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Abstract We consider finite-temperature SU(2) gauge the-
ory in the continuum formulation, which necessitates the
choice of a gauge fixing. Choosing the Landau gauge, the
existing gauge copies are taken into account by means of
the Gribov–Zwanziger quantization scheme, which entails
the introduction of a dynamical mass scale (Gribov mass)
directly influencing the Green functions of the theory. Here,
we determine simultaneously the Polyakov loop (vacuum
expectation value) and Gribov mass in terms of temperature,
by minimizing the vacuum energy w.r.t. the Polyakov-loop
parameter and solving the Gribov gap equation. Inspired by
the Casimir energy-style of computation, we illustrate the
usage of Zeta function regularization in finite-temperature
calculations. Our main result is that the Gribov mass directly
feels the deconfinement transition, visible from a cusp occur-
ring at the same temperature where the Polyakov loop
becomes nonzero. In this exploratory work we mainly restrict
ourselves to the original Gribov–Zwanziger quantization
procedure in order to illustrate the approach and the poten-
tial direct link between the vacuum structure of the the-
ory (dynamical mass scales) and (de)confinement. We also
present a first look at the critical temperature obtained from
the refined Gribov–Zwanziger approach. Finally, a particular
problem for the pressure at low temperatures is reported.
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1 Introduction

Within SU(N) Yang–Mills gauge theories, it is well accepted
that the asymptotic particle spectrum does not contain the
elementary excitations of quarks and gluons. These color
charged objects are confined into color neutral bound states:
this is the so-called color confinement phenomenon. It is
widely believed that confinement arises due to nonpertur-
bative infrared effects. Many criteria for confinement have
been proposed (see the nice pedagogical introduction [1]). A
very natural observation is that gluons (due to the fact that
they are not observed experimentally) should not belong to
the physical spectrum in a confining theory. On the other
hand, the perturbative gluon propagator satisfies the crite-
rion to belong to the physical spectrum (namely, it has a
Källén–Lehmann spectral representation with positive spec-
tral density). Hence, nonperturbative effects must dress the
perturbative propagator in such a way that the positivity con-
ditions are violated, such that it does not belong to the phys-
ical spectrum anymore. A well-known criterion is related
to the fact that the Polyakov loop [2] is an order parame-
ter for the confinement/deconfinement phase transition via
its connection to the free energy of a (very heavy) quark.
The importance to clarify the interplay between these two
different points of view (nonperturbative Green function’s
behavior vs. Polyakov loop) can be understood by observing
that while there are, in principle, infinitely many different
ways to write down a gluon propagator which violates the
positivity conditions, it is very likely that only few of these
ways turn out to be compatible with the Polyakov criterion.

One of the most fascinating nonperturbative infrared
effects is related to the appearance of Gribov copies [3] which
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represent an intrinsic overcounting of the gauge-field con-
figurations which the perturbative gauge-fixing procedure is
unable to take care of. Soon after Gribov’s seminal paper,
Singer showed that any true gauge condition, as the Lan-
dau gauge,1 presents this obstruction [4] (see also [5]). The
presence of Gribov copies close to the identity induces the
existence of non-trivial zero modes of the Faddeev–Popov
operator, which make the path integral ill defined. Even when
perturbation theory around the vacuum is not affected by
Gribov copies close to the identity (in particular, when YM-
theory is defined over a flat space-time2 with trivial topology
[10]), Gribov copies have to be taken into account when con-
sidering more general cases (such as with toroidal boundary
conditions on flat space-time [11,12]). Thus, in the following
only the standard boundary conditions will be considered.

The most effective method to eliminate Gribov copies,
at leading order proposed by Gribov himself, and refined
later on by Zwanziger [3,13–15] corresponds to restricting
the path integral to the so-called Gribov region, which is
the region in the functional space of gauge potentials over
which the Faddeev–Popov operator is positive definite. The
Faddeev–Popov operator is Hermitian in the Landau gauge,
so it makes sense to discuss its sign. In [16,17] Dell’Antonio
and Zwanziger showed that all the orbits of the theory inter-
sect the Gribov region, indicating that no physical informa-
tion is lost when implementing this restriction. Even though
this region still contains copies which are not close to the
identity [18], this restriction has remarkable effects. In fact,
due to the presence of a dynamical (Gribov) mass scale, the
gluon propagator is suppressed while the ghost propagator
is enhanced in the infrared. More general, an approach in
which the gluon propagator is “dressed” by nonperturbative
corrections which push the gluon out of the physical spec-
trum leads to propagators and glueball masses in agreement
with the lattice data [19,20]. With the same approach, one
can also solve the old problem of the Casimir energy in the
MIT-bag model [21]. Moreover, the extension of the Gribov
gap equation at finite temperature provides one with a good
qualitative understanding, already within the semiclassical
approximation, of the deconfinement temperature as well as
of a possible intermediate phase in which features of the
confining phase coexist with features of the fully deconfined
phase, in agreement with different approaches (see [22] and
references therein). Furthermore, within this framework the
presence of the Higgs field [23,24] as well as of a Chern–
Simons term in 2 + 1 dimensions [25] can be accounted for
as well.

1 We shall work exclusively with the Landau gauge here.
2 In the curved case, the pattern of appearance of Gribov copies can
be considerably more complicated: see in particular [6–9]. Therefore,
only the flat case will be considered here.

For all these reasons, it makes sense to compute the vac-
uum expectation value of the Polyakov loop when we elim-
inate the Gribov copies using the Gribov–Zwanziger (GZ)
approach. Related computations are available using different
techniques to cope with nonperturbative propagators at finite
temperature; see e.g. [26–36]. In the present paper, we will
perform for the first time (to the best of the authors’ knowl-
edge) this computation, using two different techniques, to the
leading one-loop approximation. In [37–39], it was already
pointed out that the Gribov–Zwanziger quantization offers
an interesting way to illuminate some of the typical infrared
problems for finite-temperature gauge theories.

