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Abstract In this article we analyze the electrodynamics in
curved space-time in the Lemaître–Tolman–Bondi metric.
We calculate the most general scale factor in this inhomoge-
neous Universe. We also study the presence of electromag-
netic field bubbles in the Universe.

1 Introduction

The Universe is described in models, the so called
Friedmann–Lemaître–Robertson–Walker (FLRW) models,
in which it is homogeneous and isotropic and the matter is
a gas of particles with a pressure p > 0. According to the
cosmological principle our Universe is homogeneous and
isotropic when we consider scales larger that a few hundred
Mpc. A very intriguing question here is if there is a scale
above which the Universe is approximately FLRW. These
models were developed in the period 1917–1935 by de Sit-
ter, Friedmann, Lemaître, Robertson, Walker, and Einstein.
The main reason to consider an FLRW model is that it is
universally recognized as a very good approximation to a
more realistic description of our cosmos, but it is essential to
remember that the cosmological principle is a postulate, not
a law of nature.

During the last decade a great effort has been made in
understanding that the Universe is locally far from homo-
geneity (see for example the formation of non-linear struc-
ture). The first study of the effect of inhomogeneity and
anisotropy in the Universe is known as ‘the fitting problem’
[1] and the inhomogeneities are able to explain the acceler-
ating expansion of the Universe [2–8]. The inhomogeneous
models of the Universe are to be able to explain observational
results due to the so called ‘dark energy’ and they are just
these effects of inhomogeneities that may mimic the acceler-
ated expansion of the Universe [8] and then remove the need
to postulate the dark energy.
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The inhomogeneity of the Universe is a very intriguing
open research field and intensive study has been performed
[9–12]. Among the structures in the Universe we have found
very large voids that dominate the Universe, while matter is
mostly distributed in filamentary structures that surround the
voids. When we consider larger scales we see very strange
structures such as the so called ‘Great Wall’. Therefore it is
important to consider photons that trade in these voids and to
study the differences with photons that travel in a homoge-
neous and isotropic Universe as in an LFRW model. These
studies started some years ago [13–19].

In the last years many papers have been published on
the problem of electrodynamics in an isotropic and homoge-
neous gravitational background in FLRW models. The elec-
trodynamics effect in an anisotropic Universe has been stud-
ied in [20]; the author studies very interesting astrophysical
consequences connected with an anisotropic expansion of the
Universe. In particular he suggests the appearance of polar-
ization of electromagnetic radiation when it passes through
local anisotropic regions.

The purpose of this article is to analyze the electrodynam-
ics in LTB models, that is to say, we study electrodynamics
in a curved space-time and in particular we find the most
general scale factor in this background.

The paper is structured as follows. In Sect. 2 we tidy
the electromagnetic field in curved space-time in a LTB
background metric. We obtain the components of the elec-
tromagnetic energy momentum and we calculate the ‘new’
metric taking into account all contributions. In Sect. 3 we
study the Maxwell equations in curved space-time and we
solve the Einstein equations. It is possible to obtain the
most general energy density of the electromagnetic field.
In Sect. 4 we solve the radial-radial component of the
Einstein equation in order to have the most general scale
factor in this context. In Sect. 5 we consider the case
of electromagnetic field bubbles in the Universe. The dis-
cussion of the results and final remarks are presented in
Sect. 6.
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2 Lemaître–Tolman–Bondi metric with electromagnetic
field

In this section we study electrodynamics and we calculate
the energy-momentum tensor for the electromagnetic field
in a inhomogeneous metric. In fact in order to describe the
inhomogeneities, let us consider the well-studied Lemaître–
Tolman–Bondi metric:

ds2 = dt2 − X2(t, r) dr2 − A2(t, r)
[
dθ2 + sin2 θ dφ2

]
,

(2.1)

with
√−g = X (t, r)A2(t, r) sin θ . At the present step, there

is no relation between X (t, r) and A(t, r). Let us intro-
duce electrodynamics in curved space-time. To this end, a
very interesting pedagogical introduction to formulate elec-
trodynamics in curved space-time may be found in [21], in
which the author also analyzed the Maxwell equations for
an expanding Universe with the metric of a spatially flat
Friedman–Robertson–Walker space-time. The electromag-
netic field tensor is Fμν = Aν;μ − Aμ;ν = Aν,μ − Aμ,ν

where the four-potential is Aμ. Following [21] it is possible
to obtain for the electromagnetic field tensor and its dual the
following expressions:

