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Abstract The noncommutative extension of the Sugawara
construction for free massless fermionic fields in two dimen-
sions is studied. We prove that the equivalence of the noncom-
mutative Sugawara energy-momentum tensor and symmet-
ric energy-momentum tensor persists in the noncommutative
extension. Some relevant physical results of this equivalence
are also discussed.

1 Introduction

One of the outstanding features of two-dimensional field the-
ories is bosonization, where a free massless fermionic field
can be written as a bosonic field. This property is rooted in the
work of Jordan and Wigner [1] where it was shown that the
fermionic creation and annihilation operators may be repre-
sented as the bosonic counterparts. On the other hand, the idea
of describing the strong interaction process in terms of cur-
rents was proposed in [2–4]. In this approach, the dynamical
variables are taken to be the currents and the canonical for-
malism is abandoned. In other words, each particle does not
correspond to a field which satisfies the canonical commuta-
tion relation but Hilbert space is built upon current operators.
Accordingly, it was shown that the energy-momentum tensor
of these theories can be expressed as a quadratic function of
the currents known as the Sugawara construction [4]. Later
on, it was proved that the symmetric energy-momentum ten-
sor of the two-dimensional free massless fermionic theory is
exactly equivalent to the Sugawara energy-momentum tensor
which is bilinear in the fermionic currents [5].

Indeed, this equivalence confirmed the result of [1], the
equivalence of free massless fermions and bosons, in an ele-
gant way. Then generalization of this famous equivalence to
the curved space-time was performed in [6] where the boson–
fermion correspondence was shown for a general metric in
two dimensions.
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Our purpose is to study whether this equivalence is satis-
fied for noncommutative space, where the nature of the space-
time changes at very short distances [7–9], which is not a
trivial extension. The authors in [10] considered the noncom-
mutative generalization of the Sugawara energy-momentum
tensor and then used the Seiberg–Witten map. While in
the present work, the correspondence between the noncom-
mutative Sugawara construction and the symmetric energy-
momentum tensor for two-dimensional free fermionic theory
is addressed, without employing the Seiberg–Witten map.
Applying the techniques described in [5], we demonstrate
that the noncommutative Sugawara energy-momentum ten-
sor exactly leads to the symmetric energy-momentum tensor.
An interesting physical consequence of this equivalence is the
noncommutative bosonization, which exhibits the relation-
ship between the fermionic and bosonic fields in noncom-
mutative space, as will be discussed in the last section.

2 Equivalence of the symmetric energy-momentum
tensor and Sugawara energy-momentum tensor
in noncommutative space

The first part of this section includes the derivation of the
symmetric energy-momentum tensor using a variation of the
action with respect to a generic metric. In the second part, we
extend the Sugawara construction to noncommutative space
and demonstrate that it will be equivalent to the symmetric
energy-momentum tensor.

2.1 Symmetric energy-momentum tensor

Let us start from the noncommutative version of the free
massless fermionic Lagrangian density, which is obtained
by replacing the ordinary product with the star-product,

L = i

2

(
ψ̄γ α � ∂αψ − ∂αψ̄γ α � ψ

)
, (2.1)
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where the star-product is defined as follows:

f (x)�g(x) ≡ exp

(
iθαβ

2

∂

∂aα

∂

∂bβ

)
f (x + a)g(x + b)

∣∣
∣∣
a,b=0

;

(2.2)

here θμν is an antisymmetric constant matrix. As is usual in
two-dimensional field theory, we choose to work in Euclidean
signature. In the noncommutative version, this has the added
virtue that the Euclidean theory does not have issues with uni-
tarity. The noncommutative symmetric energy-momentum
tensor T

�

μν is achieved by variation of the action S with
respect to a generic metric gμν and setting gμν = δμν in
the end [11]:

T
�

μν = 2√
g

δS

δgμν(x)

∣
∣∣∣
gμν=δμν

, (2.3)

where g indicates the determinant of the metric with signa-
ture (+,+). The variation of the action corresponding to the
Lagrangian density (2.1) can be written as

δS = i

8

∫
d2y

√
g �

(
ψ̄ � γαδgαβ � ∂βψ + ψ̄ � γαδgβα

× �∂βψ − ∂αψ̄ � γβδgαβ � ψ − ∂αψ̄ � γβδgβα � ψ
)

+ i

2

∫
d2y

(
δ
√
g
)
�

(
ψ̄γ α � ∂αψ − ∂αψ̄γ α � ψ

)
.

(2.4)

Using Eq. (2.3) and the cyclic property of the star-product
under the integral, we have

T
�

μν = − i

4

(
∂νψβ � ψ̄α(γμ)αβ + ∂μψβ � ψ̄α(γν)

αβ

+ ∂μψ̄α � ψβ(γν)
αβ + ∂νψ̄α � ψβ(γμ)αβ

)

− i

2
δμν

(
ψ̄α � ∂λψβ(γ λ)αβ − ∂λψ̄α � ψβ(γ λ)αβ

)
.

