.

2 General formalism for spherical accretion

In this section, we develop a general framework for accretion
onto a higher-dimensional spacetime and study the laws of
the conservation of mass and energy. The static spherically
symmetric higher-dimensional RN BH is given by [32]

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(d�2
D−2), (1)

where D is the spacetime dimension and

d�2
D−2 = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3 + · · ·

+
D−3∏

μ=1

sin2 θμdθ2
D−2

is the line element on a (D − 2)-dimensional unit sphere
whose volume is

�D−2 = 2π
D−1

2

�( D−1
2 )

.

The lapse function in terms of mass and charge parameters
μ and q is

f (r) = 1 − 2μ

r D−3 + q2

r2(D−3)
,

where μ = 8πGM
(D−2)�(D−2)

and q =
√

8πG
(D−2)(D−3)

Q are the

ADM mass and charge, respectively. When q2 > μ2, this
solution develops a singularity at r = 0, while for q2 ≤ μ2,
f (r) has two real roots

r± =
⎛

⎝μ ± μ

√

1 − q2

μ2

⎞

⎠

1
(D−3)

,

where r+ is the outer horizon and r− is the Cauchy horizon.
We consider steady-state inflow of gas onto a central mass

of the BH in a radial direction. The gas is assumed to be a
perfect fluid specified by the energy-momentum tensor

T συ = (ρ + p)uσuυ + pgσυ. (2)

Here p and ρ are the pressure and energy density of the
fluid and uσ = dxσ

ds is the fluid D-velocity, which satisfies
the normalization condition uσuσ = −1. We also define the
baryon number flux Jσ = nuσ , where n is the proper baryon
number density. The accretion process depends upon the two
conservation laws. If no particles are created or destroyed
then the particle number is conserved, i.e.,

∇σ J
σ = ∇σ (nuσ ) = 0. (3)

123



Eur. Phys. J. C (2016) 76 :147 Page 3 of 8 147

The law of conservation of energy-momentum tensor gives

∇σ T
σ
υ = 0. (4)

The non-zero components of the D-velocity are u0 = dt
ds and

ν(r) = u1 = dr
ds . Using uσuσ = −1, we have

u0 = (ν2 + 1 − 2μ

r D−3 + q2

r2(D−3) )
1
2

1 − 2μ

r D−3 + q2

r2(D−3)

.

For a D-dimensional RN BH, Eq. (3) takes the form

1

r D−2

d

dr
(r D−2nν) = 0. (5)

The null and radial components of Eq. (4) can be written as

1

r D−2

d

dr

⎡

⎣r D−2ν(ρ + p)

(
ν2 + 1 − 2μ

r D−3

+ q2

r2(D−3)

) 1
2

⎤

⎦ = 0, (6)

ν
dν

dr
= −

⎡

⎣dp

dr

⎛

⎝ν2 + 1 − 2μ

r D−3 + q2

r2(D−3)

ρ + p

⎞

⎠

+ (D − 3)

(
μ

r D−2 − q2

r2D−5

)⎤

⎦ . (7)

For q = 0 and D = 4, the above equations reduce to the
expressions for the Schwarzschild BH [5,31].

3 Critical accretion

This section is devoted to the study of the solutions passing
through critical points that describe the material falling into
a BH with increasing velocity. The behavior of the falling
fluid at critical points can express a variety of changes close
to the compact objects. The speed of sound in the medium is
also very important for a fluid as shown in the classical paper
by Bondi [4]. We consider an adiabatic fluid for which there
is no entropy production, hence the law of conservation of
mass-energy is defined as [31]

T dS = 0 = d
(ρ

n

)
+ pd

(
1

n

)
, (8)

where S is the entropy per baryon and T is the temperature. It
may be written as dρ

dn = ρ+p
n , leading to the adiabatic sound

speed α,

α2 ≡ dp

dρ
= n

ρ + p

dp

dρ
. (9)

Using this equation, the baryon and energy-momentum con-
servation become

ν′

ν
+ n′

n
+ D − 2

r
= 0, (10)

