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Abstract We study the primordial Universe in a cosmolog-
ical model where inflation is driven by a fluid with a poly-
tropic equation of state p = αρ + kρ1+1/n . We calculate
the dynamics of the scalar factor and build a Universe with
constant density at the origin. We also find the equivalent
scalar field that could create such an equation of state and
calculate the corresponding slow-roll parameters. We calcu-
late the scalar perturbations, the scalar power spectrum, and
the spectral index.

1 Introduction

Recently the Bose–Einstein condensate (BEC) dark mat-
ter (DM), a cosmological model based on condensate state
physics, has appeared in several works as an attempt to
explain the origin and nature of DM [1–6,8] and was ini-
tially used to describe DM halos. The equation of state of the
BEC can be found from the Gross–Pitaevskii (GP) equation
[1,2] and is given by

p = 2π h̄2ls
m3 ρ2, (1)

where ls is the scattering length, h̄ = h/2π is Planck’s con-
stant, ρ is the density distribution of the single component
BEC DM and m is the mass of particles that have been con-
densed.

Assuming the hypothesis that the cold dark matter in a
galaxy is in the form of BEC the density distribution of the
static gravitationally bounded single component BEC DM
is given by ρ(r) = ρ∗ sin kr/kr , where ρ∗ = ρ(0) is the
density in the center of the condensate and k is a constant.
Giving the conditions ρ(R) = 0 and kR = π , where R is
the condensate radius, the condensate DM halo radius can
be fixed as R = π(h̄2ls/Gm3)1/2. The calculated total mass
of the condensate DM halo is M = 4π2(h̄2ls/Gm3)3/2ρ∗ =
a e-mail: rodolfo.camargo@pq.cnpq.br
b e-mails: sergiovbg@gmail.com; sergio.vitorino@pq.cnpq.br

4R3ρ∗/π . So the mass of the particles of the condensate is
[2]

m =
(
π2h̄2ls
GR2

)1/3

≈ 6.73 × 10−2
(

ls
1 fm

)1/2 ( R
1 kpc

)−2/3

eV.

(2)

The Bose–Einstein condensation process, which is a very
well observed phenomenon in terrestrial experiments, occurs
when a gas of bosons is cooled at very low temperatures, near
absolute zero, what makes a large fraction of the particles
occupy the same ground state. The BEC model can also be
applied to cosmology in order to describe the evolution of the
recent Universe. In these attempts it can be assumed that this
kind of condensation could have occurred at some moment
during the cosmic history of the Universe. The cosmic BEC
mechanism was broadly discussed in [3,4]. In general the
BEC takes place when the gas temperature is below the criti-
cal temperature Tcrt < 2π h̄2n2/3/mkB, where n is the parti-
cles density, m is the particle mass, and kB is the Boltzmann
constant. Since in an adiabatic process a matter dominated
Universe behaves as ρ ∝ T 3/2 the cosmic dynamics has the
same temperature dependence. Hence we will have a critical
temperature at present of Tcrt = 0.0027 K if the boson tem-
perature was equal to the radiation temperature at the redshift
z = 1000. During the cosmic adiabatic evolution the ratio of
the photon temperature and the matter temperature evolves
as Tr/Tm ∝ a, where a is the scale factor of the Universe.
Using as value for the present energy density of the Universe
ρ = 9.44 × 10−30g/cm3 BEC will occur if the boson mass
satisfies m < 1.87 eV.

Recently the cosmological process of the condensation of
DM was investigated [5,6] and in this model it is assumed
that the condensation process is a phase transition that occurs
at some time during the history of the Universe. In this case
the normal bosonic DM cools below the critical condensation
temperature, which turns out to be significant enough to form
a condensate in which all particles occupy the same ground
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state. In this new period the two phases coexist for some time
until all ordinary DM is converted into the condensed form,
when the transition ends. The time evolution of cosmological
parameters as the energy density, temperature, scale factor,
and both scalar and tensorial perturbations is changed during
the phase transition process.