(2.5)

Applying the equation of motion for free massless fermions,
we find the energy-momentum tensor as

T
�

μν = − i

4

(
∂νψβ � ψ̄α(γμ)αβ + ∂μψβ � ψ̄α(γν)

αβ

+ ∂μψ̄α � ψβ(γν)
αβ + ∂νψ̄α � ψβ(γμ)αβ

)
, (2.6)

which is completely symmetric under μ ↔ ν.

2.2 Sugawara energy-momentum tensor

The equivalence of the Sugawara construction and the sym-
metric energy-momentum tensor in commutative space has
been shown in [5] and is reviewed in Appendix A. In the
present section, we construct the noncommutative version of

the Sugawara energy-momentum tensor to demonstrate that
it is precisely equivalent to (2.6).

The Lagrangian (2.1) is invariant under a global U (1)

transformation which yields two different Noether currents
[12,13],

Jμ(x) =: ψ̄α(x) � ψβ(x) : (γμ)αβ,

Jμ(x) =: ψβ(x) � ψ̄α(x) : (γμ)αβ, (2.7)

where : : denotes normal ordering. Now, we extend the
commutative Sugawara construction to the noncommutative
one as a bilinear function of Jμ(x) with inserting star-product
instead of the ordinary product,

T s�
μν = 1

2c

(
Jμ(x) � Jν(x) + Jν(x) � Jμ(x)

− δμν J
λ(x) � Jλ(x)

)
, (2.8)

where c is the Schwinger constant, which appears in the
equal-time commutator of currents. Since the mass dimen-
sion of the energy-momentum tensor and of the currents in
two dimensions is equal to two and one, respectively, the
coefficient c should be dimensionless, while in four dimen-
sions, it is a dimensionful quantity with the dimension of a
mass square. The detailed analysis of the current algebra in
two dimensions shows that the value of c in noncommuta-
tive case is the same as the commutative one, c = 1

π
[14].

To prove that (2.8) is exactly equivalent to (2.6), we need to
regularize the operator products in (2.8). To this end, we use
the point-splitting technique [15] and replace Jμ(x) � Jν(x)
with

lim
ε→0

(Jμ(x + ε) � Jν(x) − 〈Jμ(x + ε) � Jν(x)〉), (2.9)

which leads to

T s�
μν = π

2
lim
ε→0

(Jμ(x + ε) � Jν(x) + Jν(x + ε) � Jμ(x)

− δμν J
λ(x + ε) � Jλ(x) − 〈Jμ(x + ε) � Jν(x)〉

− 〈Jν(x + ε) � Jμ(x)〉 + δμν〈Jλ(x + ε) � Jλ(x)〉).
(2.10)

To perform some algebraic manipulations on (2.10), we
employ the star-product definition (2.2),

Jμ(x + ε) = Fab : ψβ(x + ε + a)

× ψ̄α(x + ε + b) :
∣∣∣
∣
a,b=0

(γμ)αβ, (2.11)

where Fab is an abbreviated notation for the exponential
operator appearing in (2.2). Accordingly, the first term of
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Eq. (2.10) can be written as

Jμ(x + ε) � Jν(x) = F f gFabFcd : ψβ(x + ε + f + a)

× ψ̄α(x + ε + f + b) :: ψσ (x + g + c)

× ψ̄ρ(x + g + d) :
× (γμ)αβ(γν)

ρσ

∣∣∣∣
f,g,a,b,c,d=0

. (2.12)

Using Wick’s theorem (2.12) changes into

Jμ(x + ε) � Jν(x) = F f gFabFcd( : ψβ(x + ε + f + a)

× ψ̄α(x + ε + f + b)ψσ (x + g + c)

× ψ̄ρ(x + g + d) :
−: ψσ (x + g + c)〈ψβ(x + ε + f + a)

× ψ̄ρ(x + g + d)〉ψ̄α(x + ε + f + b) :
−: ψβ(x + ε + f + a)〈ψσ (x + g + c)

× ψ̄α(x + ε + f + b)〉ψ̄ρ(x + g + d) :
− 〈ψβ(x + ε + f + a)ψ̄ρ(x + g + d)〉
× 〈ψσ (x + g + c)ψ̄α(x + ε + f + b)〉)
× (γμ)αβ(γν)

ρσ

∣∣∣∣
f,g,a,b,c,d=0

. (2.13)

Rewriting the other terms of (2.10) similar to (2.13) and sub-
stituting them again into (2.10), we obtain

T s�
μν = π

2
lim
ε→0

[Qμν(x, ε) − Rμν(x, ε)

− Rνμ(x, ε) − Sνμ(x,−ε)

− Sμν(x,−ε) − δμν[Rλ
λ(x, ε) + Sλ

λ (x,−ε)]],
(2.14)

with

Qμν(x, ε) = F f gFabFcd : (
ψβ(x + ε + f + a)

