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Abstract A Higgs field of particle physics can play the role
of the inflaton in the early universe if it is non-minimally
coupled to gravity. The Higgs inflation scenario predicts a
small tensor to scalar ratio: r � 0.003. Although this value
is consistent with the upper bound r < 0.12 given by the
BICEP2/Keck Array and Planck data, it is not at their max-
imum likelihood point: r � 0.05. Inflationary observables
depend not only on the inflationary models, but they also
depend on the initial conditions of inflation. Changing the
initial state of inflation can improve the value of r . In this
work, we study the Higgs inflation model under general ini-
tial conditions and show that there is a subset of these general
initial conditions which leads to enhancement of r . Then we
show that this region of parameter space is consistent with a
non-Gaussianity bound.

1 Introduction

The inflationary epoch of the early universe has became an
important part of the standard big bang model of cosmol-
ogy [1]. The inflationary paradigm not only solves two basic
problems of standard cosmology, i.e. the horizon and flat-
ness problems, but it also predicts that the large-scale struc-
ture of universe originating from the primordial perturbation
is nearly scale invariant, which is in good agreement with
observations [2,3].

In single field models of inflation generally a scalar field,
which is called inflaton, drives an exponential expansion. It
will be economical if we identify a known particle with the
inflaton field. The Higgs field of particle physics might be
an opportunity for this identification with the inflaton field.
The first model constructed on this assumption has been pro-
posed by Bezrukov and Shaposhnikov [7]. They claimed that
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the Higgs field can be identified with the inflaton field if it
is non-minimally coupled to gravity. At the same time, the
dimensionless coupling constant ξ , which will be defined in
Sect. 2, should be of the order of 104. This large value of
the coupling constant leads to unitarity violation [10–15].
Unitarity violation implies that there should be a UV cut off
�. Beyond � our effective theory will break down. Hence
our theory should be replaced by a new fundamental theory
beyond the UV cut off. Another issue related to the model in
[7] is the very small value prediction for the tensor to scalar
perturbation ratio r , i.e. r � 0.003. The announcement of
BICEP2 for B-mode detection [3] with a large value r � 0.2
motivated people to make some efforts to reconcile Higgs
inflation with the BICEP2 results [16–19]. Soon, it turned out
that there is serious doubt about the BICET2 results [4,5].
Recently, Keck Array claimed that they also have found an
excess of B-mode power over the standard expectation which
is consistent with the BICEP2 results [6]. In a joint analysis,
BICEP2/Keck Array and Planck collaborations report their
results as a likelihood curve for r with an upper limit r < 0.12
and a maximum likelihood at r � 0.05 [8]. Although the pre-
dicted value for r by the Higgs inflation model is consistent
with the upper limit in [8], it still is far enough from the
maximum likelihood r � 0.05. Therefore, it is reasonable to
search for some way to increase the r value.1 In the presence
of a UV cut off, which in turn introduces new physics, r can
be altered due to the non-trivial initial state effects. Hence,
r � 0.003 is not a firm prediction of Higgs inflation model,
but it will depend on the initial state of inflation.

Determination of the initial conditions is a necessary con-
dition to describe the dynamics of a given system. When
there is no UV cut off, the initial condition is trivial and

1 It should be observed that the statistical significance of r = 0.05
is rather low and it cannot be considered as a detection of primordial
tensors. Indeed, in the words of [9], the observations are still “consistent
with r = 0”.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3525-3&domain=pdf
mailto:zeynizadeh@physics.sharif.ir
mailto:am\protect _rezaei@physics.sharif.ir


355 Page 2 of 6 Eur. Phys. J. C (2015) 75 :355

choosing a Bunch–Davies vacuum satisfied the Minkowski
space limit. In the presence of a UV cut off, the effects of the
new theory can be set on the non-trivial initial condition or
the non-Bunch–Davies vacuum [20,21]. Here we shall show
that, by suitable choice of initial conditions, it is possible to
get a sizable value for r . Recently, Ashoorioon et al. [22,23]
employed non-trivial initial conditions for the chaotic model
of inflation to suppress the value of r to bring about recon-
ciliation of the Planck data with that of the BICEP2. They
excluded a large piece of parameter space by using the obser-
vational bound of the non-Gassianity. But in the case of the
Higgs inflation model this exclusion does not need to occur
due to the special property of the Higgs inflation model. Inci-
dentally, using this region leads to the enhancement of r .