Fμν = uμEν − uν Eμ + εμνρσ Bρuσ , (2.2)

∗Fμν = 1

2
εμναβ Fαβ = εμναβuα Eβ + uμ Bν − Bμuν (2.3)

where uμ is the four-velocity of the observer, Eν and Bρ are,
respectively, the electric and the magnetic field, εμνρσ =√−g Aμνρσ is the totally covariant antisymmetric tensor,
εμνρσ = Aμνρσ /

√−g is the controvariant one, and Aμνρσ

is the Levi-Civita symbol with A0123 = 1 (+ (−) for any
even (odd) permutations of 0123).

The Maxwell equations in a curved space-time are

∇ν Fμν = 4π Jμ, (2.4)

∇ν
∗Fμν = 0 (2.5)

where ∇ν is the covariant derivative and Jμ = (ρ, �J ) is the
electromagnetic four-current density. The components of the
electromagnetic field in the LTB metric are

F0l = E (l) F12 = sin θ

X
B(3) F13 = − B(2)

X sin θ

F23 = X

A2 sin θ
B(1) , (2.6)

∗F0l = B(l) ∗F12 = − sin θ

X
E (3) ∗F13 = E (2)

X sin θ

∗F23 = X

A2 sin θ
E (1). (2.7)

The electromagnetic field contributes to the energy-momen-
tum tensor with the following term:

T (EM)
μν =−Fμα Fνβ gαβ + 1

4

(
Fαβ Fαβ + Jα Ãα

)
gμν. (2.8)

For our purposes, we neglect the coupling term Jα Ãα; in
fact, according to ordinary cosmology, the greatest part of
the matter is dark i.e. electrically neutral. In this way, the
eventually appearing fluctuations of charge in the barotropic
fluid are due to the ordinary matter and so it contributes with
a second order correction that we neglect. At this step, we are
able to write the non-null component of T (EM)

μν for a comoving
observer (uμ = (1, �0)) as follows:

T (EM)
00 = X2(E (1))2 + A2(E (2))2 + A2 sin2 θ(E (3))2,

+1

4
Fαβ Fαβ (2.9)

T (EM)
11 =−X4(E (1))2+X2 A2 sin2 θ(B(3))2+X2 A2(B(2))2,

− X2

4
Fαβ Fαβ (2.10)

T (EM)
22 = T (EM)

33 = −A4(E (2)) + A4 sin2 θ(B(3))2 (2.11)

+X2 A2(B(1))2,− A2

4
Fαβ Fαβ

T (EM)
10 = X A2 sin θ (E (3) B(2) − E (2) B(3)), (2.12)

T (EM)
20 = X A2 sin θ (E (1) B(3) − E (3) B(1)), (2.13)

T (EM)
30 = X A2 sin θ (E (2)B(1) − E (1) B(2)), (2.14)

T (EM)
12 = −X2 A2(E (1)E (2) + B(1) B(2)), (2.15)

T (EM)
13 = −X2 A2 sin2 θ (E (1)E (3) + B(1) B(3)), (2.16)

T (EM)
23 = −A4 sin2 θ (E (2)E (3) − B(2)B(3)). (2.17)

We find that the energy-momentum tensor is not diagonal.
Let us consider the Einstein equation Gμν = 8πG N T μν,
where Gμν is the Einstein tensor, G N is the Newton constant.
The only non-null off-diagonal term in Gμν for the metric
Eq. (2.1) is

G10 = 2

(
A′

A

Ẋ

X
− Ȧ′

A′

)
(2.18)

with ′ ≡ ∂/∂r and˙≡ ∂/∂t . Therefore the Einstein equations
Gμν = 8 π G Tμν impose the following equalities:

T (EM)
20 = T (EM)

30 = T (EM)
12 = T (EM)

13 = T (EM)
23 = 0, (2.19)

so that, taking into account Eqs. (2.13)–(2.18), a possible
solution is given by B2 = B3 = 0 and E2 = E3 = 0. In this
way we also have T (EM)

10 = 0 ⇒ G10 = 0, i.e.