× ψ̄α(x + ε + f + b)

× ψσ (x + g + c)ψ̄ρ(x + g + d)(γμ)αβ(γν)
ρσ

+ ψβ(x + ε + f + a)ψ̄α(x + ε + f + b)

× ψσ (x + g + c)ψ̄ρ(x + g + d)(γν)
αβ(γμ)ρσ

− ψβ(x + ε + f + a)ψ̄α(x + ε + f + b)

× ψσ (x + g + c)ψ̄ρ(x + g + d)δμν

× (γλ)
αβ(γλ)

ρσ
) :

∣∣
∣∣
f,g,a,b,c,d=0

,

Rμν(x, ε) = F f gFabFcd : ψσ (x + g + c)

× 〈ψβ(x + ε + f + a)ψ̄ρ(x + g + d)〉
× ψ̄α(x + ε + f + b) :
× (γμ)αβ(γν)

ρσ

∣
∣∣∣
f,g,a,b,c,d=0

,

Sνμ(x,−ε) = F f gFabFcd : ψβ(x + ε + f + a)

× 〈ψσ (x+g+c)ψ̄α(x+ε+ f +b)〉
× ψ̄ρ(x+g+d) :
× (γμ)αβ(γν)

ρσ

∣∣∣
∣
f,g,a,b,c,d=0

. (2.15)

The field ordering appearing in the vacuum expectation value
of the relation (2.15) is not time ordering and is defined as1

S(+)(x − y) = ψ(x)ψ̄(y)−: ψ(x)ψ̄(y) := 〈ψ(x)ψ̄(y)〉.
(2.16)

In view of the above definition, the quantities Rμν(x, ε) and
Sνμ(x,−ε) can be represented as

Rμν(x, ε) = F f gFabFcd : ψσ (x + g + c)

× ψ̄α(x + ε + f + b) :
× S(+)

βρ (ε + f + a − g − d)(γμ)αβ

× (γν)
ρσ

∣∣∣∣
f,g,a,b,c,d=0

,

Sνμ(x,−ε) = F f gFabFcd :
× ψβ(x + ε + f + a)ψ̄ρ(x + g + d) :
× S(+)

σα (g + c − ε − f − b)(γμ)αβ

× (γν)
ρσ

∣∣∣∣
f,g,a,b,c,d=0

. (2.17)

Converting Eq. (2.17) to the star-product form, we obtain

Rμν(x, ε) = −
(
γμS

(+)(ε)γν

)αβ : ψ̄α(x + ε) � ψβ(x) :,

Sνμ(x,−ε) =
(
γνS

(+)(−ε)γμ

)αβ : ψβ(x + ε) � ψ̄α(x) :,
(2.18)

where

S(+)(ε) = − i

2π

εξγ
ξ

ε2 . (2.19)

Note that the minus sign in Rμν(x, ε) comes from the odd
permutation of the fermionic fields.

1 We follow the convention used in [5].
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Expanding ψ and ψ̄ up to the first order in ε yields

Rμν(x, ε) = iεξ

2πε2

(
γμγξγν

)αβ : [ψ̄α(x)

+ εη∂ηψ̄α(x) + O(ε2)] � ψβ(x) :,

Sνμ(x,−ε) = iεξ

2πε2

(
γνγξγμ

)αβ : [ψβ(x)

+ εη∂ηψβ(x) + O(ε2)] � ψ̄α(x) :, (2.20)

and using the following symmetric limits:

lim
ε→0

(
εα

ε2

)
= 0, lim

ε→0

(
εαεβ

ε2

)
= 1

2
δαβ, (2.21)

we conclude that

lim
ε→0

Rμν(x, ε) = i

4π
(γμγξγν)

αβ : ∂ξ ψ̄α(x) � ψβ(x) :,

lim
ε→0

Sνμ(x,−ε) = i

4π
(γνγξγμ)αβ : ∂ξψβ(x) � ψ̄α(x) : .

(2.22)

Inserting the result (2.22) in (2.14), we arrive at

T s�
μν = π

2
Qμν(x) − i

8
: [ (

γμγξγν + γνγξγμ

)αβ

× (
∂ξ ψ̄α(x) � ψβ(x) + ∂ξψβ(x) � ψ̄α(x)

)

+ δμν(γ
λγξγλ)

αβ
(
∂ξ ψ̄α(x) � ψβ(x) + ∂ξψβ � ψ̄α

) ] : .