In Sect. 2, we provide a brief technical overview of the
Gribov–Zwanziger quantization process and eventual effec-
tive action. In Sect. 3, the Polyakov loop is introduced into the
GZ theory via the background field method, building on work
of other people [27,28,32]. Next, Sect. 4 handles the tech-
nical computation of the leading-order finite-temperature
effective action, while in Sect. 5 we discuss the gap equations,
leading to our estimates for both Polyakov loop and Gribov
mass. The key finding is a deconfinement phase transition
at the same temperature at which the Gribov mass develops
a cuspy behavior. We subsequently also discuss the pressure
and energy anomaly. Due to a problem with the pressure in the
GZ formalism (regions of negativity), we take a preliminary
look at the situation upon invoking the more recently devel-
oped Refined Gribov–Zwanziger approach. We summarize
in Sect. 7.

2 A brief summary of the Gribov–Zwanziger action
in Yang–Mills theories

Let us start by giving a short overview of the Gribov–
Zwanziger framework [3,13–15]. As already mentioned in
the Introduction, the Gribov–Zwanziger action arises from
the restriction of the domain of integration in the Euclidean
functional integral to the Gribov region �, which is defined
as the set of all gauge-field configurations fulfilling the Lan-
dau gauge, ∂μAa

μ = 0, and for which the Faddeev–Popov
operator Mab = −∂μ(∂μδab − g f abc Ac

μ) is strictly posi-
tive, namely

� =
{
Aa

μ; ∂μA
a
μ = 0; Mab = −∂μ

(
∂μδab − g f abc Ac

μ

)
> 0

}
.

The boundary ∂� of the region � is the (first) Gribov horizon.
One starts with the Faddeev–Popov action in the Landau

gauge

SFP = SYM + Sgf , (1)
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where SYM and Sgf denote, respectively, the Yang–Mills and
the gauge-fixing terms, namely

SYM = 1

4

∫
d4x Fa

μνF
a
μν, (2)

and

Sgf =
∫

d4x
(
ba∂μA

a
μ + c̄a∂μD

ab
μ cb

)
, (3)

where (c̄a, ca) stand for the Faddeev–Popov ghosts, ba is the
Lagrange multiplier implementing the Landau gauge, Dab

μ =
(δab∂μ − g f abc Ac

μ) is the covariant derivative in the adjoint
representation of SU(N), and Fa

μν denotes the field strength:

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g f abc Ab

μA
c
ν . (4)

Following [3,13–15], the restriction of the domain of integra-
tion in the path integral is achieved by adding to the Faddeev–
Popov action SFP an additional term H(A), called the horizon
term, given by the following non-local expression:

H(A, γ ) = g2
∫

d4x d4y f abc Ab
μ(x)

[
M−1(γ )

]ad
(x, y)

× f dec Ae
μ(y), (5)

where M−1 stands for the inverse of the Faddeev–Popov
operator. The partition function can then be written as [3,13–
15]:

ZGZ =
∫

�

DA Dc Dc̄ Db e−SFP =
∫

DA Dc Dc̄ Db

× e−(SFP+γ 4H(A,γ )−V γ 44(N2−1)), (6)

where V is the Euclidean space-time volume. The parameter
γ has the dimension of a mass and is known as the Gri-
bov parameter. It is not a free parameter of the theory. It is
a dynamical quantity, being determined in a self-consistent
way through a gap equation called the horizon condition
[3,13–15], given by

〈H(A, γ )〉GZ = 4V
(
N 2 − 1

)
, (7)

where the notation 〈H(A, γ )〉GZ means that the vacuum
expectation value of the horizon function H(A, γ ) has to
be evaluated with the measure defined in Eq. (6). An equiva-
lent all-order proof of Eq. (7) can be given within the original
Gribov no-pole condition framework [3], by looking at the
exact ghost propagator in an external gauge field [40].

Although the horizon term H(A, γ ), Eq. (5), is non-
local, it can be cast in local form by means of the introduc-
tion of a set of auxiliary fields (ω̄ab

μ , ωab
μ , ϕ̄ab

μ , ϕab
μ ), where

(ϕ̄ab
μ , ϕab

μ ) are a pair of bosonic fields, while (ω̄ab
μ , ωab

μ ) are
anti-commuting. It is not difficult to show that the partition
function ZGZ in Eq. (6) can be rewritten as [13–15]

ZGZ =
∫

D	 e−SGZ[	], (8)

where 	 accounts for the quantizing fields, A, c̄, c, b, ω̄, ω,
ϕ̄, and ϕ, while SGZ[	] is the Yang–Mills action plus gauge
fixing and Gribov–Zwanziger terms, in its localized version,

SGZ = SYM + Sgf + S0 + Sγ , (9)

with

S0 =
∫

d4x
(
ϕ̄ac

μ

(
−∂νD

ab
ν

)
ϕbc

μ − ω̄ac
μ

(
−∂νD

ab
ν

)
ωbc

μ

+ g f amb (
∂νω̄

ac
μ

) (
Dmp

ν cp
)
ϕbc

μ

)
(10)

and

Sγ = γ 2
∫

d4x
(
g f abc Aa

μ

(
ϕbc

μ + ϕ̄bc
μ

))
− 4γ 4V (N 2 − 1).

(11)

It can be seen from (6) that the horizon condition (7) takes
the simpler form

∂Ev

∂γ 2 = 0, (12)

which is called the gap equation. The quantity Ev(γ ) is the
vacuum energy defined by

e−VEv = ZGZ. (13)

The local action SGZ in Eq. (9) is known as the Gribov–
Zwanziger action. Remarkably, it has been shown to be renor-
malizable to all orders [13–15,41–45]. This important prop-
erty of the Gribov–Zwanziger action is a consequence of an
extensive set of Ward identities constraining the quantum
corrections in general and possible divergences in particular.
In fact, introducing the nilpotent BRST transformations

s Aa
μ = −Dab

μ cb,

sca = 1

2
g f abccbcc,

sc̄a = ba, sba = 0,

sω̄ab
μ = ϕ̄ab

μ , sϕ̄ab
μ = 0,

sϕab
μ = ωab

μ , sωab
μ = 0,

(14)

it can immediately be checked that the Gribov–Zwanziger
action exhibits a soft breaking of the BRST symmetry, as
summarized by the equation

sSGZ = γ 2
, (15)

where


 =
∫

d4x
(
−g f abc

(
Dam

μ cm
) (

ϕbc
μ + ϕ̄bc

μ

)
+ g f abc Aa

μωbc
μ

)
.

