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Abstract A method is proposed to measure the relative
azimuthal angle distributions involving two or more event
planes of different order in heavy ion collisions using
a Fourier analysis technique. The analysis procedure is
demonstrated for correlations involving two and three event
planes (®,, ®@,, and @;). The Fourier coefficients of these
distributions are found to coincide with previously proposed
correlators, such as cos(6@, — 6@®3) and cos(P| + 2P, —
3®3) etc., hence the method provides a natural framework
for studying these correlators at the same time. Using a
Monte Carlo Glauber model to simulate Au+Au collisions
with fluctuating initial geometry, we are able to identify sev-
eral new two- or three-plane correlators that have sizable
magnitudes and should be measured experimentally.

1 Introduction

In heavy ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC), the fluc-
tuations of the positions of nucleons in the overlap region
are found to play an important role in controlling the shape
of the initial geometry of the created matter, which subse-
quently controls the azimuthal anisotropy of the particles in
the final state [1-3]. The shape of the geometry in azimuth
can be characterized by a set of multi-pole components (also
known as “eccentricities”) at different angular scale, calcu-
lated from the participants and binary collisions at (r, ¢) [4]:

V(r2cosng)? + (r2sinng)?
(r?)

with a weight of § = 0.14 for binary collisions and (1 —
8)/2 = 0.43 for participants [5], where (r, ¢) are calculated
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relative to the weighted center of gravity. The orientations
of the minor and major axes for each moment n are given by

. atan2((r?sinng), (r’cosn¢g))

n n
and
qﬁ,f =P, +m/n 3)

respectively. The minor axis direction @,, is also known as
the nth-order participant plane (PP). The values of ¢, and
@,, can be calculated easily using simple geometric models
such as Monte Carlo Glauber code from [6].

When fluctuations are small and linearized hydrody-
namics is applicable, each ¢, is expected to independently
drive the corresponding nth-order anisotropic flow v, along
®,, [4]. In this case, one may rely on a simple Glauber model
calculation to estimate the correlations between anisotropic
flows of different order." Previous studies [3, 7-11] show
that significant correlations can exist between @, and @4
due to the almond shape of the average collision geometry.
However, correlations involving odd planes for n > 2 are
found to be generally weak except in very peripheral colli-
sions, e.g. between @, and @3 or between @, and @5 [7].
Experimental studies support a strong correlation between
@, and @4 [12, 13], but a weak correlation between &, and
@3 [14, 15]. The correlations among three planes of different
order have also been investigated recently [3, 10, 11], such
as @1 + 2®, — 3®3 and @1 — 4P, + 3P3; they are argued
to contain strong correlations between the dipole asymmetry
and the triangularity. Here we propose an alternative exper-
imental method for measuring these correlations. The ex-

I'This was found, via a hydrodynamics calculation, to be approximately
true for v, < 3, but not so for n > 3 except in central collisions [9, 16].
Our estimation of higher order @, should be digested with this caveat
in mind.
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pected performance of this method is evaluated based on the
correlation signals from Glauber model.

2 Method

The nth-order flow has n-fold symmetry in azimuth, and
the correlations between flow directions @, and ®,, are
completely described by the differential distribution d Neyis/
(d(k(D, — D)), with k being the least common multiple
of n and m, i.e. k = LCM(n, m). This distribution should be
an even function due to symmetry, and can be expanded into
a Fourier series:

dN, >

evts j .

— "« 2§ v,/ k(P, — @ 4
I R~
Vil m = (c08 jk(®y — ) )

In a real experiment, the underlying true event plane di-
rections @, and @, are unattainable due to limited detector
acceptance and finite multiplicity. They are approximated
by the measured event plane angle ¥, and ¥,,, calculated
based on the azimuthal distribution of particles in the de-
tector acceptance. The coefficients (cos jk(®, — ®,,)) can
be obtained by calculating the raw coefficients (cos jk(¥;, —
¥,,)), followed by a simple correction for finite event plane
resolution:

i _ (cos jk(Wy — W) (6)
"M Res{ jkW, }Res{ jkW, }
Res{jk¥,} = (COSjk(lI/n - (15”)> @)

The resolution factor Res{jk¥,} can be determined using
the standard two-subevent or three-subevent methods [17].
To avoid auto-correlations, the @,, and @,, should be mea-
sured using sub-events covering different n ranges, prefer-
ably with a gap in between.