(2.23)

The product of gamma matrices in (2.23) can be simplified
using the Clifford algebra,

γμγξγν + γνγξγμ = 2
(
δμξγν + δνξ γμ − δμνγξ

)
,

γλγξγ
λ = (2 − d)γξ . (2.24)

Substituting (2.24) into (2.23) and applying the equation of
motion,γ ξ ∂ξψ = 0 and ∂ξ ψ̄γ ξ = 0, we obtain the Sugawara
energy-momentum tensor

T s�
μν = π

2
Qμν(x) − i

4
:
[(

∂νψ̄α(x) � ψβ(x)

+ ∂νψβ(x) � ψ̄α(x)
)
(γμ)αβ

+ (
∂μψ̄α(x) � ψβ(x) + ∂μψβ(x) � ψ̄α(x)

)
(γν)

αβ
]

: .

(2.25)

We notice that the last term of (2.23) vanishes in two dimen-
sions as a result of the identity γλγξγ

λ = (2 − d)γξ . In
order to show that T

�

μν = T s�
μν , it is enough to demonstrate

Qμν = 0. For simplicity, we carry out computations in the

light-cone coordinate system, x± = x1 ± i x2. The represen-
tation of the Euclidean gamma matrices,

γ1 =
(

0 −i
i 0

)
, γ2 =

(
0 −1

−1 0

)
, (2.26)

in the light-cone coordinates is given by

γ+ = γ1 + iγ2 =
(

0 −2i
0 0

)
,

γ− = γ1 − iγ2 =
(

0 0
2i 0

)
, (2.27)

with

gμν =
(
g++ g+−
g−+ g−−

)
=

(
0 1

2
1
2 0

)
. (2.28)

The equation of motion for two-dimensional massless
fermions, which is described by iγ μ∂μψ = 0 with ψ =(

ψ1

ψ2

)
, in the light-cone coordinate system reduces to

∂+ψ1 = ∂−ψ2 = 0. Thus

ψ1 = ψ1(x−), ψ2 = ψ2(x+),

ψ̄1 = ψ̄1(x+), ψ̄2 = ψ̄2(x−). (2.29)

Using [x+, x−] = 2θ , the expression ψβ(x) � ψ̄α(x)(γμ)αβ

with on-shell Dirac fermions is rewritten as

ψβ � ψ̄α(γ+)αβ = −2iψ2(x+) � ψ̄1(x+)

= −2iψ2(x+)ψ̄1(x+),

ψβ � ψ̄α(γ−)αβ = +2iψ1(x−) � ψ̄2(x−)

= +2iψ1(x−)ψ̄2(x−). (2.30)

With Eq. (2.30), it would be possible to find all the compo-
nents of Qμν . Since there is no singularity in Qμν(x, ε), we
have

lim
ε→0

Qμν(x, ε) = Qμν(x), (2.31)

and hence

Qμν(x) = : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γμ)αβ(γν)

ρσ

+ : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γν)

αβ(γμ)ρσ

− : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) : δμν

× (γλ)
αβ(γ λ)ρσ . (2.32)

One may then readily show that

Q++ = −8 : (
ψ2(x+)ψ̄1(x+)

)
�

(
ψ2(x+)ψ̄1(x+)

) :
= −8 : ψ2(x+)ψ̄1(x+)ψ2(x+)ψ̄1(x+) : . (2.33)

123
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Performing some straightforward permutations, we get Q++
= 0. Similarly

Q−− = −8 : (
ψ1(x−)ψ̄2(x−)

)
�

(
ψ1(x−)ψ̄2(x−)

) :
= −8 : ψ1(x−)ψ̄2(x−)ψ1(x−)ψ̄2(x−) :
= 0. (2.34)

Also for off-diagonal components Q±∓, we have

Q±∓(x) = : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ±)αβ(γ∓)ρσ

+ : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ∓)αβ(γ±)ρσ

− : 2
(
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γλ)

αβ(γ λ)ρσ . (2.35)

Inserting γ ± = 1
2γ∓ results in

Q±∓(x) = : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ±)αβ(γ∓)ρσ

+ : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ∓)αβ(γ±)ρσ

− : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ±)αβ(γ∓)ρσ

− : (
ψβ(x) � ψ̄α(x)

)
�

(
ψσ (x) � ψ̄ρ(x)

) :
× (γ∓)αβ(γ±)ρσ

= 0. (2.36)

Consequently Qμν = 0. This means that the equiva-
lence of the Sugawara energy-momentum tensor and energy-
momentum tensor T s�

μν = T
�

μν in two-dimensional noncom-
mutative space for free massless fermions is still satisfied.
Also this equivalence occurs for the Sugawara form in terms
of the current Jμ(x), as defined in (2.7). We have

T̂ s�
μν = π

2
(Jμ(x) � Jν(x) + Jν(x) � Jμ(x)

− δμνJ λ(x) � Jλ(x)). (2.37)

To show this, let us write first all the components of the
currents Jμ(x) and Jμ(x) using the representation of the
gamma matrices (2.26) as follows:

J1(x) = i : (
ψ1(x−) � ψ̄2(x−) − ψ2(x+) � ψ̄1(x+)