(16)
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Notice that the breaking term 
 is of dimension two in the
fields. As such, it is a soft breaking and the ultraviolet diver-
gences can be controlled at the quantum level. The properties
of the soft breaking of the BRST symmetry of the Gribov–
Zwanziger theory and its relation with confinement have been
object of intensive investigation in recent years; see [46–55].
Here, it suffices to mention that the broken identity (15) is
connected with the restriction to the Gribov region �. How-
ever, a set of BRST invariant composite operators whose
correlation functions exhibit the Källén–Lehmann spectral
representation with positive spectral densities can be con-
sistently introduced [56]. These correlation functions can be
employed to obtain mass estimates on the spectrum of the
glueballs [19,20].

Let us conclude this brief review of the Gribov–Zwanziger
action by noticing that the terms Sgf and S0 in expression (9)
can be rewritten in the form of a pure BRST variation, i.e.

Sgf + S0 = s
∫

d4x
(
c̄a∂μA

a
μ + ω̄ac

μ

(
−∂νD

ab
ν

)
ϕbc

μ

)
,

(17)

so that

SGZ = SYM + s
∫

d4x
(
c̄a∂μA

a
μ + ω̄ac

μ

(
−∂νD

ab
ν

)
ϕbc

μ

)
+ Sγ ,

(18)

from which Eq. (15) becomes apparent.

3 The Polyakov loop and the background field
formalism

In this section we shall investigate the confinement/
deconfinement phase transition of the SU(2) gauge-field the-
ory in the presence of two static sources of (heavy) quarks.
The standard way to achieve this goal is by probing the
Polyakov-loop order parameter,

P = 1

N
tr

〈
Peig

∫ β
0 dt A0(t,x)

〉
, (19)

with P denoting path ordering, needed in the non-Abelian
case to ensure the gauge invariance of P . This path ordering
is not relevant at one-loop order, which will considerably sim-
plify the computations of the current work. In analytical stud-
ies of the phase transition involving the Polyakov loop, one
usually imposes the so-called “Polyakov gauge” on the gauge
field, in which case the time-component A0 becomes diago-
nal and independent of (imaginary) time. This means that the
gauge field belongs to the Cartan subalgebra. More details on
Polyakov gauge can be found in [28,57,58]. Besides the triv-
ial simplification of the Polyakov loop, when imposing the
Polyakov gauge it turns out that the quantity 〈A0〉 becomes
a good alternative choice for the order parameter instead of

P . This extra benefit can be proven by means of Jensen’s
inequality for convex functions and is carefully explained in
[28]; see also [27,29–32]. For example, for the SU(2) case
we have the following: if 1

2gβ〈A0〉 = π
2 then we are in the

“unbroken symmetry phase” (confined or disordered phase),
equivalent to 〈P〉 = 0; otherwise, if 1

2gβ〈A0〉 < π
2 , we are in

the “broken symmetry phase” (deconfined or ordered phase),
equivalent to 〈P〉 �= 0. Since P ∝ e−FT with T the tempera-
ture and F the free energy of a heavy quark, it is clear that in
the confinement phase, an infinite amount of energy would
be required to actually get a free quark. The broken/restored
symmetry referred to is the ZN center symmetry of a pure
gauge theory (no dynamical matter in the fundamental rep-
resentation).

A slightly alternative approach to access the Polyakov
loop was worked out in [32]. In order to probe the phase tran-
sition in a quantized non-Abelian gauge-field theory, we use,
following [32], the Background Field Gauge (BFG) formal-
ism, detailed in general in e.g. [65]. Within this framework,
the effective gauge field will be defined as the sum of a clas-
sical field Āμ and a quantum field Aμ: aμ(x) = aaμ(x)ta =
Āμ + Aμ, with ta the infinitesimal generators of the SU(N)
symmetry group. The BFG method is a convenient approach,
since the tracking of breaking/restoration of the ZN symme-
try becomes easier by choosing the Polyakov gauge for the
background field.

Within this framework, it is convenient to define the gauge
condition for the quantum field,

D̄μAμ = 0, (20)

known as the Landau–DeWitt (LDW) gauge-fixing condi-
tion, where D̄ab

μ = δab∂μ − g f abc Āc
μ is the background

covariant derivative. After integrating out the (gauge-fixing)
auxiliary field ba , we end up with the following Yang–Mills
action:

SBFG =
∫

dd x

{
1

4
Fa

μνF
a
μν −

(
D̄A

)2

2ξ
+ c̄a D̄ab

μ Dbd
μ (a)cd

}
.

(21)

Notice that, concerning the quantum field Aμ, the condition
(20) is equivalent to the Landau gauge, yet the action still has
background center symmetry. The LDW gauge is actually
recovered in the limit ξ → 0, taken at the very end of each
computation.

It is perhaps important here to stress that we are restricting
our analysis to the (background) Landau gauge, for which a
derivation argument in favor of the action (21) can be pro-
vided. For a vanishing background, this is precisely the orig-
inal Gribov–Zwanziger construction [3,14,15], also applica-
ble to the Coulomb gauge. More recently, it was also general-
ized to the SU(2) maximal Abelian gauge in [59]. Intuitively,
it might be clear that the precise influence on the quantum
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dynamics by Gribov copies can strongly depend on the cho-
sen background, given that Gribov copies are defined via the
zero modes of the Faddeev–Popov operator of the chosen
gauge condition, which itself explicitly depends on the cho-
sen background. This is open to further research, as it has
not been pursued in the literature yet. Though, for a constant
background as relevant for the current purposes, it will be
discussed elsewhere that the action is indeed obtainable via
a suitable extension of the arguments of [3,14,15].