νν′ + α
n′

n

(
1 − 2μ

r D−3 + q2

r2(D−3)
+ ν2

)

+ (D − 3)

(
μ

r D−2 − q2

r2D−5

)
= 0, (11)

where a prime denotes differentiation with respect to r . Using
Eqs. (10) and (11), we obtain

ν′ = X1

X
, n′ = X2

X
, (12)

where

X1 = 1

n

[
α(D − 2)

r

(
ν2 + 1 − 2μ

r D−3 + q2

r2(D−3)

)

− (D − 3)

(
μ

r D−2 − q2

r2D−5

)]
, (13)

X2 = −1

ν

[
ν2(D − 2)

r
− (D − 3)

(
μ

r D−2 − q2

r2D−5

)]
,

(14)

X =
ν2 − α

(
ν2 + 1 − 2μ

r D−3 + q2

r2(D−3)

)

νn
. (15)

For large values of r (r → ∞), the flow satisfies ν2 	 1
and is subsonic (ν2 < α2), while the sound speed must be
sub-luminal (α2 < 1), thus Eq. (15) implies that

X 
 ν2 − α2

νn
< 0. (16)

At the event horizon, we have

X = ν2(1 − α2)

νn
> 0, (17)

under the causality constraint α2 < 1. It is mentioned here
that Eq. (17) is possible only for the extreme RN case, i.e.,
for q = μ. From Eqs. (16) and (17), we see that X must
pass through zero at r = rc. A flow with constant energy
and entropy must be smooth at every point. Thus, if the
denominator vanishes at some point, the numerator must
also vanish at that point, so for a smooth flow we must have
X1 = X2 = X = 0 at r = rc [31]. From Eqs. (13)–(15), we
obtain a relationship between the flow and the sound velocity:

ν2
c =

α2
c

(
1 − q2

r2(D−3)

)

1 + α2
c

(
D−1
D−3

) = D − 3

D − 2

(
μ

r D−3 − q2

r2(D−3)

)
,

(18)

where νc ≡ ν(rc) and αc ≡ α(rc). In the absence of a charge
parameter in four dimensions, the above relation is exactly
the same as obtained in [29]. To determine the accretion rate
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Ṁ , we integrate Eq. (5) over a (D − 1)-dimensional volume
and multiply by the baryon mass, mb; it follows that

Ṁ = 2π
D−1

2

�
( D−1

2

)r D−2mbnν, (19)

where Ṁ is the constant of integration (independent of r ,
having dimension of mass per unit time), related to the mass
accretion rate [4]. Equation (19) is the generalization of the
Bondi accretion rate in higher dimensions. For q = 0 and
D = 4, it reduces to the Schwarzschild case.

Following [20], Eqs. (5) and (6) lead to

nνr D−2 = A, (20)
(

ρ + p

n

)2 (
1 − 2μ

r D−3 + q2

r2(D−3)

)
=

(
ρ∞ + p∞

n∞

)2

,

(21)

where A is the constant of integration. Differentiating
Eqs. (20) and (21) and eliminating dρ, we have

dν

dr
= −ν

r

[
V 2 − ν2

1− 2μ

r D−3 + q2

r2(D−3)
+ν2

]

[
(D − 2)V 2 − (D−3)(

μ

r D−3 − q2

r2(D−3)
)

1− 2μ

r D−3 + q2

r2(D−3)
+ν2

] , (22)

where V 2 ≡ dln(ρ+p)
dn −1, which is equal to the sound veloc-

ity dp
dρ

= α2
c . Equation (21) is the generalized Bernoulli equa-

tion in D dimensions for a charged BH. Equating numerator
and denominator to zero, we obtain Eq. (18) and

V 2 = α2
c = (D − 3)(μr D−3 − q2)

(D − 2)r2(D−3) − (D − 1)μr D−3 + q2
. (23)

Equation (23) yields the critical radius:

r D−3
c = μα2

c (D − 1) + (D − 3)

2α2
c (D − 2)

×
⎡

⎣1 ±
[

1 − 4α2
c (D − 2)(D − 3 + α2

c )

α2
c (D − 1) + (D − 3)

q2

μ2

] 1
2

⎤

⎦ .