X (t, r) = A′(t, r)√
1 − k(r)

(2.20)

where k(r) is the spatial curvature as is well known in the
matter dominated case. Our new metric becomes
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ds2 = dt2 − A′2(t, r)

1 − k(r)
dr2 − A2(t, r) d�2, (2.21)

as in the case without electromagnetic field.

3 Electrodynamic’s equations

In this section we want to study the Maxwell equations in a
curved space-time:

∇ν Fμν = 4π Jμ, (3.1)

∇ν
∗Fμν = 0 (3.2)

In order to calculate the Maxwell equations it is important to
stress that our fields are

Eμ = (0, E (1)(t, r, θ, φ), 0, 0), (3.3)

Bμ = (0, B(1)(t, r, θ, φ), 0, 0). (3.4)

Now it is useful to make explicit the cases μ = 0, 1, 2, 3 for
the Maxwell equations (3.1) and (3.2).

∂1(X A2 E (1)) = 4π X A2 J 0, (3.5)

∂0(X A2 E (1)) = −4π X A2 J 1, (3.6)

X∂3 B(1) = 4π A2 sin θ J 2, (3.7)

X∂2 B(1) = −4π A2 sin2 θ J 3, (3.8)

∂1(X A2 B(1)) = 0, (3.9)

∂0(X A2 B(1)) = 0, (3.10)

∂3 E (1) = 0, (3.11)

∂2 E (1) = 0. (3.12)

Our goal is to solve the two Einstein equations,

G 0
0 = 8πG

(
T 0

0
(M) + T 0

0
(EM)

)
(3.13)

and

G 1
1 = 8πG

(
T 1

1
(M) + T 1

1
(EM)

)
(3.14)

where

T ν
μ

(M) = ρmuμuν = ρmδμ0δ
ν0 (3.15)

where ρm is the energy density of the pressureless fluid of
matter and T ν

μ
(EM) is given by Eq. (2.8). We must take into

account that the only two independent Einstein equations are

Ȧ2 + k

A2 + 2 Ȧ Ȧ′ + k′

AA′ = 8πG

[
ρm + A′2(E2 + B2)

2 (1 − k)
− Jα Aα

]
,

(3.16)
Ȧ2 + 2AÄ + k

A2 = 8πG

[
A′2(E2 + B2)

2 (1 − k)
− Jα Aα

]
, (3.17)

which, respectively, correspond to the time-time equation and
the radial-radial one in Eqs. (3.16) and (3.17). From now on
we assume that matter and field do not interact in order to
eliminate the term Jα Aα; in order to simplify the notation,

we have denoted electrical and magnetic fields without super-
script. In order to solve Eqs. (3.16) and (3.17) it is necessary
to have the expression for the fields E and B.

From (3.11) and (3.12) we see that E is independent from
θ and φ. By integration of (3.5) we obtain

E(t, r) = ε(t) + χ(t, r)

X (t, r)A2(t, r t)
(3.18)

with

χ(t, r) ≡ 4π

r∫

0

X (t, r̄)A2(t, r̄)J 0(t, r̄)dr̄ . (3.19)

This expression is related to the radial charged current by
Eq. (3.6); in fact substituting Eq. (3.18) in (3.6) we have

ε̇ + χ̇ = −4π X A2 J (1). (3.20)

However, the charged matter belongs to the comoving matter;
this means that the four-current appears as Jα = (J 0, �0). In
such a way

ε̇ + χ̇ = 0 ⇒ ε(t, r) + χ(t, r) ≡ ε0 + χ0(r). (3.21)

At the same way, because the current is null, also we see that
the magnetic field depends only by t and r (Eqs. 3.7, 3.8)
and these dependences are fixed by Eqs. (3.9) and (3.10) as
follows:

B(t, r) = β0

X (t, r)A(t, r)2 . (3.22)

Equations (3.18), (3.21), and (3.22) allow us to write the
energy density of the electromagnetic field as follows:

E2 + B2 = [ε0 + χ0(r)]2 + β2
0

X2 A4 ≡ γ (r)

4πG X2 A4 . (3.23)

The last expression in the third member of Eq. (3.23) is writ-
ten in order to simplify the equations in the next section.