The paper is organized as follows. In Sect. 2 we give a brief
review of Higgs inflation model proposed in [7]. In Sect. 3, in
a very concise review of perturbation theory in cosmology,
we just mention the effects of the general initial conditions
on the inflationary parameters. In Sect. 4 we argue that for
some region of parameter space, we obtain a sizable value
for r . Finally we discuss the results and summarize them.

2 Review of Higgs inflation

To write the standard model of particle physics in the pres-
ence of gravity, the Higgs inflation model is one of our
choices. In this model the Higgs field is non-minimally cou-
pled to gravity via a dimensionless coupling constant ξ [7]:

L = LSM − 1

2
M2R − ξH†HR, (1)

where M is some mass scale, R and H denote the Ricci
scalar and Higgs field, respectively. The potential term is
required by the renormalizibility of the scalar field in a curved
background. By choosing a unitary gauge H = h/

√
2, the

scalar sector is non-minimally coupled to gravity:

SJ =
∫

d4x
√−g

[
−1

2
M2R− 1

2
ξh2R+ 1

2
∂μh∂μh−V (h)

]
,

(2)

where the sub-index J indicates a Jordan frame, and the
potential, V (h), is defined by

V (h) = 1

4
λ

(
h2 − v2

)2
, (3)

where v = 〈h〉. For 1 � ξ � 1017, we can assume M � Mp

where Mp is the reduced Planck mass. Due to the presence
of the non-minimal coupling term, it is very cumbersome to
work with. By the following conformal transformation, we
can transform the Jordan frame to an Einstein frame:

gμν → ĝμν = �2gμν, �2 = 1 + ξh2

M2
p
. (4)

This transformation leads to a non-canonical kinetic term
which can be converted to canonical form by the field redef-
inition

dχ

dh
=

√
�2 + 6ξ2h2/M2

p

�4 . (5)

The action in the Einstein frame becomes

SE =
∫

d4x
√−g

{
−1

2
M2

p R̂ + 1

2
∂μχ∂μχ −U (χ)

}
(6)

where R̂ is a Ricci scalar in terms of ĝμν . The potential term
U (χ) is

U (χ) = 1

�4

λ

4

(
h(χ)2 − v2

)2
. (7)

According to (4) and (5), for large values of h, i.e. h �
Mp/

√
ξ , we have

h � Mp√
ξ

exp

(
χ√
6Mp

)
, (8)

U (χ) = λM4
p

4ξ2

(
1 + exp

(
− 2χ√

6Mp

))−2

, (9)

and for large values of h or χ � √
6Mp the potential

U (χ) is flat. Here the Higgs field drives inflation. In order to
show whether this potential can give a consistent inflation-
ary expansion, we use the standard slow-roll formalism in
the Einstein frame,

ε = 1

2
M2

p

(
U ′

U

)2

, η = M2
p
U ′′

U
,

N =
∫

1√
2ε

dχ

M2
p
, ns = 1 − 6ε + 2η, r = 16ε, (10)

where ε and η are slow-roll parameters, N is the number of
e-foldings, ns denotes the spectral index and r is the ten-
sor to scalar perturbation ratio. Substituting (9) in (10) and
considering large field values for h leads to [24]

ε � 4M4
p

3ξ2h4 , (11)

η � − 4M2
p

3ξh2 , (12)

N � 6

8

ξ

M2
p

(
h2
N − h2

end

)
, (13)

where hN denotes the field value at the horizon exit and hend

denotes the field value at the end of inflation. The end of
inflation corresponds to ε = 1. Using Eq. (11) we obtain
hend � 1.07Mp√

ξ
. The N is determined from the CMB obser-

vation: N � 57.7 [24]. Substituting this value in (13) leads
to hN � 9.14Mp√

ξ
. From the observation [25] we can put a

constraint on the amplitude of the scalar power spectrum,
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�2
R = 1

8π2

H2

εM2
p

� 2 × 10−9. (14)

This constraint can be used to determine the unknown param-
eter ξ . By using (11) and (14) in the slow-roll regime,
U � 3M2

pH
2, we obtain

U

ε
= 24π2M4

p�
2
R � (0.027Mp)

4. (15)

Evaluating U
ε

at hN , Eq. (15) gives rise to [24]

ξ = 47000
√

λ. (16)

Using (13), ns and r evaluated at hN can be approximated as

ns � 1 − 8
4N + 12

(4N + 3)2 , r � 192

(4N + 3)2 . (17)

Here N � 57.7 gives ns � 0.967 and r � 0.0031 [24].