(24)

This equation leads to two possible solutions for the critical
radius corresponding to + and − signs. The first indicates the
critical radius outside the event horizon, which is a physically
acceptable solution. The second possibility shows the critical
radius between inner and outer horizons [11]. In the present
analysis, we are interested only in the first solution. In the
limit D = 4, our results correspond to [15,20].

3.1 Accretion with polytropic equation of state

The physical state of a homogeneous substance can be
described by an EoS. In order to determine an explicit value

of Ṁ as well as all the fundamental characteristics of the
flow, Eqs. (19) and (21) must be analyzed using the EoS. We
consider the polytropic EoS

p = knω, (25)

where k is a constant and ω is an adiabatic index satisfying
1 < ω < 5

3 . Inserting Eq. (25) into (8) and integrating, we
obtain

ρ = k

ω − 1
nω + mbn, (26)

where mb is the constant of integration obtained by compar-
ing with the total energy density ρ = mbn + ε, mbn is the
rest mass-energy density and ε is the internal energy density.
From Eqs. (25) and (26), we have

ωknω−1 = mbα
2

1 − α2

ω−1

. (27)

When α2

ω−1 	 1, we have n ∼ α
2

ω−1 [31], leading to

nc
n∞

≈
(

αc

α∞

) 2
ω−1

. (28)

Using Eqs. (25) and (26) in (21), it follows that

(
1 + α2

ω − 1 − α2

)2 (
1 − 2μ

r D−3 + q2

r2(D−3)
+ ν2

)

=
(

1 + α2∞
ω − 1 − α2∞

)2

. (29)

At critical radius, using (18) and inverting Eq. (29), we obtain

(
1 − α2

c

ω − 1

)2 (
(D − 3) + α2

c (D − 1)

D − 3

)

=
(

1 − α2∞
ω − 1

)2

. (30)

For large values of r (r > rc), the baryons are expected to
be non-relativistic (T 	 mc2/k = 1013K), where k and K
are the Planck length and Kelvin, respectively. In this system,
we must have α 	 αc 	 1. Expanding Eq. (30), we obtain
a relationship between the sound velocity at a critical point
and the point at infinity:

α2
c ≈ 2α2∞(D − 3)

(3D − 7) − ω(D − 1)
, (31)

which corresponds to [15] for D = 4. Using Eq. (31), the
critical radius takes the form

r D−3
c

≈
⎡

⎣1 +
[

(8α2∞(D − 2)(D − 3))((3D − 7) − ω(D − 1) + 2α2∞)

(2α2∞(D − 1) − (2D − 4))((2D − 7) − ω(D − 1))

q2

μ2

] 1
2

⎤

⎦

× μ((3D − 7) − ω(D − 1))

4α2∞(D − 2)(D − 3)
. (32)
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We evaluate the Bondi mass accretion rate Ṁ at the critical
point from Eq. (19) as follows:

Ṁ = 2π
D−1

2

�( D−1
2 )

r D−2
c mbncνc

= 2π
D−1

2

�( D−1
2 )

λcμ
D−2
D−3 mbn∞α

−( D−1
D−3 )

∞ f (e), (33)

where

λc =
(
D − 3

2

) ω+1
2(ω−1)

(
(3D − 7) − ω(D − 1)

4

) 7−3D+ω(D−1)
2(D−3)(ω−1)

× (D − 2)
2−D
D−3 (34)

is a dimensionless accretion parameter and

f (e)

=
⎡

⎣1 +
[
(8α2∞(D − 2)(D − 3))((3D − 7) − ω(D − 1) + 2α2∞)e2

(2α2∞(D − 1) − (2D − 4))((2D − 7) − ω(D − 1))

] D−1
4(D−3)

⎤

⎦

×
[

1 − e2
[
(3D − 7) − ω(D − 1)