In the absence of a background, a proposal for a gen-
eralization to the linear covariant gauges was put forward
in [60,61], albeit leading to a very complicated non-local
Lagrangian structure, containing e.g. reciprocals and expo-
nentials of fields. To our knowledge, no practical compu-
tations were done so far with this formalism. Nonetheless,
potential problems with gauge parameter dependence of
physical quantities were discussed in [60,61], not surpris-
ingly linked to the softly broken BRST symmetry; see also
our Sect. 2 for more on this and relevant references.

A very recent alternative for the linear covariant gauges
was worked out in [62], partially building on earlier work
of [63]. With this proposal, it was explicitly checked at one
loop that the Gribov parameter γ 2 and vacuum energy are
gauge parameter independent. This at least suggests that in
this class of covariant gauges, an approach to Gribov copies
can be worked out that is compatible with gauge parameter
independence [64].

As explained for the simple Landau gauge in the previ-
ous section, the Landau background gauge condition is also
plagued by Gribov ambiguities, and the Gribov–Zwanziger
procedure is applicable also in this instance. The starting
point of our analysis is, therefore, the GZ action modified for
the BFG framework (see [66]):

SGZ+PLoop =
∫

dd x

{
1

4
Fa

μνF
a
μν −

(
D̄A

)2

2ξ
+ c̄a D̄ab

μ Dbd
μ (a)cd

+ ϕ̄ac
μ D̄ab

ν Dbd
ν (a)ϕdc

μ − ω̄ac
μ D̄ab

ν Dbd
ν (a)ωdc

μ

− gγ 2 f abc Aa
μ

(
ϕbc

μ + ϕ̄bc
μ

)
− γ 4d(N 2 − 1)

}
.

(22)

As mentioned before, with the Polyakov gauge imposed
to the background field Āμ, the time-component becomes
diagonal and time-independent. In other words, we have
Āμ(x) = Ā0δμ0, with Ā0 belonging to the Cartan subal-
gebra of the gauge group. For instance, in the Cartan sub-
algebra of SU(2) only the t3 generator is present, so that
Āa

0 = δa3 Ā3
0 ≡ δa3 Ā0. As explained in [32], at leading order

we then simply find, using the properties of the Pauli matri-
ces,

P = cos
r

2
, (23)

where we defined

r = gβ Ā0, (24)

with β the inverse temperature. Just like before, r = π cor-
responds to the confinement phase, while 0 ≤ r < π cor-
responds to deconfinement. With a slight abuse of language,
we will refer to the quantity r as the Polyakov loop hereafter.

Since the scope of this work is limited to one-loop order,
only terms quadratic in the quantum fields in the action (22)
shall be considered. One then immediately gets an action
that can be split in term coming from the two color sectors:
the third color direction, called Cartan direction, which does
not depend on the parameter r; and one coming from the
2 × 2 block given by the first and second color directions.
This second 2 × 2 color sector is orthogonal to the Cartan
direction and does depend on r. The scenario can then be seen
as a system where the vector field has an imaginary chemical
potential i rT and has isospins +1 and −1 related to the 2×2
color sector and one isospin 0 related to the 1×1 color sector.

4 The finite-temperature effective action at leading
order

Considering only the quadratic terms of (22), the integra-
tion of the partition function gives us the following vacuum
energy at one-loop order, defined according to (13):

βVEv = −d(N 2 − 1)

2Ng2 λ4 + 1

2
(d − 1) tr ln

D4 + λ4

−D2

−1

2
tr ln(−D2), (25)

where V is now just the spatial volume. Here, D is the covari-
ant derivative in the adjoint representation in the presence
of the background A3

0 field and λ4 = 2Ng2γ 4. Through-
out this work, it is always tacitly assumed we are working
with N = 2 colors, although we will frequently continue to
explicitly write N dependence for generality. Using the usual
Matsubara formalism, we have D2 = (2πnT + rsT )2 + q2,
where n is the Matsubara mode, q is the spacelike momen-
tum component, and s is the isospin, given by −1, 0, or +1
for the SU(2) case.3

The general trace is of the form

1

βV
tr ln(−D2 + m2) = T

∑
s

+∞∑
n=−∞

∫
d3−εq

(2π)3−ε
ln

×
(
(2πnT + rsT )2 + q2 + m2

)
, (26)

which will be computed immediately below.

3 The SU(3) case was handled in [32] as well (see also [67]).
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4.1 The sum-integral: two different computations

We want to compute the following expression:

I = T
+∞∑

n=−∞

∫
d3−εq

(2π)3−ε
ln

(
(2πnT + rT )2 + q2 + m2

)
.

(27)

One way to proceed is to start by deriving the previous expres-
sion with respect to m2. Then one can use the well-known
formula from complex analysis

+∞∑
n=−∞

f (n) = −π
∑
z0

Res
z=z0

cot(π z) f (z) (28)

where the sum is over the poles z0 of the function f(z). Sub-
sequently we integrate with respect to m2 (and determine the
integration constant by matching the result with the known
T = 0 case). Finally one can split off the analogous T = 0
trace (which does not depend on the background field) to find

I =
∫

d4−εq

(2π)4−ε
ln(q2 + m2) + T

∫
d3q

(2π)3

ln

(
1 + e−2

√
q2+m2
T − 2e−

√
q2+m2
T cos r

)
. (29)

where the limit ε → 0 was taken in the (convergent) second
integral. The first term in the r.h.s. is the (divergent) zero-
temperature contribution.