4 Scale factor

In this section we study the solution of the Einstein equations
in the presence of electromagnetic field given by Eq. (3.23).
Now let us rewrite Eq. (3.17) with the aim of evaluating
Eq. (3.23)

Ȧ2 + 2AÄ + k(r) = γ (r)

A2 (4.1)

and multiply by Ȧ

Ȧ3 + 2AȦ Ä = −k(r) Ȧ + γ (r)
Ȧ

A2 . (4.2)
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The left side of the last equation can be expressed as ∂0(AȦ2);
a first integration allows us to obtain the following equalities:

AȦ2 = −k(r)A + α(r) +
∫

γ (r)

A2 Ȧ dt

≡ −k(r)A + α(r) +
∫

γ (r)

A2 dA

⇒
(

Ȧ

A

)2

= −k(r)

A2 + α(r)

A3 − γ (r)

A4 . (4.3)

Let us define the following expressions:

−k(r) ≡ H2
0 (r)�k(r) A2

0(r), (4.4)

α(r) ≡ H2
0 (r)�m(r) A3

0(r), (4.5)

−γ (r) ≡ H2
0 (r)�γ (r) A4

0(r); (4.6)

with the constraint �k(r) + �γ (r) + �m(r) = 1, Eq. (4.3)
can be written in this form:

Ȧ

A
= H0(r)

[
�k(r)

(
A0

A

)2

+ �m(r)

(
A0

A

)3

+�γ (r)

(
A0

A

)4
]1/2

, (4.7)

which can be directly integrated as follows:

− H0(r) t =
1∫

A(t,r)
A0

dx√
�k(r) + �m(r)x−1 + �γ (r)x−2

.

(4.8)

Equation (4.8) is the cornerstone of the discussion: in fact it
is possible to find the scale factor just by solving the inte-
gral and inverting the solution. However, the last step is not
simple; in fact, if �k(r) 	= 0 there is no analytical way to
invert the equality. Having this purpose in mind, let us impose
�k(r) = 0: this is not just a theoretical assumption due to
the fact that the spatial curvature is constrained to be almost
null by CMB observations. In such a way, we obtain

∫
dx√

�m x−1 + �γ x−2

= 2

�m

∫
x

d

dx

(√
�γ + �m x

)
dx

= 2
√

�γ + �x

3 �2
m

(
�m x − 2 �γ

)
. (4.9)

This result can be put into Eq. (4.8) and the result is as follows:

[
−3 �2

m H0(r) t

2
− �m + 2 �γ

]2

=
(
�γ + �m

A

A0

) [
�2

m

(
A

A0

)2

+ 4�2
γ − 4 �γ �m

(
A

A0

)]

⇒ �3
m

(
A

A0

)3

− 3 �2
m�γ

(
A

A0

)2

+ 4 �3
γ

−
[

2 �γ − �m − 3 �m H0 t

2

]2

. (4.10)

Now the scale factor is given by the solutions of a third order
polynomial equation. In particular, we consider the solution
with Ȧ > 0, i.e.

A(t, r) = A0(r)

[
�γ (r)

�m(r)
+ �m(r)�2

γ (r)

M(t, r)
+ M(t, r)

�3
m(r)

]

(4.11)

where

M(t, r) = �2
m

⎛
⎝ N + 2 �3

γ +
√

N 2 + 4 N �6
γ

2

⎞
⎠

1/3

,

(4.12)

N (t, r) =
[

3 �m H0(r) t

2
+ �m − 2 �γ

]2

− 4 �3
γ . (4.13)

Our solution contains three free functions: A0(r), corre-
sponding to the actual shape of the scale factor, H0(r),
representing the actual value of the Hubble constant in
each point, and �γ (r), the density of the electromagnetic
field. The density of matter �m(r) is fixed by the relation
�m(r) = 1 − �γ (r). With the new expansion parameter
given by Eq. (4.11) it is possible to explore new phenomena
in the Universe from an astrophysical point of view.