3 Primordial perturbation with general initial condition

In this section we will review the cosmological perturbation
theory to realize how the effects of general initial conditions
come into the game. We will just mention their effects on
inflationary quantities such as the power spectrum, the spec-
tral index, etc. In order to derive the equations governing the
perturbation, we consider a minimally coupled scalar field
with arbitrary potential [26]

S =
∫

d4x
√−g

[
1

2
M2

p R − 1

2
gμν∂μφ∂νφ − V (φ)

]
. (18)

Perturbations are defined around the homogeneous back-
ground given by the solutions of the action (18), i.e. φ̄(t)
and ḡμν(t)

φ(t, x) = φ̄(t) + δφ(t, x),

gμν(t, x) = ḡμν(t) + δgμν(t, x), (19)

and the perturbed metric is parametrized as

ds2 = a2(τ )
[
−(1+2�)dτ 2+((1−2�)δi j +hi j )dy

idy j
]
.

(20)

Here τ is the conformal time, a is the scalar factor of the FRW
metric, � and � are Bardeen potentials, and hi j denotes a
symmetric tensor with hii = 0, ∂ i hi j = 0. In addition to
physical degrees of freedom, these perturbations also may
contain the fictitious gauge freedom. To avoid this gauge
freedom, it is useful to introduce a new gauge invariant scalar
quantity,

R = �
H
˙̄φ

δφ. (21)

This is called a comoving curvature perturbation. Expanding
the action in (18) up to second order in terms of R leads to

S(2) = 1

2

∫
d4xa3 φ̇2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (22)

By defining the Mukanov–Sasaki variable

v ≡ zR, z2 ≡ a2 φ̇2

H2 , (23)

the equation of motion corresponding with the second order
action becomes

v′′
k +

(
k2 − z′′

z

)
= 0. (24)

Here vk is the Fourier mode of v and a prime indicates the
derivative with respect to conformal time. For a quasi-de
Sitter background in the slow-roll limit, the general solution
of Eq. (24) can be written as

vk �
√

π |τ |
2

[
αS
k H

(1)
3
2

(k|τ |) + βS
k H

(2)
3
2

(k|τ |)
]

. (25)

Here H (1)
3
2

and H (2)
3
2

are the Hankel functions of the first

and second kind, respectively. αS
k and βS

k are Bogoliubov
coefficients that satisfy the Wronskian constraint

|αS
k |2 − |βS

k |2 = 1. (26)

Since αS
k and βS

k are arbitrary up to the Wronskian constraint,
they correspond to the general initial condition. In the case
of αS

k = 1 and βS
k = 0, vk corresponds to the standard BD

vacuum. The states with generic values of αS
k and βS

k usually
are called non-BD vacuum or α-vacua. The dimensionless
scalar power spectrum is defined by

�2
S = k3

2π2

∣∣∣∣vkz
∣∣∣∣
2

k=aH
. (27)

Substituting (25) into (27) leads to [22,23,27]

�2
S = 1

8π2ε

(
H

Mp

)2

γS, γs =
∣∣∣αS

k − βS
k

∣∣∣2

k=aH
. (28)

The non-Gaussianity is an important probe of the early uni-
verse encoded in the bispectrum. Having a power spectrum
in the squeezed k3 � k1 ∼ k2 limit suffices to obtain the
bispectrum. According to [28], the three point function of
the scalar perturbation in the squeezed limit for α-vacua is
given by

〈Rk1Rk2Rk3

〉 � (2π)3δ(k1 + k2 + k3)

×
[

4ε

(
k1

k3

)
�(k1, k3) − 6ε + 2η

]
PR(k1)PR(k3). (29)
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Here PR(k) = 2π2

k3 �2
S and

�(k1, k3) = 2Re

[
αS
k1

βS
k1

(
αS∗
k1

− βS∗
k1

αS
k1

− βS
k1

) (
αS
k3

+ βS
k3

αS
k3

− βS
k3

)]
.