Another way to compute the above integral is by making
use of Zeta function regularization techniques, which are par-
ticularly useful in the computation of the Casimir energy in
various configurations see [68,69]. The advantage of this sec-
ond technique is that, although it is less direct, it provides one
with an easy way to analyze the high- and low-temperature
limits as well as the small mass limit, as we will now show.
Moreover, within this framework, the regularization proce-
dures are often quite transparent. One starts by writing the
logarithm as ln x = − lims→0 ∂s x−s , after which the integral
over the momenta can be performed:

I = −T lim
s→0

∂s

(
μ2s

∞∑
n=−∞

�(s − 3/2)

8π
3
2 �(s)

[
(2πnT + rT )2 + m2

] 3
2 −s

)
,

(30)

where the renormalization scale μ has been introduced to get
dimensional agreement for s �= 0, and where we already put
ε = 0, as s will function as a regulator—i.e. we assume s >

3/2 and analytically continuate to bring s → 0. Using the
integral representation of the Gamma function, the previous
expression can be recast to

I = −T lim
s→0

∂s

(
μ2s

∞∑
n=−∞

1

8π
3
2 �(s)

×
∫ ∞

0
t s−5/2e−t

(
(2πnT+rT )2+m2

)
dt

)

= − lim
s→0

∂s

(
μ2s T 4−2s

4sπ2s−3/2�(s)

×
∫ ∞

0
dyys−5/2e− m2 y

4π2T 2

∞∑
n=−∞

e−y(n+ r
2π

)2

)
, (31)

where the variable of integration was transformed as y =
4π2T 2t ≥ 0 in the second line. Using the Poisson rule (valid
for positive ω):

+∞∑
n=−∞

e−(n+x)2ω =
√

π

ω

(
1 + 2

∞∑
n=1

e− n2π2
ω cos (2nπx)

)
,

(32)

we obtain

I = − lim
s→0

∂sμ
2s

[
�(s − 2)T 4−2s

4sπ2s−2�(s)

(
m2

4π2T 2

)2−s

+ T 4−2s

4s−1π s�(s)

(
m2

4π2T 2

)1−s/2

×
∞∑
n=1

ns−2 cos (nr)K2−s

(nm
T

)]
, (33)

where Kν(z) is the modified Bessel function of the second
kind. Simplifying this, we find

I = m4

2(4π)2

[
ln

(
m2

μ2

)
− 3

2

]

−
∞∑
n=1

m2T 2 cos (nr)

π2n2 K2

(nm
T

)
, (34)

where the first term is the T = 0 contribution, and the sum
is the finite-temperature correction. Using numerical inte-
gration and series summation, it can be checked that both
results (29) and (34) are indeed identical. Throughout this
paper, we will mostly base ourselves on the expression (29).
Nonetheless the Bessel series is quite useful in obtaining the
limit cases m = 0, T → ∞, and T → 0 by means of the
corresponding behavior of K2(z). Observing that

lim
m→0

(
−m2T 2K2

(mn
T

)
cos(nrs)

π2n2

)
= −2T 4 cos(nrs)

π2n4 ,

(35)

we obtain

Im=0 = −T 4

π2

[
Li4

(
e−irs

)
+ Li4

(
eirs

)]
, (36)
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where Lis(z) = ∑∞
n=1

zn
ns is the polylogarithm or Jonquière’s

function.
Analogously,

lim
T→∞ K2

(mn

T

)
∼ 2T 2

m2n2 − 1

2
,

so that

IT→∞ = m4

2(4π)2

[
ln

(
m2

μ2

)
− 3

2

]

+ T 2

4π2

{
m2

[
Li2

(
e−irs

)
+ Li2

(
eirs

)]

− 4T 2
[
Li4

(
e−irs

)
+ Li4

(
eirs

)]}
. (37)

Finally for T → 0 we can use the asymptotic expansion of
the Bessel function [70]:

Kν(z) ∼
√

π

2z
e−z

( ∞∑
k=0

ak(ν)

zk

)
, |Arg(z)| ≤ 3

2
π, (38)

where ak(ν) are finite factors. So, at first order (k = 0),

IT→0 = m4

2(4π)2

[
ln

(
m2

μ2

)
− 3

2

]
− m3/2T 5/2

2
√

2π3/2

×
[
Li 5

2

(
e−m

T −irs
)

+ Li 5
2

(
e−m

T +irs
)]

. (39)

4.2 The result for further usage

Making use of the result (29) we may define

I (m2, r, s, T ) = T
∫

d3q

(2π)3

× ln

(
1 + e−2

√
q2+m2
T − 2e−

√
q2+m2
T cos rs

)
,

(40)

so that the vacuum energy (25) can be rewritten as

Ev = −d(N 2 − 1)

2Ng2 λ4 + 1

2
(d − 1)(N 2 − 1)

trT=0 ln
∂4 + λ4

−∂2 − 1

2
(N 2 − 1) trT=0 ln(−∂2)

+
∑
s

(
1

2
(d − 1)(I (iλ2, r, s, T ) + I (−iλ2, r, s, T )

−I (0, r, s, T )) − 1

2
I (0, r, s, T )

)
, (41)

where trT=0 denotes the trace taken at zero temperature.

5 Minimization of the effective action, the Polyakov
loop and the Gribov mass

5.1 Warming-up exercise: assuming a T-independent
Gribov mass λ

As a first simpler case, let us simplify matters slightly by
assuming that the temperature does not influence the Gribov
parameter λ. This means that λ will be supposed to assume its
zero-temperature value, which we will call λ0, given by the
solution of the gap equation (7) at zero temperature. In this
case, only the terms with the function I matter in (41), since
the other terms do not explicitly depend on the Polyakov line
r. Plotting this part of the potential (see Fig. 1), one finds by
visual inspection that a second-order phase transition occurs
from the minimum with r = π to a minimum with r �= π .
The transition can be identified by the condition

d2

dr2 Ev

∣∣∣∣
r=π

= 0. (42)

Using the fact that

∂2 I

∂r2 (m2, r = π, s, T ) = −2T
∫

d3q

(2π)3

e−
√

q2+m2
T

(
1 + e−

√
q2+m2
T

)2

(43)

when s = ±1 and zero when s = 0, Eq. (42) can be straight-
forwardly solved numerically for the critical temperature. We
find