There are other cosmological scenarios with BEC. In
[7], the author considers a post-Newtonian cosmological
approach to study the global cosmological evolution of grav-
itationally self-bound BEC dark matter and the evolution of
the small cosmological perturbations. The author verifies that
the presence of BEC dark matter changes the cosmological
dynamics of the Universe. In [8] the author does the same as
in [7] with the generalized EoS p = (αρ + kρ2) c2. Opti-
mal parameters in good agreement with the �CDM model
are found. A natural justification and generalization of the
adhesion model, the Burgers equation and the cosmological
Kardar–Parisi–Zhang equation, which describes the large-
scale structure of the Universe but is introduced heuristically,
are studied in [9]. The possibility that a significant part of
the compact astrophysical objects are made of BEC is also
considered in [10]. The power spectrum for the BEC dark
matter is studied in [11], where the authors limit the mass of
the dark matter particle in the range 15 < m < 700 meV.
The effects of a finite dark matter temperature on the cosmo-
logical evolution of the BEC dark mater systems is verified
in [12]. In this paper the authors have shown that the pres-
ence of thermal excitations leads to an overall increase in
the expansion rate of the Universe. With the aim of under-
standing whether the gravitational interactions of axions can
generate entropy, the behavior of the axions during non-linear
galaxy evolution is studied in [13], but the assumption that
the axion field can form a Bose–Einstein condensate is not
yet confirmed. In [14] the authors assume that the dark matter
particles are described by a spin-0 scalar field, called scalar-
field dark matter. These bosonic particles are ultralight, with
masses down to the order of 10−33 eV/c2. An ultralight
phase-space density is suggested and there is a possibility
of formation of a BEC. They showed that the scalar-field
dark matter is compatible with observations of the cosmic
microwave background and the abundance of the light ele-
ments produced by Big Bang nucleosynthesis. With a rela-
tivistic version of the Gross–Pitaevski equation, the authors
in [3,15,16] propose (i) a novel mechanism of inflation, (ii)
a natural solution for the cosmic coincidence problem with
the transition from dark energy into dark matter, (iii) a very
early formation of highly non-linear objects like black holes,
and (iv) log-z periodicity in the subsequent BEC collapsing
time.

We can generalize the BEC equation of state (EoS) (1)
[15,16] as follows:

p = αρ + kρ2, (3)

where k > 0 represents a repulsive and k < 0 an attrac-
tive self-interaction and the linear term describes the well
known radiation (α = 1/3), dust matter (α = 0), and cos-
mological constant (α = −1), and the less known stiff matter
(α = 1). The stiff matter model is a specific cosmological
model where the matter content of the Universe has an equa-
tion of state of the form, p = αρ, with α = 1, where ρ and p
are, respectively, the fluid energy density and pressure [17].
This model can also be described by a massless free scalar
field. The energy density of the stiff matter is proportional to
1/a(t)6 and this result indicates that there may have existed
a phase earlier than that of radiation, where α = 1/3 and
ρ ∝ 1/a(t)4, and a phase after inflation in our Universe,
which was dominated by stiff matter. This peculiarity moti-
vated us to investigate their behavior in the analyses made
here in this work and to consider the implications of the
presence of a stiff matter perfect fluid in FRW cosmological
models.

The EoS p = αρ+ kρ2 is the sum of the linear term and a
quadratic term that describes BECs. At late times, when the
density is low, the BECs contribution to the EoS is negligible
and the evolution is determined by the linear term. But in the
early Universe, when the density is high, the term due to
BECs in the EoS is dominant and modifies the dynamics of
the Universe. Lately this model was used as a model of the
early Universe. We can assume that this EoS holds before
the radiation era and for the repulsive self-interaction the
Universe starts at t = 0 at a singularity with infinite density
but finite radius. For the case of attractive self-interaction the
Universe has always existed and for the non-physical limit
t → −∞ the density tends to a constant value and the radius
goes to zero, in both cases exponentially [15,16].

In this letter we study the generalized EoS [18]

p = αρ + kρ1+1/n, (4)

to describe the physical state of the matter content of the Uni-
verse, where n = 1 and α = 0 describes cosmological BECs.
With the generalized EoS this model can present a phase of
early accelerated expansion. It can also be used to describe a
phase of late accelerated expansion, depending on the choice
of the parameters [15,16]. We calculate the primordial cos-
mological dynamics in this model for α = 1/3, α = 0 and
α = 1 [15]. We also find a scalar potential that can generate
this EoS and calculate both scalar and tensorial perturbations
[16]. We study the corresponding slow-roll parameters and
the power spectrum and spectral index are calculated.