4(D − 2)(D − 3)α2∞

×
⎡

⎣1 +
[
(8α2∞(D − 2)(D − 3))((3D − 7) − ω(D − 1) + 2α2∞)e2

(2α2∞(D − 1) − (2D − 4))((2D − 7) − ω(D − 1))

] 1
2

⎤

⎦

⎤

⎦
−1

⎤

⎥⎦ , (35)

here e = q2

μ2 . Re-writing Eq. (33) in terms of G and M , we
have

Ṁ = √
π

[
2

4D−9
D−3 (D − 2)−2( D−2

D−3 )

(
D − 1

2

) 1
D−3

]

× (GM)
D−2
D−3 mbn∞α

−( D−1
D−3 )

∞
(
D − 3

2

) ω+1
2(ω−1)

×
[

3D − 7 − ω(D − 1)

4

] 7−3D+ω(D−1)
2(D−3)(ω−1)

f (e) (36)

and

f (e) =
⎡

⎢⎣1 +
⎡

⎣ (8α2∞(D − 2)(D − 3))((3D − 7) − ω(D − 1) + 2α2∞)

(2α2∞(D − 1) − (2D − 4))((2D − 7) − ω(D − 1))

× πD−2(D − 2)Q2

2G(D − 3)
(
�

( D−1
2

)2
)

⎤

⎦

D−1
4(D−3)

⎤

⎥⎦

×

⎡

⎢⎢⎣1 − πD−2(D − 2)Q2

2G(D − 3)
(
�

( D−1
2

)2
)

⎡

⎢⎣
(3D − 7) − ω(D − 1)

4(D − 2)(D − 3)α2∞

×
⎡

⎢⎣1 +
⎡

⎣ (8α2∞(D−2)(D−3))((3D−7)−ω(D−1)+2α2∞)

(2α2∞(D−1) − (2D−4))((2D−7) − ω(D−1))

× πD−2(D − 2)Q2

2G(D − 3)
(
�

( D−1
2

)2
)

⎤

⎦

1
2
⎤

⎥⎦

⎤

⎥⎦

−1
⎤

⎥⎥⎦ . (37)

Equation (36) shows that the accretion rate in a charged
background is modified by the term f (e). However, the

mass accretion rate scales as Ṁ ∼ M
D−2
D−3 , which corre-

sponds to the Newtonian [4] as well as relativistic model
[31] for e = 0, D = 4. For the standard values of the
adiabatic index (1 < ω < 5

3 ), different values of e and
G = 1, M = M⊙ = 1.989 × 1033 g, mb = 1.67 × 10−24 g,

α∞ = 106 cm s−1, n∞ = 1 cm−3, the behavior of rc, λc
and Ṁ is given in Tables 1, 2, 3, 4, 5, 6, and 7. The graphical
representation of Ṁ and λc is shown in Figs. 1 and 2. It is

seen that the dimensions as well as charge parameter affect
the rate of accretion. The accretion becomes slower as the
dimension increases. The rate of accretion for small values
of charge is higher as compared to large charge values. Thus
Ṁ shows decreasing behavior for increasing dimensions as
well as charge.

3.2 Asymptotic analysis

Here we estimate the flow parameters for rH < r 	 rc as
well as r = rc. The gas passes through supersonic flow at
distance below the Bondi radius, i.e., ν > α when rH < r 	
rc. We find an upper bound of the radial dependence of the
gas velocity [29,31],

ν2 ≈ 2μ

r D−3 − q2

r2(D−3)
. (38)

The gas compression rate from Eqs. (19), (33), and (38)
becomes

n(r)

n∞
≈ λc√

2
f (e)

(
μ

r D−3α2∞

) D−1
2(D−3)

(
1 − q2

4μr D−3

)
. (39)

We consider a Maxwell–Boltzmann gas, P = nkBT . From
Eqs. (25) and (39) we calculate the adiabatic temperature
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Table 1 Accretion parameter λc for ω = 1.2, 4
3 , 1.6