(30)

Noting Eq. (29), the local non-Gaussianity parameter f local
NL

becomes2

f local
NL � 5

12

[
4ε

(
k1

k3

)
�(k1, k3) − 6ε + 2η

]
. (31)

In this paper, since we are only interested in the local con-
figuration of non-Gaussianity, we do not need to consider
flattened and equilateral configurations. Similarly, for tensor
perturbations, we obtain the following mode function:

hk(τ ) �
√

π |τ |
2

[
αT
k H (1)

3
2

(k|τ |) + βT
k H (2)

3
2

(k|τ |)
]

. (32)

The dimensionless tensor power spectrum has a similar rela-
tion [22,23,27],

�2
T = 2

π2

(
H

MP

)2

γT , γT =
∣∣∣αT

k − βT
k

∣∣∣2

k=aH
. (33)

Here αT
k and βT

k are Bogoliubov coefficients and satisfy the
Wronskian condition |αT

k |2 −|βT
k |2 = 1. The tensor to scalar

perturbation ratio r in the case of α-vacua is given by [22,23]

r = �2
T

�2
S

= 16εγ, γ = γT

γS
. (34)

4 Enhancement of r for some α-vacua

According to (34) for a given ε � 1, to have sizable value
of r , it is required that γ � 1. If we would like to have a
large value of r , we have to search for some special regions in
the parameter space of the initial conditions, such that their
corresponding γ , satisfies γ � 1. In the case of the Higgs
inflation model with a small r , we can use some special initial
conditions with γ � 1 to raise the r to a large value. Due to
the arbitrariness of αk and βk up to the Wronskian condition,
we might think that it is possible to obtain a γ as large as we
would like. In fact, there is an upper limit on the value of γ

due to the constraints from the back reaction effects and the
observational bound on the non-Gaussianity.

Back reaction effects should be small enough not to
destroy the inflationary background. By assuming the crude

model βk ∼ β0e
− k2

M2a2 , this condition gives rise to [30]

|β0| ≤ √
ε|η| MpH

M2 . (35)

2 For the definition of f local
NL refer to [26].

Here we assumed ε � η, which is a reasonable assumption
in the case of Higgs inflation. M in (35) is an energy scale
of the new physics and our effective theory is valid only at
energies lower than the energy scale M . In order to convert
the constraint on β0 in (35) to a constraint on γ , we are
following the notation of [22,23]. It is mentioned in [22,23]
that γS and γT depend on the relative phases of αk and βk .
Therefore, it is useful to parametrize them as

αS
k = cosh χSe

iϕS , βS
k = sinh χSe

−iϕS , (36)

αT
k = cosh χT e

iϕT , βT
k = sinh χT e

−iϕT . (37)

Consistency of the above parametrization with βk ∼
β0e

− k2

M2a2 implies that

|β0|e− k2

M2a2 = sinh χ. (38)

Below the energy scale of new physics, k < aM , e− k2

a2M2

� 1, and (38) becomes

|β0| � sinh χ. (39)

In the Higgs inflation model, (11) and (12) result in ε �
1.8×10−4 and η � −1.6×10−2. Thus, using �2

S � 2×10−9

in (28) gives H
Mp

= 5.3×10−6/
√

γS . Substituting this result
into (35) and using (39) lead to

M2

H2 � 323
√

γS

sinh χS
. (40)

There is a similar expression for the tensor modes, except that
χS is replaced by χT . Physical expectations imply M > H .
Let us write γ in terms of the new parametrization in (36)
and (37):

γ =
∣∣∣∣cosh χeiϕT − sinh χe−iϕT

cosh χeiϕS − sinh χe−iϕS

∣∣∣∣
2

. (41)

Here we take χS = χT = χ for convenience. According
to this formula, γ can be bigger or smaller than 1, e.g. for
χ � 1, ϕS � 0.01, and ϕT � π

2 , we get γ � 70. In [22,23]
it has been shown that for χ � 1, ϕS � π

2 , and for generic
values ϕT , we obtain γ � 1. The authors of [22,23] drop
the ϕS’s that satisfy ϕS � π

10 because these values violate
the observation bound on the non-Gaussianity. However, as
we will show, in the Higgs inflation model, because of the
smallness of the slow-roll parameter ε, we do not encounter
such a violation.