Tcrit = 0.45λ0. (44)

0.5 1.0 1.5 2.0 2.5 3.0
r

0.005

0.010

0.015

0.020

Fig. 1 The effective potential (41) at the temperatures (from below
upwards at r = π ) 0.42, 0.44, 0.46, and 0.48 times λ as a function of r,
with the simplifying assumption that λ maintains its zero-temperature
value λ0 throughout. It can be seen that the minimum of the potential
moves away from r = π in between T = 0.44λ and 0.46λ
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5.2 The T-dependence of the Gribov mass λ

Let us now investigate what happens to the Gribov parameter
λ when the temperature is nonzero. Taking the derivative of
the effective potential (41) with respect to λ2 and dividing by
d(N 2 − 1)λ2/Ng2 (as we are not interested in the solution
λ2 = 0) yields the gap equation for general number of colors
N:

1 = 1

2

d − 1

d
Ng2 tr

1

∂4 + λ4 + 1

2

d − 1

d

Ng2

N 2 − 1

i

λ2

×
∑
s

(
∂ I

∂m2 (iλ2, r, s, T ) − ∂ I

∂m2 (−iλ2, r, s, T )

)
,

(45)

where the notation ∂ I/∂m2 denotes the derivative of I with
respect to its first argument (written m2 in (40)). If we now
define λ0 to be the solution to the gap equation at T = 0:

1 = 1

2

d − 1

d
Ng2 tr

1

∂4 + λ4
0

, (46)

then we can subtract this equation from the general gap equa-
tion (45). After dividing through (d − 1)Ng2/2d and setting
d = 4 and N = 2, the result is

∫
d4q

(2π)4

(
1

q4 + λ4 − 1

q4 + λ4
0

)
+ i

3λ2

×
∑
s

(
∂ I

∂m2 (iλ2, r, s, T ) − ∂ I

∂m2 (−iλ2, r, s, T )

)
= 0,

(47)

where now all integrations are convergent. This equation can
be easily solved numerically to yield λ as a function of tem-
perature T and background r, in units λ0. This is shown in
Fig. 2.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Fig. 2 The Gribov parameter λ as a function of the temperature T
at r equals zero (upper line) and π (lower line), in units of the zero-
temperature Gribov parameter λ0

5.3 Absolute minimum of the effective action

As λ does not change much when including its dependence
on temperature and background, the transition is still second
order and its temperature is, therefore, still given by the con-
dition (42). Now, however, the potential depends explicitly
on r, but also implicitly due to the presence of the r-dependent
λ. We therefore have

d2

dr2 Ev

∣∣∣∣
r=π

= ∂2Ev

∂r2 + 2
dλ

dr

∂2Ev

∂r∂λ
+ d2λ

dr2

∂Ev

∂λ

+
(

dλ

dr

)2
∂2Ev

∂λ2

∣∣∣∣∣
λ=λ(r),r=π

. (48)

Now, dλ/dr |r=π = 0 due to the symmetry at that point.
Furthermore, as we are considering λ �= 0, ∂Ev/∂λ = 0 is
the gap equation and is solved by λ(r). Therefore, we find
for the condition of the transition:

∂2Ev

∂r2 (r, λ, T )

∣∣∣∣
r=π

= 0, (49)

where the derivative is taken with respect to the explicit r
only.

We already solved Eq. (49) in Sect. 5.1, giving (44):

T = 0.45λ(r, T ). (50)

As we computed λ as a function of r andT in Sect. 5.2 already,
it is again straightforward to solve this equation to give the
eventual critical temperature:

Tcrit = 0.40λ0, (51)

as expected only slightly different from the simplified esti-
mate (44) found before.

5.4 The T-dependence of the Polyakov loop r and the
equation of state

5.4.1 Deconfinement transition and its imprint on the
Gribov mass

Let us now investigate the temperature dependence of r. The
physical value of the background field r is found by mini-
mizing the vacuum energy:

d

dr
Ev = 0. (52)

From the vacuum energy (41) we have
∂Ev

∂r
= (d − 1)

[
∂ I

∂r
(iγ 2, r, T ) + ∂ I

∂r
(−iγ 2, r, T )

− d

(d − 1)

∂ I

∂r
(0, r, T )

]
= 0. (53)

The expression (53) was obtained after summation over the
possible values of s. Furthermore, we used the fact that
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0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 3 The dotted line curve represents r(T), while the continuous line
is λ(T ). At T ≈ 0.40λ0, both curves clearly have a discontinuous
derivative

I (m2, r,+1, T ) = I (m2, r,−1, T ) and that s = 0 accounts
for terms independent of r, which are cancelled by the deriva-
tion w.r.t. r. From (40) one can get, whenever s = ±1:

∂ I (m2, r, T )

∂r

= T
∫

d3q

(2π)3

2e−
√

q2+m2
T sin r(

1 + e−2
√

q2+m2
T − 2e−

√
q2+m2
T cos r

) .

(54)

Since (53) is finite, we can numerically obtain r as a function
of temperature. From the dotted curve in Fig. 3 one can easily
see that, for T > Tcrit ≈ 0.40λ0, we have r �= π , pointing
to a deconfined phase, confirming the computations of the
previous section. In the same figure, λ(T ) is plotted in a
continuous line. We observe very clearly that the Gribov mass
λ(T ) develops a cusp-like behavior exactly at the critical
temperature T = Tcrit .