D λc1 λc2 λc3

4 0.2488 0.1768 0.0917

5 0.4967 0.4330 0.3545

6 0.6004 0.5473 0.4818

7 0.6543 0.6077 0.5503

8 0.6868 0.6444 0.5922

9 0.7085 0.6689 0.6202

10 0.7239 0.6864 0.6403

11 0.7353 0.6994 0.6553

Table 2 Critical radius rc for ω = 1.1 and e = 0.2, 0.4, 0.67

D rc1 rc2 rc3

4 9.8156 × 1026 1.9631 × 1026 3.2882 × 1026

5 3.4519 × 1026 6.9118 × 1026 1.1577 × 1026

6 1.7840 × 1025 3.5681 × 1025 5.9765 × 1025

7 1.0928 × 1025 2.1855 × 1024 3.6607 × 1025

8 7.3908 × 1025 1.4782 × 1024 2.4759 × 1024

9 5.9955 × 1025 1.0671 × 1024 1.7874 × 1024

10 3.4519 × 1024 8.0682 × 1023 1.3515 × 1023

11 3.4519 × 1024 6.3162 × 1023 1.0580 × 1023

Table 3 Critical radius rc for ω = 4
3 and e = 0.2, 0.4, 0.67

D rc1 rc2 rc3

4 9.1026 × 1026 1.8205 × 1026 3.0494 × 1026

5 3.2566 × 1026 6.5133 × 1026 1.0910 × 1026

6 1.6925 × 1026 3.3850 × 1025 5.6698 × 1025

7 1.0405 × 1025 2.0810 × 1025 3.4857 × 1025

8 7.0539 × 1025 1.4108 × 1025 2.3630 × 1024

9 3.8662 × 1025 1.0201 × 1024 1.7087 × 1024

10 3.0523 × 1024 7.1221 × 1024 1.2935 × 1023

11 3.0351 × 1024 6.60505 × 1023 1.0135 × 1023

Table 4 Critical radius rc for ω = 1.6 and e = 0.2, 0.4, 0.67

D rc1 rc2 rc3

4 8.4515 × 1026 1.6903 × 1026 2.8313 × 1026

5 3.0663 × 1026 6.1326 × 1026 1.0272 × 1026

6 1.6033 × 1026 3.2067 × 1025 5.6117 × 1025

7 1.8910 × 1026 1.9782 × 1025 3.4618 × 1025

8 6.7201 × 1025 1.3440 × 1024 2.3520 × 1024

9 4.8665 × 1025 9.7330 × 1024 2.6183 × 1024

10 3.6882 × 1024 7.3764 × 1023 1.8443 × 1023

11 2.8922 × 1024 5.7844 × 1023 1.4461 × 1023

Table 5 Accretion rate Ṁ for ω = 1.1 and e = 0.2, 0.4, 0.67

D Ṁ1 Ṁ2 Ṁ3

4 3.5568 × 1040 6.2876 × 1039 1.9883 × 1037

5 2.0451 × 1027 5.1129 × 1026 5.1129 × 1024

6 9.7005 × 1022 2.7221 × 1022 3.9958 × 1020

7 6.9321 × 1022 2.0611 × 1020 3.6657 × 1018

8 3.4150 × 1019 3.5568 × 1019 2.0977 × 1017

9 4.1980 × 1018 1.3223 × 1018 2.8499 × 1016

10 8.3930 × 1017 2.6878 × 1017 6.1199 × 1015

11 2.2132 × 1016 7.1759 × 1016 1.7028 × 1015

Table 6 Accretion rate Ṁ for ω = 4
3 and e = 0.2, 0.4, 0.67

D Ṁ1 Ṁ2 Ṁ3

4 7.0978 × 1037 1.2547 × 1037 1.9559 × 1038

5 1.6580 × 1025 4.1449 × 1024 3.7304 × 1025

6 1.2230 × 1021 3.4321 × 1020 2.5720 × 1021

7 1.0816 × 1019 3.2273 × 1018 2.0681 × 1019

8 6.0816 × 1018 1.8721 × 1017 1.2116 × 1018

9 1.7298 × 1017 2.5651 × 1016 1.6003 × 1017

10 3.5541 × 1016 5.5404 × 1015 3.3367 × 1016

4.7735 × 1016 1.5481 × 1015 9.2243 × 1015

Table 7 Accretion rate Ṁ for ω = 1.6 and e = 0.2, 0.4, 0.67

D Ṁ1 Ṁ2 Ṁ3

4 1.8221 × 1039 1.8438 × 1038 8.9820 × 1037

5 3.1419 × 1026 5.0271 × 1025 2.8278 × 1025

6 1.2230 × 1021 3.4321 × 1020 2.5720 × 1021

7 1.5512 × 1020 3.1211 × 1019 1.8865 × 1019

8 8.1671 × 1018 1.7203 × 1018 1.0549 × 1018

9 1.0480 × 1018 2.2760 × 1017 1.4092 × 1017

10 2.1592 × 1017 4.7927 × 1016 2.9878 × 1016

11 5.8212 × 1016 1.3135 × 1016 8.2307 × 1015

profile as