) :
= i : (

ψ1(x−)ψ̄2(x−) − ψ2(x+)ψ̄1(x+)
) :,

J2(x) = − : (
ψ2(x+) � ψ̄1(x+) + ψ1(x−) � ψ̄2(x−)

) :
= − : (

ψ2(x+)ψ̄1(x+) + ψ1(x−)ψ̄2(x−)
) :, (2.38)

as well as

J1(x) = i : (
ψ̄2(x−) � ψ1(x−) − ψ̄1(x+) � ψ2(x+)

) :
= i : (

ψ̄2(x−)ψ1(x−) − ψ̄1(x+)ψ2(x+)
) :,

J2(x) = − : (
ψ̄1(x+) � ψ2(x+) + ψ̄2(x−) � ψ1(x−)

) :
= − : (

ψ̄1(x+)ψ2(x+) + ψ̄2(x−)ψ1(x−)
) : .

(2.39)

We notice that the star-product appearing in the noncommu-
tative currents is removed. Applying the permutation on the
fermionic fields of the relation (2.38), we obtain

Jμ(x) = −Jμ(x). (2.40)

This is an interesting result in two dimensions. Unlike the
four-dimensional case, where Jμ(x) and Jμ(x) correspond
to each other by the charge conjugation transformation [16],
which is not conserved, in two dimensions the charge conju-
gation, as well as the Lorentz invariance, retain the symmetry
of the theory as in their commutative case. Inserting (2.40)
in (2.37) then leads to

T̂ s�
μν = T s�

μν = T
�

μν. (2.41)

One of the physical consequences of this equivalence is non-
commutative bosonization, which is obtained by writing the
transformation of the field ψ under the spatial translation

∂x1ψ(x) = i[P1, ψ(x)], P1 =
∫

dx ′
1T

s�
21 , (2.42)

where T s�
21 is the conserved current arising from translational

invariance.2 We have

∂x1ψ(x) = i

[∫
dx ′

1T
s�

21 , ψ(x)

]

x2=x ′
2

, (2.43)

and substituting the value of T s�
21 from (2.8) in (2.43) yields

∂x1ψ(x) = iπ

2

[ ∫
dx ′

1(J1(x
′) � J2(x

′)

+ J2(x
′) � J1(x

′)), ψ(x)

]

x2=x ′
2

. (2.44)

To simplify (2.44), we insert
∫

dx ′
2δ(x2 − x ′

2) = 1 to use the
trace property of the star-product, which is given by

∫
dx ′

1dx ′
2 J2(x

′) � J1(x
′) =

∫
dx ′

1dx ′
2 J1(x

′) � J2(x
′).

(2.45)

2 In two-dimensional Euclidean space x2 = i x0.

123
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Inserting (2.45) in (2.44) and applying the operator definition
of the star-product (2.11), we have

∂x1ψ(x) = iπ
∫

dx ′
1dx ′

2 δ(x2 − x ′
2)Fab

× [J1(x
′ + a)J2(x

′ + b), ψ(x)]
∣∣∣
∣
a,b=0

= iπ
∫

dx ′
1dx ′

2 δ(x2 − x ′
2)Fab

× (J1(x
′ + a)[J2(x

′ + b), ψ(x)]
+ [J1(x

′ + a), ψ(x)]J2(x
′ + b))

∣∣∣∣
a,b=0

. (2.46)

The bracket terms appearing in the right-hand side of
(2.46) are derived by considering the quantization condition
{ψα(x), ψ†

β(x ′)} = δαβδ(x1 − x ′
1) as follows:

[
J2(x

′ + a), ψ(x)
]
x2=x ′

2
= ψ(x ′ + a)δ(x1 − x ′

1 + a),

[
J1(x

′ + a), ψ(x)
]
x2=x ′

2
= γ5ψ(x ′ + a)δ(x1 − x ′

1 + a),

(2.47)

with γ5 = iγ1γ2. Substituting (2.47) into (2.46) and then
converting the result into the star-product form, we have

∂x1ψ(x) = iπ(J1(x) + J2(x)γ5) � ψ(x). (2.48)

The solution of this equation is represented by

ψ(x) = P
(
e
iπ

∫ x1−∞ dx ′
1[J1(x ′)+J2(x ′)γ5]

�

)
ψ0, (2.49)

where P denotes the path-ordering operator and ψ0 is a con-
stant spinor in two dimensions.

Now, as a result of (2.38), we can use the bosonized form
of the commutative current, which is introduced in Appendix
A. Hence, we conclude

ψ(x) = P
(
e
−i

√
π [γ5φ(x)−∫ x1−∞ dx ′

1φ̇(x ′)]
�

)
ψ0, (2.50)

where φ̇ = ∂x ′
2
φ.

3 Discussion

In this paper, we established the noncommutative extension
of the Sugawara construction in the bilinear form of the cur-
rents for free massless fermions in two dimensions. It was
shown that this construction is precisely equivalent to the
symmetric energy-momentum tensor.