Interestingly, some of the two plane correlators defined
by Eq. (5) are related to the so called mixed harmonics,
referring to v;, measured in @, event plane for integer
[ > 2, denoted as v;,{®,} (see Ref. [17]). For example,
it is straightforward to show that Vzl’ 4 18 simply the ra-
tio of the integral v4 measured in the @, plane (v4{P>})
to the integral v4 measured in the @4 plane (v4{®P4}):
(cos4(Dr — Da)) = va{D2}/v4{Ds}. More generally, one
has:

Vi (P}
U { P}
Additional examples include (cos6(®@; — Pg)) = ve{P2}/
v6{Ps} and (cos 6(P3 — P¢)) = ve{P3}/ve{Pe}.

The method described above can be generalized to corre-
lations involving three or more event planes. As pointed out

(cosm(dﬁn — (Dm)> = mmodn =20 ®)
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in Ref. [10], the correlations that can be measured experi-
mentally, involve combination of / planes of different order:
c1P1 + 2Py + -+l ®; with ¢y +2¢p + -+ -+ 1c; = 0.
The correlations involving three planes of different order,
e.g. @1, P and P3, have the following form:

c1P1 + 202D 4+ 3¢3DP3 = 22(Dr — D) + c33(D3 — D),
=Py 1 +c3P31 9

where we use the constraint c; +2c¢3 4 3¢3 = 0 and we adopt
the short-hand notations: @, ,, = k(P — ), Y.m =
k¥, —¥,,). This type of correlations can be generally deter-
mined from the underlying 2-D distribution in (@21, @3,1)
via a similar Fourier expansion approach:

d2NCVtS

o
——— x1+2 Vj cos jP +Vj cos jP
dd, 1dds3 Z[ 1,2€08 %21 1,3€08J 3,1]

j=1

o0
+2 ) Vipjeosi®ai £ @3 (10)
i,j=1

This series is expected to converge quickly for non-peripheral
collisions. Therefore, only the terms for i, j < 3 are required
(see Fig. 5). The coefficients are:

- . .
Vias =(cosi®a1 £ j@31))
= (cosi®y 1 cos jP31) F (siniPy g sin jP3 1) (11)

Under this notation, the two-plane correlator can be treated
as special case: Vli”g’3 = Vl"!z, Vl(?’zjj =V/; and Vﬁjz’,gzj =
V3{ ,- The average of the sine term in Eq. (11) may not be
zero, if the fluctuations of @, and @3 relative to @; are cor-
related, i.e. @, and @3 prefer to appear simultaneously to
one side of @;. It represents a non-trivial correlation that is
of great interest for understanding the nature of the fluctua-
tions (see also [3]).

A similar resolution correction procedure can be used to
connect the measured correlated with the corrected one:

i+j (cos(i¥r,1 £ j¥3,1))
1,23 7 Res{|2i + 3 |¥; JRes{2i ¥ }Res{3j¥3}

12)

where we have assumed that ¥, is distributed randomly
around @,,, such that (sin jn(¥, — ®,)) = 0. Again, the ¥,
U, and ¥3 should be calculated from subevents covering dif-
ferent 1 acceptances to avoid auto-correlations.