5 Electromagnetic bubble model

In order to study the presence of electromagnetic field bub-
bles in the Universe, we have to fix the free functions A0(r),
H0(r), and �γ (r). First of all, we require A0(r) = r ; this
choice means that distances at the present epoch (t = 0) are
simply evaluated as in the euclidean scenario.

Moreover, let us choose the following expression for the
Hubble function:

H0(r) = H̄ + �H exp

(
− r

rv

)
(5.1)

where H̄ + �H is the Hubble constant evaluated at r = 0,
rv is the typical length at which the inhomogeneities can be
appreciable, and H̄ is the value of the Hubble constant outside
this region. Differently from the typical assumptions of an
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LTB inhomogeneous model, the void bubble is not real but it
is a global manifestation of the superposition of a lot of small
inhomogeneous regions. This effect can be appreciable at dis-
tance smaller than rv . This ansatz can mimic the dark energy
effects as shown in [8]. In such a way, neglecting the dark
energy component in the equations is a justified choice. Now
let us consider the presence of a single bubble in which an
electromagnetic field is present. Clearly this context breaks
the isotropy; however, if we assume that the intensity of the
electromagnetic field is small enough, it is possible to use
the isotropic solution, looking at the isotropy-breaking term
simply as a ‘little blemish’ of the solution. Having this fea-
ture in mind, we model our qualitative description by using
a gaussian profile for the electromagnetic bubble,

�γ = �γ 0 e
− (r−r0)2

2�r2 − (θ−π/2)2

2�θ2 − (φ−π)2

2�φ2 , (5.2)

where the bubble is centered at r0, φ0 = π , and θ = π/2,
while �r , �φ, and �θ , respectively, represent the radial and
the angular widths. However, �θ and �φ depend on �r
and r0: in fact, having in mind a spherical shape with radius
�r , the following relation is valid: tan(�θ) = tan(�φ) =
�r/r0. In such a way, when r0 
 �r let us approximate
tan x ∼ x , i.e.

�γ = �γ 0 e
− r2

0
2�r

[(
1− r

r0

)2+(θ− π
2 )

2+(φ−π)2
]

. (5.3)

This is a new result in cosmology. In a next paper [22]
we study the cosmological connections with astrophysical
sources and we will consider new possible scenarios in the
Universe.

6 Conclusion

The result shows that the inhomogeneous cosmological back-
ground modifies the Maxwell equations as we can see in
Sect. 2. What distinguishes our approach is mostly its sim-
plicity. The expansion of the Universe is determined by the
scale factor a(t), in which H(t) = ȧ/a is the Hubble expan-
sion rate. The presence of the inhomogeneity with electro-
magnetic fields gives rise to a new scale factor given by
Eq. (4.11). It is important to stress that inhomogeneities may
have important effects on the propagation of photons in the
Universe and this may be important on making observations;
in fact observers obtain information about the Universe by
means of photons, see for example [23–25].

The dichotomy consists in the apparent homogeneity of
the Universe, while it is also well fitted by an inhomogeneous
evolution of the same Universe.

We have also discussed the possibility of electromag-
netic field bubbles in the Universe. Taking into account the
expansion for the Hubble function given by Eq. (5.1) we

have obtained the most general �γ . This may be studied
further by means of future cosmological observations. Our
interesting lesson from the consideration of this paper is
that if one consider electrodynamics in curved space-time
with a LTB inhomogeneous Universe it is possible to deter-
mine a very interesting expansion factor for the Universe.
In any case, whatever direction the study of LTB cosmolo-
gies might take, the results of this investigation should be
relevant.

The results presented in this article will be helpful to ana-
lyze experimental effects in a more actual inhomogeneous
cosmological scenario, and we are presently attempting to
generalize our results. Work still has to be done in order to
explore these new cosmological effects, but this is a story for
another work.
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