To prove the correctness of this equivalence, we deter-
mined the energy-momentum tensor in two separate meth-

ods. The first was the direct calculation using the symmet-
ric definition of the energy-momentum tensor for on-shell
Dirac fermions and the second contained a detailed analy-
sis of noncommutative Sugawara construction by applying
the point-splitting regularization. Furthermore, for simplifi-
cation in our calculation, we considered the light-cone sys-
tem. In this coordinate, we realized that the currents Jμ and
Jμ, apart from a minus sign, are actually the same in two
dimensions, which leads to the charge conjugation symme-
try restoration.

Eventually, we presented a physical consequence of this
equivalence, named noncommutative bosonization (e.g. see
[17–19]), which relates a fermionic field to a bosonic field
through an exponential function and demonstrated that a free
massless fermion theory with a global U (1) symmetry in
noncommutative space corresponds to a free massless boson
theory. Also, the bosonized version of a theory with local
U (1) symmetry such as two-dimensional noncommutative
QED (NC-QED2) was addressed in [20], where it was proven
that the bosonized action contains a noncommutative Wess–
Zumino–Witten (WZW) part, a gauge kinetic part, and an
interaction part between the WZW and gauge field.

The physical significance of the bosonization procedure
is that it specifies a duality between the strong and weak
couplings for particular interacting quantum field theories.
The most famous example of this duality is the equivalence of
the massive Thirring model and the sine-Gordon model [21,
22], where the weak coupling β of the bosonic theory, that is,
the sine-Gordon model, is related to the strong coupling g of
the fermionic theory, the massive Thirring model, through the
bosonization rule described by 4π

β2 = 1 + g
π

. Moreover, the
duality between the noncommutative version of these models
was studied in [17–19] where it was shown that the strong–
weak duality is also preserved. However, it is notable that
the strong–weak duality does not appear in the case of NC-
QED2 and its bosonized version, because of the appearance
of the same couplings in two theories.
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Appendix A: Commutative Sugawara construction

In this appendix, we present a detailed analysis on the proof
of the relation T s

μν = Tμν in two-dimensional commuta-
tive space for free massless fermions, as argued in [5], and
describe some interesting consequences of this equivalence
[23–27]. The Lagrangian for the massless fermions is given
by

L = i

2

(
ψ̄γ μ∂μψ − ∂μψ̄γ μψ

)
, (A.1)

which is invariant under the global phase transformation
ψ → eiαψ and ψ̄ → e−iαψ̄ , which gives the conserved
current

jμ(x) =: ψ̄(x)γμψ(x) : . (A.2)

For this theory, the symmetric energy-momentum tensor is
written as follows:

Tμν = i

4
: (

ψ̄γμ∂νψ+ψ̄γν∂μψ−∂μψ̄γνψ − ∂νψ̄γμψ
) : .

(A.3)

The energy-momentum tensor in Sugawara form is described
by a bilinear function of the currents as

T s
μν = π

2

(
jμ(x) jν(x) + jν(x) jμ(x) − gμν j

λ(x) jλ(x)
)
.

(A.4)

To show T s
μν = Tμν , we start with (A.4) and replace

jμ(x) jν(x) with

lim
ε→0

( jμ(x + ε) jν(x) − 〈 jμ(x + ε) jν(x)〉). (A.5)

Applying Wick’s theorem to (A.5)

jμ(x + ε) jν(x) = : ψ̄(x + ε)γμψ(x + ε) :: ψ̄(x)γνψ(x) :
= : ψ̄(x + ε)γμψ(x + ε)ψ̄(x)γνψ(x) :
+ : ψ̄(x + ε)γμ〈ψ(x + ε)ψ̄(x)〉γνψ(x) :
+ : ψ̄(x)γν〈ψ(x)ψ̄(x + ε)〉γμψ(x + ε) :
− tr

(
γμ〈ψ(x)ψ̄(x+ε)〉

× γν〈ψ(x+ε)ψ̄(x)〉) , (A.6)

and implementing a similar analysis for the other terms of
(A.4), we arrive at

T s
μν = π

2
lim
ε→0

[
Mμν(x, ε) + Nμν(x, ε) + Nνμ(x, ε)

+Nμν(x,−ε) + Nνμ(x,−ε)

−gμν[N λ
λ (x, ε) + N λ

λ (x,−ε)]
]
, (A.7)

where Mμν and Nμν are defined as

Mμν(x, ε) = : ψ̄(x + ε)γμψ(x + ε)ψ̄(x)γνψ(x) :
+ : ψ̄(x + ε)γνψ(x + ε)ψ̄(x)γμψ(x) :
− : ψ̄(x + ε)γλψ(x + ε)ψ̄(x)γ λψ(x) : gμν,

Nμν(x, ε) = : ψ̄(x + ε)γμS
(+)(ε)γνψ(x) :, (A.8)

and we have

S(+)(ε) = 〈ψ(x + ε)ψ̄(x)〉 = −
(

i

2π

)
εαγ α

ε2 . (A.9)