In [3], Teaney and Yan proposed to study the correla-
tor cos(@; + 2y — 3P3) and cos(P; — 4Py + 3P3). In
our notations, they correspond to the cosine average of the
2-D distribution (@7 1, @3,1) projected along the direction
@i,j)=(1,—1) and (2, —1), respectively. Our framework
provides a natural way to visualize and systematize the study
of these correlators.
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Other triple plane correlators can be similarly analyzed,
the first few are

C1P1 + 2002 +4cs Py = 2P21 + 4Py 1 (13)
c1P1 +3c3P3 +4c4 Py = c3P3,1 + c4Pa i (14)
20,8 + 3c3D3 + dey By = %qbg,z + 4Py (15)
1P +202@P + 5c5Ps = 2P 1 + ¢5Ps ) (16)
c1P1 +3c2@3 + 5c5Ps = c3P3 1 + ¢c5Ps | (17)

Note that ¢3/2 in Eq. (15) is an integer by the requirement
2¢7 4 3c¢3+4cq4 = 0. These correlators can be uniquely iden-
tified with one of the Fourier coefficients in the double dif-
ferential distributions similar to Eq. (10). However, the ex-
pression of triple plane correlator in terms of the correlation
between two di-plane correlators is not always possible, for
example (cos(2®; + 3P3 — 5Ps)). In this case, it can be
regarded as a sum of the Fourier coefficients for triple dif-
ferential distributions d2 Neys /(d D3 2d D5 1dPs5 3) that con-
tribute to cos(2®;, 4+ 3Pz — 5Ps).

The measurement of correlations involving two or more
event planes are feasible at the LHC due to the large detec-
tor coverage in n (—5 < n < 5 in ATLAS and CMS), and
excellent reaction plane resolution [18, 19]. This allows the
choice of many non-overlapping sub-events, each with very
good n coverage for these multi-plane correlation measure-
ments. This works as long as the true event plane angle does
not rotate as a function of pseudorapidity and so far there are
no experimental evidences for this rotation.

The coefficients V7 ,, or V,i’,j;jh are related to the pre-
viously proposed multi-particle’cc’)rrelators from Refs. [10,
11]. That approach effectively applies a |c, |-particle weight
v,{,c”} = (V)1 (Vn)2 - - - (Vn)), if the angle nc, P, appears in
the correlator. This weight maximizes the correlation signal
and reduce the contribution for events which have small v,,.
For cos(c,n®, + ¢,,m®,,) and cos(c,n®, + cym®,, +

chh®y,), the weights are pllentiylleml} 3 v,{llc””v,{,llc’”‘}v,{llchl},

respectively; they are then divided by (vi"!'vllnlly and

(v,{llc” Y v,{,lf’” Y v}{llch l}) to obtain the true correlations. Note that

the weighting procedure can also amplify contributions from
the tail of the ¢, distribution, especially for large values
of ¢, this may complicate the mapping from the measure-
ment to correlations between ¢,,.

In contrast, all events have the same weight in our ap-
proach (including those with small €,, values unfortunately).
In our opinion, the two methods are complimentary to each
other. In fact, it is possible to construct some hybrid cor-
relators that involves azimuthal angle of both event planes
and single particles. For example, one can consider the fol-
lowing mixed correlator between a + b particles and event

planes ¥,,, ¥,,;:
(COS(nCn(Dn — mCm(p’”))u,(,“)v,‘,f’)

{cos(X i + n(cn — @)W + m(cm — b)¥)) as)
WAl Res{n(c, — a)WaRestm (cp — b)Wy)

Z(pg’l:l =n(@1+ -+ @a) + m(pgy1 + -+ darp) (19)

where nc; —mcey, =0, ¢1, ..., Pq4p are azimuthal angles of

a + b particles, and subscript v,{f'}v,{f V indicates the weight-
ing factor introduced by those particle multiplets. Similar
formula can be generalized to correlations involving more

than two event planes. Three interesting examples are:
(cos(3¢1 + 3¢ — 6¥7))

(0 @ _ 20
(cos 6( 3))v§2) ((v3)1(v3)2)Res{6W} 0

_ {cos(@1 + ¢ —2¥))
(0821 = P2y = {0 o Res2Es] 2V

_ {cos(¢1 + 29, — 3¥3))
(cos(@1 +20, = 303)),,,, = (wv,)Res(2%5)Res(3%3)

(22)

where w(pr,n) = pr — (p$)(m)/{pr)(n) is the pr and 7
dependent weight (w is rapidity-even for Au+Au collisions)
that designed to suppress global momentum conservation ef-
fects and maximizing the vy signal (or effectively increasing
the resolution for ¥y) [10, 15, 20, 21]. Even though terms
related to vy (¢1 and/or ¢,) appear in Egs. (21)—(22), the
global momentum conservation effects are expected to be
either negligible Eq. (21) or absent Eq. (22) for these corre-
lators [15, 22].