T (r)

T∞
= n(r)

n∞

≈
[

λc√
2
f (e)

(
μ

r D−3α2∞

) D−1
2(D−3)

(
1 − q2

4μr D−3

)]ω−1

,

(40)

at the event horizon r = rH = [μ(1 + (1 − e2)
1
2 )] 1

D−3 .
Since the flow is supersonic below the Bondi radius, the flow
velocity is still approximated by Eq. (38). At the event hori-
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Fig. 1 Plots of the accretion rate Ṁ as a function of D = 4−11 and λc for ω = 1.1, 4
3 , 1.6 and e = 0.2, 0.4, 0.64

5 6 7 8 9 10 11
D

5

10

15

20

25

c

Fig. 2 Behavior of accretion parameter λc corresponding to D =
4−11 where red, blue and green curves indicate ω = 1.1, 4

3 , and 1.6

zon, we have νH = ν2(rH ) ≈
(

1 − e2

1+(1−e2)
1
2

)
1

1+(1−e2)
1
2

.

Using Eqs. (39) and (40), the gas compression rate and the
adiabatic temperature profile at the event horizon take the
following form:

nH

n∞
≈ λc f (e)√

2(1 + (1 − e2)
D−1

2(D−3) )

×
(

4(1 + (1 − e2)
1
2 ) − e2

4(1 + (1 − e2)
1
2 )

)(
c

α∞

) D−1
D−3

, (41)

TH
T∞

≈
[

λc f (e)√
2(1 + (1 − e2)

D−1
2(D−3) )

×
(

4(1 + (1 − e2)
1
2 ) − e2

4(1 + (1 − e2)
1
2 )

) (
c

α∞

) D−1
D−3

]ω−1

,

(42)

where c is the speed of light. In the 4-dimensional case, when
e = 0 the above expressions correspond to the spherical
accretion onto a Schwarzschild BH [31].

4 Concluding remarks

It is believed that matter accreting onto a gravitating body
is the source of a power supply in closed binary systems,
galactic nuclei, and quasars [33]. There has been a grow-
ing interest to study theories which predict gravity in extra
dimensions, such as string theories and braneworld cosmol-
ogy. This paper provides the effect of steady-state spherically
symmetric adiabatic accretion onto a charged D-dimensional
BH and explores critical accretion following Michel [5] as
well as Shapiro and Teukolsky [31]. The critical radius and
mass accretion rate as well as the gas compression and tem-
perature profile (below the critical radius and at the event
horizon) are found. It turns out that the mass accretion rate
depends upon the BH mass and dimensions. Also, Ṁ is mod-
ified by the term f (e), which continuously decreases as the
dimension increases, and the accretion rate for large values
of charge is less than that of small values. We observe that the
accretion rate decreases gradually but the process is slower
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than the higher-dimensional Schwarzschild BH [29]. We con-
clude that the accretion rate of a charged BH slows down in
higher dimensions. It is interesting to mention here that all
our results for q = 0 and D = 4 correspond to the accretion
rate of a Schwarzschild BH. This leads to the generalization
of the results presented in [5,31] in terms of the accretion
onto a charged BH in higher dimensions.
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