First, we concentrate on determining the value of Mμν(x):

M00 = M11 = : ( j0)
2 + ( j1)

2 :,
M01 = M10 = : j0 j1 + j1 j0 : . (A.10)

Choosing γ0 = σz and γ1 = iσy , we find

j0 = ψ̄1ψ1 − ψ̄2ψ2, j1 = ψ̄1ψ2 − ψ̄2ψ1. (A.11)

Therefore, all the components of Mμν in terms of the
fermionic fields are given by

M00 = M11 = : (ψ̄1ψ1 − ψ̄2ψ2)
2 + (ψ̄1ψ2 − ψ̄2ψ1)

2 :,
M01 = M10 = : (ψ̄1ψ1 − ψ̄2ψ2)(ψ̄1ψ2 − ψ̄2ψ1)

+(ψ̄1ψ2 − ψ̄2ψ1)(ψ̄1ψ1 − ψ̄2ψ2) : . (A.12)

Performing some permutations on the fermionic fields yields
Mμν = 0. In the next step, our purpose is to obtain the value
of Nμν . To this end, let us start with an expansion of the
fermionic fields up to the first order in ε

Nμν(x, ε) = − iεξ

2πε2 : [ψ̄(x) + εα∂αψ̄(x)

+ O(ε2)]γμγξγνψ(x) : . (A.13)

Taking the symmetric limits (2.21),

lim
ε→0

Nμν(x, ε) = i

4π
: ∂ξ ψ̄(x)γμγξγνψ(x) :, (A.14)

putting (A.14) in (A.7), and using the identity (2.24) for on-
shell fermions in two dimensions, we find

T s
μν = i

4
: (ψ̄γμ∂νψ + ψ̄γν∂μψ − ∂μψ̄γνψ − ∂νψ̄γμψ) :,

(A.15)

which is exactly equal to Tμν as mentioned in (A.3). This
equivalence suggests the existence of a canonical massless
pseudo scalar field, satisfying [φ(x, t), φ̇(y, t)] = iδ(x− y),
which is related to the conserved current jμ(x) through the
following equation [24,25]:

jμ(x) = 1√
π

εμν∂
νφ(x). (A.16)
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If we substitute (A.16) into the Sugawara form (A.4) and use
the identity εμαενβ = gμβgαν − gμνgαβ , it is found that

T s
μν = 1

2

(
∂μφ∂νφ + ∂νφ∂μφ − gμν∂λφ∂λφ

)
, (A.17)

which describes the energy-momentum tensor for a free
massless boson. Another interesting result of the Sugawara
construction is that it is possible to find explicitly the
fermionic field in terms of the bosonic field, as mentioned
in the introduction part. To show this, we consider the equa-
tion describing the transformation of the field ψ under the
spatial translation [26,27],

∂x1ψ(x) = i

[ ∫
dx ′ T s

01, ψ(x)

]
, P0 =

∫
dx ′

1 T s
01,(A.18)

where T s
01 is the Noether current of translational symmetry.

Inserting T s
01 from (A.4) into (A.18), we have

∂x1ψ(x) = iπ

2

×
[ ∫

dx ′
1

(
j0(x

′) j1(x ′) + j1(x
′) j0(x ′)

)
, ψ(x)

]

x0=x ′
0

.

(A.19)

Applying the equal-time commutation relations

[ j0(x ′), ψ(x)]x0=x ′
0

= −ψ(x)δ(x1 − x ′
1),

[ j1(x ′), ψ(x)]x0=x ′
0

= −γ5ψ(x)δ(x1 − x ′
1), (A.20)

with γ5 = γ0γ1, we arrive at

∂x1ψ(x) = −iπ [ j1(x) + j0γ5(x)]ψ(x). (A.21)

Solving this equation yields

ψ(x) = e−iπ
∫ x1−∞ dx ′( j1(x ′)+ j0(x ′)γ5)ψ0, (A.22)

where ψ0 is a constant spinor in space-time. In the final step,
we put the bosonized form of the currents from (A.16) in
(A.22),

ψ(x) = ei
√

π [γ5φ(x)+∫ x1−∞ dx ′
1φ̇(x ′)]ψ0. (A.23)

As we see, the spinor field ψ is mapped to the bosonic field
φ.