The hybrid correlators are useful in real experiments
where detector subsystems have limited geometrical accep-
tance, finite granularity (so can’t distinguish individual par-
ticles), limited pt reach or no pr information at all. In this
case, it is straightforward to calibrate the event plane mea-
surement, while the calibration procedure could be more in-
volved for multi-particle correlations [23].

3 Expected behavior from Glauber and CGC models
3.1 Correlation between two planes

Similar to [7], we use a simple Glauber model [24] to es-
timate the level of the correlations between nth- and mth-
order participant plane. About 2.5 Million Au+Au colli-
sions are simulated, where each Au ion is populated ran-
domly with nucleons with a hard-core of 0.3 fm in radii, ac-
cording to the Woods—Saxon distribution with a radius of
6.38 fm and diffuseness of 0.535 fm. A nucleon-nucleon
cross-section of ¢ = 42 mb is used. The &, and ¢, are

@ Springer
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defined as a combination of participants and binary colli-
sions in the transverse plane as mentioned in the introduc-
tion. However, instead of using the minor axes of ¢, as the
proxy for the true event planes, we actually calculate the cor-
relations between the major axes, which are related to the
former by a simple phase shift &, ,:

(23)
(24)

k((D; - 45:1) = k(én —Py) + sn,m
Spm = k(1/n — 1/m)m

The corresponding Fourier coefficients are denoted as
V,im = (cosk(®} — ®})), and are related to V!, as
Vi = (cos8) Vi, (25)
The reason for doing this is a simple matter of convenience:
the correlations between major axes are found to be almost
always positive in the Glauber model, hence using major
axes simplifies the presentation. It is interesting to note that
the phase shift, when folded to [0, 2], is (8, , mod 27) =
0 or 7. The latter case leads to a sign flip: anfn =— V,{m
The top panels of Fig. 1 show the 4(®5 — &7) correla-
tions predicted by the Monte Carlo Glauber model. The cor-
relation is weak in central collisions but is quite strong in pe-
ripheral collisions. This is understood [7, 9] due to a detailed
interplay between the fluctuation and average shape for the
collision geometry: the central collisions are fluctuation-
dominated, hence @,, are largely uncorrelated, while the pe-
ripheral collisions are dominated by the average geometry
which has €3, components that are aligned [25]. Figure 1

also shows that the first order component captures most of
the shape information in central collisions. In contrast, many
components are needed to describe the tight correlation in
peripheral collisions. This behavior is generally true in the
Glauber model: whenever the first term Vn“;n is large, more
higher-order terms are needed to describe the full distribu-
tion. Note that if the participant planes are used instead, the
distribution 4(®, — @4) would show an anti-correlation: the

distributions have their minima at 0, and the sign of sz 4

alternates between positive and negative: Vy , = (—1)/Vy;.

The calculations are extended for all types of correla-
tions for k up to 16. Of course, additional correlations can
also be calculated but the resolution is expected to deterio-
rate quickly for large values of k. The centrality dependence
of these correlations, characterized by the first Fourier co-
efficient an,";n, are shown in Fig. 2, where the centrality is
characterized by number of participating nucleons (Npart).
In most cases, the correlations are found to be either con-
sistent with zero or positive (except for Vzl”g in mid-central
collisions). In particular, strong correlations are observed for
(D5 — D)), 6(P; — Pf) and 6(P; — Df); they are presum-
ably associated with the average geometry. The correlations
are small in central collisions and over the full range for
other choices of n and m, suggesting that the correlations
are generally weak when they are dominated by fluctuations.
We would like to draw the reader’s attention to the bottom
panels, which suggest that there are significant correlations
between @ and all other higher-order PPs. Recently, signif-
icant dipolar flow v; has been observed in Pb—Pb collisions
at the LHC by the ATLAS Collaboration [18] and a theoret-