To motivate the model studied here we can see an analogy
between this polytropic equation of state and a cosmological
model where the fluid that fills the Universe has an effective
bulk viscosity [19]. If we write p = αρ − 3Hη, where η is
the viscous coefficient, we have exactly the generalized EoS,
when η ∝ ρ and H ∝ ρ1/n .
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The present letter is organized as follows. In Sect. 2 we
introduce the generalized Gross–Pitaevskii equation used
to describe the BEC in the short-ranged scale. In Sect. 3
we study the evolution of the Universe filled with a fluid
described by a polytropic EoS. For the case of a non-
singular inflationary Universe we find the scalar potential that
could generate the polytropic EoS and calculate the slow-roll
parameters. The primordial fluctuations, such as gravitational
waves, perturbations for the gravitational potential and for
the density contrast are calculated, and we find the quantum
power spectrum and spectral index in Sect. 4. We present our
conclusions and discussions in Sect. 5.

2 The generalized Gross–Pitaevskii equation

The Gross–Pitaevskii (GP) equation is a long-wavelength
theory widely used to describe a dilute BEC, but it fails [20] in
the case of short-ranged repulsive interactions in low dimen-
sions. Therefore the inter-particle interaction term in the GP
equation must be modified and in this model the ground state
features of the BEC are described by the generalized GP
equation [1,5],

ı̇ h̄
∂φ(t, �r)
∂t

= − h̄2

2m
∇2φ(t, �r)+ mV (�r)φ(t, �r)+ g′(n)φ(t, �r), (5)

where φ(t, �r) is the wave function of the condensate, m is the
particles mass, V is the gravitational potential, which satisfies
the Poisson equation ∇2V (�r) = 4πGρ, g′ = dg/dn, n =
|φ(t, �r)|2 is the BEC density and ρ = mn. To understand
the physical properties of a BEC we can use the Madelung
representation of the wave function [1,3,4], which is

φ(t, �r) =
√

n(t, �r)× eı̇ S(t,�r)/h̄, (6)

where S(t, �r) has the dimension of an action. This transfor-
mation will make the generalized GP equation (5) breaks into
two equations,

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (7)

ρ

(
∂ �v
∂t

+ (�v · ∇)�v
)

= −∇ p
( ρ

m

)
− ρ∇

(
V

m

)
− ∇VQ,

(8)

where VQ = −(h̄2/2m)∇2√ρ/ρ is a quantum potential and
�v = ∇S/m is the velocity of the quantum fluid. The effective
pressure of the condensate [3–5] is given by

p
( ρ

m

)
= g′ρ − g. (9)

Now writing g ∝ ργ we find the generalized EoS

p = kργ , (10)

where k is a proportionality constant that will be determined
in the context of our model, or which can be related to the
mass and the scattering length of the boson in the case of the
long-wavelength theory, and γ ≡ 1 + 1/n is the polytropic
index.

3 Equation of state and cosmic dynamics

Following the present data [21–23] we assume a flat homoge-
neous and isotropic Universe, whose geometry is described
by the Friedmann–Robertson–Walker metric, given by

ds2 = dt2 − a(t)d�x2, (11)

where a(t) is the scale factor of the Universe that describes
the cosmic evolution, t is the cosmic time, and we made the
speed of light c = 1. The gravitational dynamics is given by
the Einstein field equations,

Rμν − 1

2
gμνR = 8πGTμν. (12)

We also consider the Universe filled by a perfect fluid,
described by the energy-momentum tensor,

Tμν = (ρ + p)uμuν − pgμν, (13)

where ρ is the density of the fluid, p is the pressure, and gμν

is the metric tensor.
This perfect fluid has a general EoS, presented in [15,16],

which is a sum of a standard linear EoS and a polytropic
term,

p = αρ + kρ1+1/n, (14)

where −1 ≤ α ≤ 1, k is the polytropic constant and 1 + 1/n
is the polytropic index. In the linear term α = −1 represents
vacuum energy, α = 1/3 is radiation, α = 0 is pressureless
matter, and α = 1 is stiff matter. The polytropic term may
represent a self-gravitating BEC with repulsive (k > 0) or
attractive (k < 0) self-interaction, where n = 1 corresponds
to the standard BEC.