References

1. P. Jordan, E.P. Wigner, About the Pauli exclusion principle. Z. Phys.
47, 631 (1928)

2. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev.
125, 1067 (1962)

3. R.F. Dashen, D.H. Sharp, Currents as coordinates for hadrons.
Phys. Rev. 165, 1857 (1968)

4. H. Sugawara, A field theory of currents. Phys. Rev. 170, 1659
(1968)

5. S. Coleman, D. Gross, R. Jackiw, Fermion avatars of the Sugawara
model. Phys. Rev. 180, 1359 (1969)

6. P.C.W. Davies, Equivalence of massless boson and fermion theories
in curved two-dimensional space–time: Sugawara stress tensor. J.
Phys. A 11, 179 (1978)

7. A. Connes, M.R. Douglas, A.S. Schwarz, Noncommutative geom-
etry and matrix theory: compactification on tori. JHEP 9802, 003
(1998). arXiv:hep-th/9711162

8. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Noncommutative
geometry from strings and branes. JHEP 9902, 016 (1999).
arXiv:hep-th/9810072

9. M.R. Douglas, N.A. Nekrasov, Noncommutative field theory. Rev.
Mod. Phys. 73, 977 (2001). arXiv:hep-th/0106048

10. R. Banerjee, C.K. Lee, H.S. Yang, Seiberg–Witten-type maps for
currents and energy momentum tensors in noncommutative gauge
theories. Phys. Rev. D 70, 065015 (2004). arXiv:hep-th/0312103

11. A. Das, J. Frenkel, On the energy-momentum tensor in non-
commutative gauge theories. Phys. Rev. D 67, 067701 (2003).
arXiv:hep-th/0212122

12. M. Hayakawa, Perturbative analysis on infrared aspects of non-
commutative QED on R**4. Phys. Lett. B 478, 394 (2000).
arXiv:hep-th/9912094

13. M. Hayakawa, Perturbative analysis on infrared and ultra-
violet aspects of noncommutative QED on R**4 (1999).
arXiv:hep-th/9912167

14. A.M. Ghezelbash, S. Parvizi, Gauged noncommutative Wess–
Zumino–Witten models. Nucl. Phys. B 592, 408 (2001).
arXiv:hep-th/0008120

15. J.S. Schwinger, Field theory commutators. Phys. Rev. Lett. 3, 296
(1959)

16. M.M. Sheikh-Jabbari, C, P, and T invariance of noncom-
mutative gauge theories. Phys. Rev. Lett. 84, 5265 (2000).
arXiv:hep-th/0001167

17. C. Nunez, K. Olsen, R. Schiappa, From noncommutative bosoniza-
tion to S duality. JHEP 0007, 030 (2000). arXiv:hep-th/0005059

18. M.T. Grisaru, L. Mazzanti, S. Penati, L. Tamassia, Some properties
of the integrable noncommutative sine-Gordon system. JHEP 0404,
057 (2004). arXiv:hep-th/0310214

19. H. Blas, Bosonized noncommutative bi-fundamental fermion and
S-duality. JHEP 0506, 022 (2005). arXiv:hep-th/0504140

20. F. Ardalan, M. Ghasemkhani, N. Sadooghi, On the mass spectrum
of noncommutative Schwinger model in Euclidean R

2 space. Eur.
Phys. J. C 71, 1606 (2011). arXiv:1011.4877 [hep-th]

21. S.R. Coleman, The quantum sine-Gordon equation as the massive
Thirring model. Phys. Rev. D 11, 2088 (1975)

22. S. Mandelstam, Soliton operators for the quantized sine-Gordon
equation. Phys. Rev. D 11, 3026 (1975)

23. Y. Freundlich, Fermions and bosons in a two-dimensional world.
Nucl. Phys. B 36, 621 (1972)

24. Y. Freundlich, D. Lurie, Sugawara model and goldstone bosons.
Phys. Rev. D 1, 1660 (1970)

25. Y. Freundlich, Sugawara model, broken symmetries, and massless-
boson fields, ibid. Phys. Rev. D 1, 3290 (1970)

26. C.M. Sommerfield, Currents as dynamical variables. Phys. Rev.
176, 2019 (1968)

27. J.F. Willemsen, Remarks on the physical degrees of freedom in
two-dimensional electrodynamics. Phys. Rev. D 9, 3570 (1974)

123

http://arxiv.org/abs/hep-th/9711162
http://arxiv.org/abs/hep-th/9810072
http://arxiv.org/abs/hep-th/0106048
http://arxiv.org/abs/hep-th/0312103
http://arxiv.org/abs/hep-th/0212122
http://arxiv.org/abs/hep-th/9912094
http://arxiv.org/abs/hep-th/9912167
http://arxiv.org/abs/hep-th/0008120
http://arxiv.org/abs/hep-th/0001167
http://arxiv.org/abs/hep-th/0005059
http://arxiv.org/abs/hep-th/0310214
http://arxiv.org/abs/hep-th/0504140
http://arxiv.org/abs/1011.4877

	Noncommutative Sugawara construction
	Abstract 
	1 Introduction
	2 Equivalence of the symmetric energy-momentum tensor and Sugawara energy-momentum tensor  in noncommutative space
	2.1 Symmetric energy-momentum tensor
	2.2 Sugawara energy-momentum tensor

	3 Discussion
	Acknowledgments
	Appendix A: Commutative Sugawara construction
	References