Fig. 1 (Top panels) The
distribution of the angle
difference between major axes
for €3 and €4 in two centrality
intervals, with the thin (thick)
lines indicating the contribution
from the first six harmonics (the
sum). (Bottom panel) The
Fourier spectra (Color figure
online)
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Fig. 2 Centrality dependence of first Fourier coefficient of the corre-
lation anjn = (cosk(¥," — ¥,*)) for various choices of n and m (Color
figure online)

ical group [26] based on the ALICE data [27]; large dipo-
lar flow is also predicted in hydrodynamic [28] or transport
models [21]. Therefore, it is reasonable to assume that the
correlations between dipolar flow and higher-order flow is
large and measurable, as long as one can find a way to deter-
mine @ without the bias of the global momentum conser-
vation effect. One possibility might be to use the modified
event plane method from Ref. [20].

To get a feeling on how many Vﬁlj;, terms are needed
to exhaust the information encoded in distribution k(®;F —
@), in Fig. 3 we show the centrality distribution of an, .
for several values of j for j > 1. Most of correlations are
exhausted by including the j = 1-5, except for a few cases
at Npare < 100, such as 4(®5 — @) and 3(®} — @3).

The results presented in Figs. 1-3 are obtained using the
r? weighting (i.e. Eq. (2)) and Glauber model. Alternatively
we have calculated the @, using the r”* weighting for n > 1
and r> weighing for n = 1 [3]; we also repeated the same
calculation using a CGC (Color Glass Condensate) geome-
try [29, 30] for both the 7% and r" weighting. The results for
these three cases are shown in Fig. 4 for j = 1. The main ob-
servations are qualitatively similar to Fig. 2. However, there
are some interesting changes in the magnitudes of some cor-
relation values: the use of CGC model increases the corre-
lation for (n, m) = (2,4) and (2, 6) but decreases the corre-
lation for (n,m) = (3, 6) in mid-central collisions; the use

of " weighting also in general increases V;/7, and affects
the relative magnitude of V,,j, ¥ between (n,m)=(2,4) and
(3, 6) in central collisions.

Due to the phase shift between the two types of correla-
tions given by Eq. (25), many positive V,,jj,, values in Figs. 2
and 3 would imply the corresponding V/,, values are neg-
ative. This happens for odd j and (n,m) = (2, 3), (3, 6),
2,5), (1,2), (1,4) and (1, 6). If the nth-order flow direc-
tion align with @, as predicted by the Glauber model, one
should expect the signs of the correlators between the ex-
perimental event plane in Eq. (6) to exhibit very interesting
dependence on choice of (n,m). On the other hand, if the
dynamic mixing between flow of different orders is impor-
tant [9], then this dependence could be strongly distorted.
Therefore, direct measurements of the correlations between
the experimentally determined event planes of different or-
der can help to resolve this issue.

3.2 Correlation between three planes

It is straightforward to carry out the study of correlations
between three planes. The “*” notation is again used to
indicate the plane calculated using the major axes. The
top panels of Fig. 5 show the 2-D normalized distribution
d?Neys/ (d(bi"’ld<1§;1) in 40-50 % centrality interval; the

corresponding V{”éz coefficients are shown in the bottom
panels. The coefficients along i = 0 or j = 0 simply re-
flect two plane correlators, Vl'{ ; and VI"E, respectively. The
interesting coefficients are those for 7, j # 0. A tight di-
agonal correlation in the top panels can be identified with
a large (i, j) = (1, —1) component, which corresponds to
(cos(@] + 295 — 3d3)). This correlation is very weak in
central collision and increases gradually towards peripheral
collisions (see Figs. 11-14), similar to the finding in [3]
(there is a sign difference due to the use of major axes
here). This correlation is also observed to be generally big-
ger for " weighting and CGC geometry. Hence a precise
determination of this correlator could allow us to distin-
guish between different models for initial geometry. Sizable
coefficients are also observed for (i, j) = (1, —2), (2, —-2)
and (1, 1), corresponding to (cos(4®] + 2@ — 69P7J)),
(cos(2P] +4P5 —607)) and (cos(5PT — 285 —3P3)), re-
spectively. Also note that the coefficients for (i, j) = (2, —1)
and (3, —2), corresponding to {cos(®} —4®; + 3PJ)) and
(cos6(P; — @3)), are nearly zero consistent with the find-
ings in Ref. [3] and Fig. 2, respectively.