Here we will consider the high density case, (1 + α +
kρ1/n) ≥ 0 and n > 0 to describe the primordial Universe
which means that the density decreases with the radius. The
case 1+α+ρ1/n ≤ 0 represents a phantom Universe, where
the density increases with the radius [18]. In both cases the
polytropic term in the EoS (14) dominates when the density
is high and n > 0 and when the density is low and n < 0.
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For the EoS (14) the energy conservation equation is

ρ̇ + 3Hρ(1 + α + kρ1/n) = 0, (15)

where an overdot denotes the derivative with respect to the
cosmic time t and H = ȧ/a is the Hubble parameter. With
α �= −1 this equation is integrated to give

ρ = ρ∗
[(a/a0)3(1+α)/n ∓ 1]n

, (16)

with the minus sign corresponding to k > 0, the plus sign
corresponding to k < 0, a0 is a constant of integration, and
ρ∗ = [(1 + α)/|k|]n .

For the repulsive self-interaction (k > 0) the density is
defined only for a0 < a < ∞, where

ρ

ρ∗
≈

⎧⎨
⎩

(
n

3(1+α)
)n

1
((a/a0)−1)n → ∞, a → a0,

(a/a0)
−3(1+α) → 0, a → ∞.

(17)

In the case of an attractive self-interaction (k < 0) the
density is defined for 0 < a < ∞, and

ρ

ρ∗
≈

{
1, a → 0,

(a/a0)
−3(1+α) → 0, a → ∞,

(18)

with p = −ρ∗ and p → 0, in the same limits.
As we are analyzing the primordial Universe we can see

that, when a → 0, the density ρ → ρ∗, and we can identify
the Planck density ρ∗ = ρP = c5/G2 h̄ ≈ 5.16×1099 g/m3,
where ρP corresponds to a maximum value for the density in
the limit a → 0. Likewise, the constant of integration a0 can
be considered a reference point for the transition between the
vacuum energy era, when the polytropic component domi-
nates the EoS (14), and the era dominated by a linear term in
(14). When a � a0, the scale factor increases exponentially
as

a(t) ∝ lP e(8π/3)
1/2t/tP , (19)

where tP ≈ 5.39 × 10−44 s is the Planck time and lP =
c tP = (Gh̄/c3)1/2 ≈ 1.62 × 10−35 m is the Planck length.
From the mathematical point of view, in this scenario there
is no primordial singularity since this Universe exists at any
time in the past (a → 0 and ρ → ρP for t → −∞). It is
obvious that in the limit a → 0 a quantum theory of gravity
is required. Even so, the exponential solution (19) provides
a semi-classical description of the early Universe (see [24]
and Sect. 3.1 for more details).

We can also write Eq. (14) as

p = ω(t)ρ, (20)

where the effective EoS parameter ω(t) is

ω(t) = α ± (α + 1)

(
ρ

ρ∗

)1/n

= α ± (α + 1)((a/a0)
3(1+α)/n ∓ 1)−1. (21)

With Eq. (20) we can calculate the sound speed in the fluid,
which is

c2
s =

(
n + 1

n

)
ω(t)− α

n
. (22)

Once again we can find the limits for both repulsive and
attractive self-interaction. For k > 0 we have

ω(t) ≈
{
α + n

3((a/a0)−1) → ∞, a → a0,

α + α+1
(a/a0)−3(1+α)/n → α, a → ∞,

(23)

and for k < 0

ω(t) ≈
{−1, a → 0,

α − α+1
(a/a0)−3(1+α)/n → α, a → ∞.

(24)

3.1 Non-singular inflationary universe

We assume that the Universe is filled by the fluid with EoS
(14), with n > 0 and k < 0. With the metric (11), the Ein-
stein field equations (12) and Eq. (14) we find the Friedmann
equation,

1

(a/a0)2

(
d(a/a0)

dt

)2

= 8πG

3
ρ∗(1 + (a/a0)

3(1+α)/n)−n .