5.4.2 Equation of state

Following [71], we can also extract an estimate for the (den-
sity) pressure p and the interaction measure I/T 4, shown
in Fig. 4 (left and right respectively). As usual the (density)
pressure is defined as

p = 1

βV
ln ZGZ , (55)

which is related to the free energy by p = −Ev . Here the
plot of the pressure is given relative to the Stefan–Boltzmann
limit pressure: pSB = κT 4, where κ = (N 2 − 1)πT 4/45 is
the Stefan–Boltzmann constant accounting for all degrees
of freedom of the system at high temperature. We subtract
the zero-temperature value, such that the pressure becomes
zero at zero temperature: p(T ) = −[Ev(T ) − Ev(T = 0)].
Namely, after using the MS renormalization prescription and
choosing the renormalization parameter μ̄ so that the zero-
temperature gap equation is satisfied,

μ̄2 = λ2
0e

−
(

5
6 − 32π2

3g2

)
, (56)

we have the following expression for the pressure (in units
of λ4

0):

− p(T )

λ4
0

= 3

[
I (iλ′2, r, T ′) + I (−iλ′2, r, T ′) − 4

3
I (0, r, T ′)

]

+3

2

[
I (iλ′2, 0, T ′) + I (−iλ′2, 0, T ′) − 4

3
I (0, 0, T ′)

]

− 9λ′4

32π2

(
ln λ′2 − 1

2

)
− 9

64π2 . (57)

In (57) prime quantities stand for quantities in units of λ0,
while λ and λ0 satisfy their gap equation. The last term of
(57) accounts for the zero-temperature subtraction, so that
p(0) = 0, according to the definition of I (m2, r, T ) in (40).
Note that the coupling constant does not explicitly appear in
(57) and that λ0 stands for the Gribov parameter at T = 0.

The interaction measure I is defined as the trace anomaly
in units of T 4, and I is nothing less than the trace of the of
the stress-energy tensor, given by

θμν = (p + ε)uμuν − pημν, (58)

with ε being the internal energy density, which is defined as
ε = Ev+T s (with s the entropy density), u = (1, 0, 0, 0) and
ημν the (Euclidean) metric of the space-time. Given the ther-
modynamic definitions of each quantity (energy, pressure,
and entropy), we obtain

I = θμμ = T 5 ∂

∂T

( p

T 4

)
. (59)

Both quantities display a behavior similar to that presented
in [39] (but note that in they plot the temperature in units
of the critical temperature (Tc in their notation), while we
use units λ0). Besides this, and the fact that we included the
effect of Polyakov loop on the Gribov parameter, in [39] a
lattice-inspired effective coupling was introduced at finite
temperature while we used the exact one-loop perturbative
expression, which is consistent with the order of all the com-
putations made here.

However, we notice that at temperatures relatively close
to our Tc, the pressure becomes negative. This is clearly an
unphysical feature, possibly related to some missing essen-
tial physics. For higher temperatures, the situation is fine and
the pressure, moreover, displays a behavior similar to what
is seen in lattice simulations for the nonperturbative pressure
(see [72] for the SU(3) case). A similar problem is present
in one of the plots presented in [39, Fig. 4], although no
comment is made about it. Another strange feature is the
oscillating behavior of both pressure and interaction mea-
sure at low temperatures. Something similar was already
observed in [73] where a quark model was employed with
complex conjugate quark mass. It is well known that the
gluon propagator develops two complex conjugate masses in
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Fig. 4 Left GZ pressure (relative to the Stefan–Boltzmann limit pressure ∼ T 4). Right GZ trace anomaly

Gribov–Zwanziger quantization, see e.g. [19,20,56,77] for
some more details, so we confirm the findings of [73] that, at
least at leading order, the thermodynamic quantities develop
an oscillatory behavior. We expect this oscillatory behavior
would in principle also be present in [39] if the pressure and
interaction energy were to be computed at lower tempera-
tures than shown there. In any case, the presence of complex
masses and their consequences gives us a warning that a cer-
tain care is needed when using GZ dynamics, also at the level
of spectral properties as done in [74,75]; see also [46,76].

These peculiarities justify giving an outline in the next sec-
tion of the behaviors of the pressure and interaction measure
in an improved formalism, such as in the Refined Gribov–
Zwanziger one.

6 Outlook to the refined Gribov–Zwanziger formalism

The previous results can be slightly generalized to the case of
the Refined Gribov–Zwanziger (RGZ) formalism studied in
[42,43,45,78,79]. In this refined case, additional nonpertur-
bative vacuum condensates such as 〈A2

μ〉 and 〈ϕ̄ab
μ ϕab

μ 〉 are
to be introduced. The corresponding mass dimension two
operators get a nonzero vacuum expectation value (thereby
further lowering the vacuum energy) and thus influence the
form of the propagator and effective action computation. The
predictions for the RGZ propagators, see also [80–82], are in
fine agreement with ruling T = 0 lattice data; see e.g. also
[83–91]. This is in contrast with the original GZ predictions,
such that it could happen that the finite-temperature version
of RGZ is also better suited to describe the phase transi-
tion and/or thermodynamical properties of the pure gauge
theory.

Due to the more complex nature of the RGZ effec-
tive action (more vacuum condensates), we will relegate
a detailed (variational) analysis of their finite-temperature

counterparts4 to future work, as this will require new tools.
Here, we only wish to present a first estimate of the deconfine-
ment critical temperature Tc using as input the T = 0 RGZ
gluon propagator where the nonperturbative mass parame-
ters are fitted to lattice data for the same propagator. More
precisely, we use [77]


ab
μν(p) = δab

p2 + M2 + ρ1

p4 + p2(M2 + m2 + ρ1) + m2(M2 + ρ1) + λ4

×
(

δμν − pμ pν

p2

)
, (60)

where we omitted the global normalization factor Z which
drops out from our leading-order computation.5 In this
expression, we have

〈
Aa

μA
a
μ

〉 → −m2,
〈
ϕ̄ab

μ ϕab
μ

〉
→ M2,

1

2

〈
ϕab

μ ϕab
μ + ϕ̄ab

μ ϕ̄ab
μ

〉
→ ρ1. (61)

The free energy associated to the RGZ framework can be
obtained by following the same steps as in Sect. 4, leading to

Ev(T ) = (d − 1)

[
I (r2+, r, T ) + I (r2−, r, T ) − I (N2, r, T )

− 1

d − 1
I (0, r, T )

]