More results on other types of three plane correlations
are summarized in Figs. 6-10. It is generally observed
that the Fourier components are always bigger for r"-
weighting than for r2-weighting, and they are slightly big-
ger for the CGC geometry than for the Glauber geometry.
Some of the correlators are quite large, e.g. (cos(2P] +
205 — 497)), (cosRPy — 6@F + 4D))), (cosRP] +
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6P —8P))), (cos(P +3P3 —4P))), (cosRP| — 65 +
490))),(cos(P] +4P5 — 5P5)), (cos(3P] + 25 — 5P7)),
(cos(@f — 6@F + 5P7)), (cosRP} + 3P — 507)), and
(cos(4@] — 9D3 + 5&5)). These correlators are shown as
a function of centrality in Figs. 11, 12, 13, and 14. In gen-
eral, they all increase from central to more peripheral colli-
sions, however the rate of the change depends on the type
of the correlator. The correlator (cos(®} + 2@ — 3P3))
has the largest values in most cases, except for " weight-
ing in central and mid-central collision, where the correlator
(cos(@] + 3P — 4d))) has the largest values.

Interestingly, most of these correlators, when defined rel-
ative to the major axis, are positive (the negative values are
indicated with red “x” in Figs. 5-10). However, some of
these correlations are likely to be strongly distorted due to
the mixing during the hydrodynamic evolution, especially
for those involving @} and @3. Nevertheless, it would be
interesting to measure these quantities experimentally and
compare with our predictions.

4 Discussion and conclusion

In summary, we discussed a method for measuring the cor-
relations between the directions of the anisotropic flow of

different orders. This method involves Fourier transforming
the differential distribution of the correlations between dif-
ferent event planes into various Fourier components, where
each component is corrected separately by an event plane
resolution term. This method has the advantage of simul-
taneously analyzing many different correlators, especially
those involving three or more different event planes, thus
help identifying significant components.

The expected strength of various two- or three-plane cor-
relators are estimated using a Monte Carlo Glauber model
or CGC model. Strong positive correlations are seen be-
tween the major axes of two eccentricities in mid-central and
peripheral collisions for (n,m) = (2,4), (2,6), (3,6), and
those involving the first-order eccentricity. Similarly, several
significant three-plane correlators have also been identified,
revealing novel correlation patterns expected from the aver-
age geometry and/or initial state fluctuations. These strong
correlations imply the need to measure several two- or three-
plane correlators in order to describe the full distribution.
A detailed comparison of the correlations calculated here
with the data could shed light on the role of the initial geom-
etry fluctuations and dynamic mixing during the hydrody-
namic evolution leading to harmonic flow in the final state.

Our discussion so far has decoupled the magnitude of the
flow v,, from its phases @,,. In principle, the correlation is ill-
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defined for events with very small v,,. However these events ~ References

are expected to have very broad raw correlation distribu-
tion and very poor resolution (i.e. small Res{jk¥,}), thus
their contributions to the numerator and the denominator of
Eq. (6) are naturally suppressed. Nevertheless, it is possible
that the strength of the event plane correlation may depend
on the magnitude of the v,,. This dependence can be studied
by first divide the events in a given centrality bin into var-
ious classes according to e.g. their v, values, measure the
raw correlation and resolution factors in each event class,
and then use Eq. (6) to obtain the true correlation strength
for each class. This may provide further insight on how the
event plane correlation depends on the eccentricity of the
initial geometry (e.g. €, if events are classified according
to vp).
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