(25)

For small values of scale factor a, i.e., when a � a0 we have
(a/a0) → 0 and we can expand the Friedmann equation (25),
for x ≡ (a/a0)

3(1+α)/n � 1, as[
1 + n

2
x + 1

2

(n

2
− 1

) n

2
x2 + 1

6

(n

2
− 2

) (n

2
− 2

) n

2
x3

+O(x4)

]
d(a/a0)

(a/a0)
=

√
8πGρ∗

3
dt. (26)

We pose the condition 3(1 + α)/n ≥ 1, which means that

n ≤ 3(1 + α), (27)

and we keep only the null order terms to find

(a/a0) ∝ et H∗ , (28)

where H∗ =
√

8πGρ∗
3 . This means that under these condi-

tions the Universe is inflationary and the singularity can be
found at the non-physical limit t → −∞ with a nearly con-
stant finite density. This indicates that the Universe can start
at any time t∗, which we will define as t∗ = 0.
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For the case of n > 0 and k < 0 and a � a0 the fluid
with EoS (14) behaves like the vacuum energy, with constant
density. The value of ρ∗ defines a maximum value for the
density and it can be limited by the value of the Hubble
parameter at the end of inflation [25]. With ρ∗ we fix [15]

k = − (1 + α)

ρ
1/n∗

. (29)

The Friedmann equation is

ȧ

a
≈

√
8πG

3
ρ∗, (30)

and we can calculate the scale factor for a � a0

a ≈ et H , (31)

where H ≈
√

8πG
3 ρ∗.

After the inflationary stage, for a � a0, the linear term
of the EoS (14) dominates, which means that at some point
the inflationary stage will come to an end, and the density
will behave as stiff matter, radiation or dust, depending on
the value of α. If α = 1/3, for example, the Universe under-
goes a radiation era, which would correspond to the standard
Universe model. Here we are interested only in the inflation-
ary phase, so we will deal only with solution (31), which is
valid for any α and n, since condition (27) is true and k < 0,
α �= −1, and n > 0.

In the case that the linear term has a proportionality con-
stant with value α = −1 we can solve the conservation equa-
tion (15) in order to find a density ρ that decays with the scale
factor a only if k > 0 and n > 0, and it can be found [15]
that

ρ = ρ∗
[ln (a/a0)]n

, (32)

where ρ∗ ≡ (n/3k)n . In this case the density ρ(a) is defined
for a ≥ a0, and we cannot reproduce the behavior of an
inflationary Universe. We will not study the perturbations
for the case α = −1.

3.2 Slow-roll formalism

Here we will represent our fluid as a scalar field φ and we
find the scalar potential V (φ) [26,27] that generates the EoS
(14). The scalar-field representation can more conveniently
retain the features we could expect from fluids with nega-
tive pressure, responsible for the inflationary phase, mainly
for those that are interesting for cosmology, as the scenarios
resulting from phase transitions [28]. The scalar field must
obey the Klein–Gordon equation

φ̈ + 3H φ̇ + V,φ = 0, (33)

where V,φ = dV/dφ, and we define

ρ = φ̇2

2
+ V (φ), (34)

p = φ̇2

2
− V (φ). (35)

Inflation will only occur [26,27] if

φ̇2

2
� V ∝ H2,

|φ̈| � 3H φ̇ ≈ |V,φ |,
V,φφ � V . (36)

We combine Eqs. (34) and (35) to find

φ̇2 = (ω(t)+ 1)ρ, (37)

V (φ) = ρ

2
(1 − ω(t)). (38)

In order to find how the scale factor a varies with the scalar
field φ we use the chain rule and combine Eq. (37) with the
Friedmann equation (30) to have

dφ

da
=

√
3

8πG

√
ω + 1

a
. (39)

With the help of Eq. (21) we can invert the above equation
to give us the solution

(a/a0)
3(1+α)/n = sinh2(ψ), (40)

with ψ defined as

ψ =
√

6πG
1 + α

n2 φ. (41)

With Eqs. (38) and (40) combined we have [16]

V (φ) = ρ∗
2

[
1 − α

(1 + (a/a0)3(1+α)/n)n

+ 1 + α

(1 + (a/a0)3(1+α)/n)n+1

]

= ρ∗
2

[
(1 − α)

(coshψ)2n
+ (1 + α)

(coshψ)2(n+1)

]
. (42)

The inflationary expansion of the Universe will occur
while ψ � 1. If we expand the scalar potential (42) for
small values of the scalar field ψ we get

V (φ) ≈ ρ∗
{

1 − (1 + α + n)

2
ψ2

+
[
(1 + α + 2n)

3
+ n(α + n)

2

]
ψ4

}
, (43)

which resembles a symmetry breaking scalar-field potential.
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The first slow-roll parameter, which is related to the mea-
sure of accelerated expansion during inflation, is

ε(t) ≡ − Ḣ

H2 . (44)

The accelerated expansion occurs while ε < 1, and in our
model, we have ε � 1 for a � a0. Inflation ends when
ε ≈ 1, and from the evolution of the slow-roll parameter ε
in Fig. 2 we can clearly see that the inflationary regime will
end as the evolution approaches a0.