Basically, the enhancement of non-Gaussianity due to the
general initial condition can occur only for two types of non-
Gaussianity: the flattened configuration and the local con-
figuration. In the flattened configuration, k1 + k2 � k3, and
enhancement finally disappears due to the effect of projec-
tion on the CMB surface [30]. In the local configuration,
k3 � k1 + k2, there is no cancelation and the enhance-
ment of the non-Gaussianity will survive. The effects of the
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Fig. 1 Diagram of � for χ � 0.75

general initial conditions on the parameter of the local non-
Gaussianity, i.e. f local

NL , are given by �(k1, k3) in (30). To
constrain �, let us first write (30) in terms of the parameters
introduced in (36),

�(k1, k3)

= 2Re

[
cosh χ sinh χ

(
cosh χe−iϕS − sinh χeiϕ

S

cosh χeiϕS − sinh χe−iϕS

)

×
(

cosh χeiϕS + sinh χe−iϕS

cosh χeiϕS − sinh χe−iϕS

)]
. (42)

Here sinh χ(k3) � sinh χ(k1). Because at horizon crossing,

k = aH , (39) implies sinh χ(k) ∼ e− H2

M2 , the k dependence
of sinh χ(k) is lost for H < M . Using the Planck data [31],

−4.2 � f local
NL � 5.8, (43)

and combining (31) and (43) leads to

−14 � � � 19. (44)

Here we take k1
k3

� 102 [29]. The smallness of ε in the
Higgs inflation model in comparison to its value in other
inflationary models (such as the chaotic inflation model, in
which ε � 0.01) allows us to have large values for � in
(31), while f local

NL is still in the region specified in (43). The
possibility of having a large value of � is equivalent to the
possibility of having a very small value for ϕS (Fig. 1). Small
values of ϕS provide the possibility of reaching large values
of γ . For instance, taking ϕT � π

2 , ϕS � 0.1, and χ � 0.75
results in γ � 17, � � 3 (Fig. 2). These values, by noting
(40), lead to M � 13H , consistent with M > H . Using
γ � 17 in (34) gives the improved value r � 0.05.

It should be noticed that although α-vacua as the ini-
tial state of the system for some region of parameter space
increase the tensor to scalar perturbation ratio, it does not
affect the spectral index. The spectral index is defined by

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

Fig. 2 Diagram of γ for χ � 0.75 and ϕT � π
2

ns − 1 = d ln�2
S

d lnk
= d

d lnk

[
ln

1

8π2ε

(
H

Mp

)2
]

+ d lnγS

d lnk
,

(45)

and using (28) and (36), the second term in (45) for χ � 0.75
can be written as

d lnγS

d lnk
� 2 cot ϕS

dϕS

d lnk
. (46)

Since ϕS is an arbitrary parameter, we can assume that ϕS

is k independent. With this choice, the second term in (45),
which represents the effects of α-vacua, will vanish and in
consequence the spectral index remains intact.

5 Concluding remarks

In this work we studied the Higgs inflation model under gen-
eral initial conditions. The general initial conditions affect
inflationary observables such as the power spectrum, the
non-Gaussianity, etc. The effects of the general initial con-
ditions are constrained by the requirement that they should
not spoil the inflationary background. Moreover, the obser-
vational bound on the non-Gaussianity of the primordial per-
turbations gives another constraint on these initial condition
effects. We argued that for some region of parameter space
in the initial conditions, it is possible to enhance the tensor to
scalar perturbation ratio, r . This enhancement was possible,
because the Higgs inflation scenario gives a very small value
for the slow-roll parameter ε. The smallness of ε enables us
to access a more extended region of parameter space without
violation of the observation bound on the non-Gaussianity. A
suitable choice of the region of parameter space may lead to
a value of r � 0.05, which is a desirable value considering
the latest results from the BICEP2/Keck Array and Planck
collaborations.
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