+ (d − 1)

2

[
I (r2+, 0, T ) + I (r2−, 0, T ) − I (N2, 0, T )

− 1

d − 1
I (0, 0, T )

]

4 From [92–94], the non-trivial response of the d = 2 condensate 〈A2〉
to temperature already became clear.
5 This Z is related to the choice of a MOM renormalization scheme,
the kind of scheme that can also be applied to lattice Green functions,
in contrast with the MS scheme.
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Fig. 5 Right and left plots refer to the RGZ pressure in terms of T/Tc and in units of T 4. In the left plot, a wide temperature range of is shown. In
the right plot, a zoom is made for temperatures around 1.10 Tc to show the existence of negative pressure

+
∫

dd p

(2π)d
ln

(
p4 + (m2 + N2)p2 + (m2N2 + λ4)

p2 + N2

)

−3λ4d

4g2 , (62)

with r2± standing for minus the roots of the denominator of
the gluon propagator (60), N 2 = M2 + ρ1, and I (m2, r, T )

given by (40). Explicitly, the roots are

r2± = (m2 + N 2) ± √
(m2 + N 2)2 − 4(m2N 2 + λ4)

2
. (63)

The (central) condensate values were extracted from [77]:

N 2 = M2 + ρ1 = 2.51 GeV2, (64a)

m2 = −1.92 GeV2, (64b)

λ4 = 5.3 GeV4. (64c)

Once again the vacuum energy will be minimized with
respect to the Polyakov-loop expectation value r. For the
analysis of thermodynamic quantities, only contributions
coming from terms proportional to I (m2, r, T ) will be
needed. Therefore, we will always consider the difference
Ev(T ) − Ev(T = 0). Since in the present (RGZ) prescrip-
tion the condensates are given by the zero-temperature lattice
results (64) instead of satisfying gap equations, the divergent
contributions to the free energy are subtracted, and no spe-
cific choice of renormalization scheme is needed. Further-
more, explicit dependence on the coupling constant seems
to drop out of the one-loop expression, such that no renor-
malization scale has to be chosen. Following the steps taken
in Sect. 5.1, we find a second-order phase transition at the
temperature:

Tcrit = 0.25 GeV, (65)

1.0 1.1 1.2 1.3

0.0

0.5

1.0

Fig. 6 The RGZ interaction measure I/T 4 in units T/Tc

which is not that far from the value of the SU(2) deconfine-
ment temperature found on the lattice: Tc ≈ 0.295GeV, as
quoted in [95,96].

In future work, it would in particular be interesting to
find whether—upon using the RGZ formalism—the Gribov
mass and/or RGZ condensates directly feel the deconfine-
ment transition, similar to the cusp we discovered in the Gri-
bov parameter following the exploratory restricted analysis
of this paper. This might also shed further light on the ongoing
discussion of whether the deconfinement transition should
be felt at the level of the correlation functions, in particular
the electric screening mass associated with the longitudinal
gluon propagator [97–100].

Let us also consider the pressure and interaction measure
once more. The results are shown in Figs. 5 and 6, respec-
tively. The oscillating behavior at low temperature persists at
leading order, while a small region of negative pressure is still
present—see the right plot of Fig. 5. These findings are sim-
ilar to [101] (low-temperature results are not shown there),
where two sets of finite-temperature RGZ fits to the SU(3)
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lattice data were used [102,103], in contrast with our usage
of zero-temperature SU(2) data. In any case, a more involved
analysis of the RGZ finite-temperature dynamics is needed to
make firmer statements. As already mentioned before, there
is also the possibility that important low-temperature physics
is missing, as for instance the proposal of [101] related to the
possible effect of light electric glueballs near the deconfine-
ment phase transition [104,105]. Obviously, these effects are
absent in the current treatment (or in most other treatments
in fact).

7 Summary

In this paper we studied the Gribov–Zwanziger (GZ) action
for SU(2) gauge theories with the Polyakov loop coupled to it
via the background field formalism. Doing so, we were able
to compute in a simultaneous fashion the finite-temperature
value of the Polyakov loop and Gribov mass to the leading
one-loop approximation. The latter dynamical scale enters
the theory as a result of the restriction of the domain of the
gauge-field integration to avoid (infinitesimally connected)
Gribov copies. Our main result is that we found clear evi-
dence of a second-order deconfinement phase transition at
finite temperature, an occurrence accompanied by a cusp
in the Gribov mass, which thus directly feels the transition.
It is perhaps worthwhile to stress here that at temperatures
above Tc, the Gribov mass is nonzero, indicating that the
gluon propagator still violates positivity and as such it rather
describes a quasi- than a “free” observable particle; see also
[26,106] for more on this.

We also presented the pressure and trace anomaly, indi-
cating there is a problem at temperatures around the criti-
cal value when using the original GZ formulation. We ended
with a first look at the changes a full-fledged analysis with the
Refined Gribov–Zwanziger (RGZ) formalism might afflict,
given that the latter provides an adequate description of zero-
temperature gauge dynamics, in contrast to the GZ predic-
tions. This will be studied further in upcoming work. Note
that, even not considering finite-temperature corrections to
the condensates in the RGZ formalism, the region of negative
pressure is considerably smaller than the region found with
the GZ formalism.

A further result of the present paper, which is interesting
from the methodological point of view, is that it shows explic-
itly that finite-temperature computations (such as the compu-
tation of the vacuum expectation value of the Polyakov loop)
are very suitable to be analyzed using analytical Casimir-like
techniques. The interesting issue of Casimir-style computa-
tions at finite temperatures is that, although they can be more
involved, they provide one with easy tools to analyze the
high- and low-temperature limits as well as the small mass
limit. Moreover, within the Casimir framework, the regular-

ization procedures are often quite transparent. Indeed, in the
present paper, we have shown that the computation of the
vacuum expectation value of the Polyakov loop is very sim-
ilar to the computation of the Casimir energy between two
plates. We believe that this point of view can be useful in
different contexts as well.
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