With the background equations, the EoS parameter (21)
and the Klein–Gordon equation (33) we can show that

ε(t) = 3

2
(1 + ω(t)) = 4πG

φ̇2

H2 ≈ 1

16πG

(
V,φ
V

)2

. (45)

In Fig. 2 we show the behavior of Eq. (45) as a function of
the scale factor (a/a0) in two different situations, with n = 1
and n = 2.

The second slow-roll parameter tells us how long the
accelerated expansion will be sustained. It is related to the
smallness of the second time derivative of the scalar field,
and we can write

η(t) ≡ − φ̈

H φ̇
= ε − 1

2ε

dε

dN
≈ 1

8πG

V,φφ
V

, (46)

where dN = Hdt and V,φφ = d2V/dφ2. During inflation
we have |η| < 1. The slow-roll conditions are

ε, |η| � 1; (47)

see [29] for more discussion of the slow-roll parameters.
As already mentioned before, after the inflationary stage,

for a � a0, the linear term of the EoS (14) dominates, which
means inflation will come to an end, and the Universe will
be dominated by the linear component of the EoS (14). If
α = 1/3, for example, the Universe undergoes a radiation
era, which would correspond to the standard Big Bang model,
in which the Universe undergoes a radiation dominated era.
Although it is possible to reheat the Universe using the scalar-
field formalism and the potential (42), we cannot say the
same about the fluid formalism. A complete reheating analy-
sis should be made in this model in order to see if the Universe
can be reheated.

4 Primordial quantum perturbations: scalar
perturbations

In this section we calculate scalar perturbations generated in
the early Universe. Scalar quantum fluctuations can be the
source of the seeds that were the origin of the large-scale

structures we see today. First we introduce the conformal
time τ , such that

dt = a(t)dτ. (48)

During inflation we have

τ ≡
∫ a

ae

da

Ha2 , (49)

where ae is the scale factor at the end of inflation. As H is
approximately constant during this period we can consider
that

τ � 1

H

∫ a

ae

da

a2 . (50)

The scale factor at the end of inflation is much larger than in
the middle, (ae � a). So, we find that

a � − 1

Hτ
. (51)

In order to find the fluctuations that were the origin of the
large-scale structures we introduce the perturbed metric

ds2 = a(τ )2[(1 + 2�)dτ 2 − (1 − 2�)d�x2], (52)

where�(τ, �x) is the gauge-invariant Bardeen potential [26].
We substitute the metric (52) in the Einstein field equations
(12), and keeping only the first order terms we find

∇2�− 3H(�′ + H�) = 4πGa2δT 0
0, (53)

(�′ + H�),i = 4πGa2δT 0
i , (54)

[�′′ + 3H�′ + (2H
′ + H

2)�]δi
j = −4πGa2δT i

j , (55)

where δTμν is the gauge-invariant perturbed stress-energy
tensor and H = a′/a is the Hubble parameter in terms of
the conformal time.

Using the hydrodynamics description of the polytropic
fluid we first perturb the density ρ → ρ + δρ and Eqs. (53)
and (55) will become

∇2�− 3H(�′ + H�) = 4πa2Gδρ, (56)

�′′ + 3H�′ + (2H
′ + H

2)� = 4πa2Gδp. (57)

It is easy to show that δp = c2
s δρ. We join Eqs. (56) and (57)

to find

�′′+3H(1+c2
s )�

′+[2H
′+H

2(1+3c2
s )+c2

s k2]� = 0, (58)

where k is the modulus of the wavenumber and we made
∇2� = −k2�. To obtain� during inflation we use the scale
factor (51) and the transformations
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� = aβμ, (59)

β = −3

2
(1 + c2

s ) = 3

2

(
1 + α

n

)
, (60)

and we find

μ′′ + μ[(kτcs)
2 − (β2 + β)] = 0. (61)

With the help ofμ = √|τ |g we will get the Bessel differential
equation,

z2 d2g

dz2 + z
dg

dz
+ [z2 − (β2 + β + 1/4)]g = 0, (62)

with z = k|τ |cs. The solution is

g = C1H(1)
ν (z)+ C2H(2)

ν (z), (63)

where H(i)
ν (z) are the Hankel functions of order ν =√

β2 + β + 1/4.
The same procedure we used to quantize the primordial

gravitational waves [26,30,31] can be applied to the wave
equation (61). This will transform the classical field � into
the quantum field

�̂ = aβμ̂, (64)

which allows us, using the two-points correlation function
〈�̂(τ, �x)�̂†(τ, �y)〉, to find the quantum power spectrum

P�(k, τ ) = k3

2π2

|μ|2
a−2β , (65)

with μ =
√
π

2

√|τ |H(1)
ν (z).

We can also write the quantum power spectrum as

P� ≡ A�

(
k

kp

)n�−1

, (66)

where A� is the power spectrum amplitude, kp is some fixed
pivot scale and n� is spectral index, which can be calculated
following the relation

n� − 1 = d ln P�
d ln k

∣∣∣∣
a H=csk

, (67)

where aH = csk is the horizon crossing condition; n� is
given by

n� = 1 − 2(ε− β − 1)(1 − ε)−1 ≈ 3 + 2β(1 + ε) ≈ −3c2
s .

(68)

In order to find the evolution of the density perturbation
δρ we only need to perturb the conservation equations Tμν;ν
[26] to find the hydrodynamics perturbations

δρ′ + H(δρ + δp)− 3�′(ρ + p)+ a(ρ + p)δui
,i = 0,

(69)

a−4[a5(ρ + p)δui
,i ]′ + ∇2δp + (ρ + p)∇2� = 0. (70)

In the regime a � a0 Eq. (69) will become

δ′ + (1 + c2
s )Hδ = 0, (71)

where δ = δρ/ρ is the density contrast, and the classical
solution is

δ ∝ a−(1+c2
s ). (72)

To find the quantum evolution of the density contrast δ we
need to find a wave equation. This can be done if we substitute
the conservation equation (69) into (70) and consider the
appropriate approximations to have

δ′′ + (5 + c2
s )Hδ

′ + [k2c2
s − (1 + c2

s )(4H
2 +H

′)]δ = 0. (73)

Making the transformation δ = aγ μ, where γ = − 1
2 (5 +

c2
s ) = 1

2

(
α+1

n − 4
)

we find the wave equation

τ 2μ′′ + [(kτcs)
2 − (γ 2 + 9γ + 20)]μ = 0, (74)

and finally, with the transformations

μ = √|τ |μ, (75)

z = k|τ |cs, (76)

we will find

z2 d2g

dz2 + z
dg

dz
+ [z2 − (γ 2 − 9γ + 81/4)]g = 0, (77)

which is the Bessel differential equation with the same solu-
tion (63), with the order ν = √

γ 2 − 9γ + 81/4.
We can use again the already discussed quantization pro-

cess to make δ → δ̂ to find both power spectrum and spectral
index,

Pδ(k, τ ) = k3

2π2

|μ|2
a−2γ , (78)

nδ = 1 − 2(ε − γ − 1)(1 − ε)−1

≈ 3 + 2γ (1 + ε) ≈ −(2 + c2
s ), (79)

where μ is described in terms of the Hankel function as μ =√
π

2

√|τ |H(2)
ν (z), and

Pδ ≡ Aδ

(
k

kp

)nδ−1

. (80)
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5 Conclusions

In this work we assumed that the primordial Universe was
filled with a fluid described by the equation of state p = αρ+
kρ1+1/n , (14), which is the sum of a standard linear equation
of state and a polytropic term. The polytropic term, with
n = 1, can be considered as a generalization of the standard
BEC dark matter equation of state. Following [15,16], but
letting the parametersα and n free, we show that the EoS (14)
can describe a inflationary Universe in the case of attractive
self-interaction. We found the slow-roll parameters ε and η.

In Fig. 1 we plotted the scalar field’s potential as a function
of the scale factor ratio a/a0. We can see that the difference
between the panel with the curves representing dust (α =
0) and radiation (α = 1/3) are the smallest. The behavior
follows a pattern where in the case with n = 1 the concavity
of the curve is downward while for n = 2 and n = 3 the
concavity is upward. On the other hand, the panel with figures
representing the behavior of rigid material, either for n = 1,
n = 2, and n = 3, shows the same concavity within the
limits of the scale factor ratio a/a0. Moreover, in this same
figure we note that in a model of the Universe filled only
with dust and n = 1, which represents the BEC model, the
slow-roll period ends earlier when compared with the stiff
matter or radiation cases. As can be seen in Fig. 1, the case
where n = 1 the slow-roll period lasts longer than the cases

with n > 1. In all cases the inflationary era is longer for stiff
matter (α = 1).

We calculated the slow-roll conditions for the scalar field
during inflation (see Fig. 2). We can see that in the model with
stiff matter the slow-roll period, compared with the scale
factor ratio a/a0, is longer than in the scenarios with dust
(α = 0) and radiation (α = 1/3) for both n = 1 and n = 2.
This situation indicates that the accelerated expansion of the
Universe with stiff matter is slower than with dust and radi-
ation. This characteristic may have important consequences
in the process of the evolution of the Universe, it being so
that the presence of stiff matter in FRW cosmological mod-
els produces an abundance of relic species of particles after
the Big Bang due to the expansion and cooling of the Uni-
verse [32]. The presence of stiff matter in FRW cosmological
models may also help to explain the baryon asymmetry and
the density perturbations of the right amplitude for the large-
scale structure formation in our Universe [33], and it may
also play an important role in the spectrum of relic grav-
ity waves created during inflation [34]. These two important
consequences may be changed due to the behavior of the
slow-roll parameter ε for the model of stiff matter.

Figure 3 shows the unnormalized power spectrum of �
for various values of the parameters α and n as a function of
wavenumber k. We can clearly see that the curvature power
spectrum is not scale invariant, and we see more power for

Fig. 1 The potential for the
scalar field as a function of the
scale factor
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Fig. 2 The first slow-roll
parameter ε as a function of the
scale factor

Fig. 3 The power spectrum of
the potential � for various
values of the parameters α and n
as a function of the wavenumber
k

small scales. Its spectral index (68) is proportional to the
fluid’s speed of sound, which, during inflation, can be approx-
imated by

c2
s ≈ −

(
1 + α + n

n

)
. (81)

Although we are dealing with an inflationary phase, which
prevents agglomeration of matter, we also study the density
contrast of the polytropic fluid, which has the quantum spec-
tral index (which is also a function of the fluid’s speed of
sound) given by Eq. (79). The power spectrum behavior can
be seen in Fig. 4. In the left upper panel and in the right bot-

tom panel of Fig. 4 we see that the power spectrum is scale
invariant for α = 1 and n = 1. For other combinations of α
and n we see more power for big scales.

It is well known that when we consider a fluid with nega-
tive pressure, the equivalence between hydrodynamical and
field representation exists only at the background level: at the
perturbative level, the model behaves in a complete different
way [28]. Hence, in situations where negative pressures are
concerned, a field representation leads to a much more com-
plete scenario, being closer to a realistic model. We hope
to present a more general analysis involving the comparison
between the hydrodynamical model and the scalar represen-
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Fig. 4 The power spectrum for
the quantum density contrast for
various parameters as a function
of wavenumber

tation of this polytropic equation of state in a future study,
both in terms of background level and on the perturbative
level in order to verify the behavior of the power spectrum
in the early Universe.

To have a more robust analysis of the behavior of the
cosmological models with the polytropic equation of state
we can use here the Bayesian chi-square χ2 minimization
technique to limit the different parameters of the EoS for
a viable cosmological model considering the observational
data available today, but here we have a more complex sit-
uation: one primordial inflationary phase described by the
polytropic equation of state with k < 0 and n > 0 and a cur-
rent phase of accelerated expansion described by the same
equation of state but with k > 0 and n < 0. In practice they
are two different cosmological models. The idea was already
developed in [9,15,16]. We intend to use a combination of
these two models in order to apply the statistical techniques
mentioned above. The best-fit values of the model parameters
are then determined from the chi-square function to study the
evolution of the Universe. We plan to show this comparison
with observations in a future work.

To summarize, the polytropic equation of state represents
an interesting scenario to study the evolution of the Universe.
The similarities with the models that are described by a lin-
ear equation of state, more than being a simple coincidence,
should be investigated with other kinds of representations,

not just the hydrodynamical representation, and with statis-
tical methods to verify the feasibility of the model.
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