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Abstract In this paper, we consider various dark energy
models in the framework of a non-canonical scalar field
with a Lagrangian density of the form L(φ, X) = f (φ)X(

X
M4

Pl

)α−1

− V (φ), which provides the standard canonical

scalar field model for α = 1 and f (φ) = 1. In this particular
non-canonical scalar field model, we carry out the analysis
for α = 2. We then obtain cosmological solutions for con-
stant as well as variable equation of state parameter (ωφ(z))
for dark energy. We also perform the data analysis for three
different functional forms of ωφ(z) by using the combination
of SN Ia, BAO, and CMB datasets. We have found that for all
the choices of ωφ(z), the SN Ia + CMB/BAO dataset favors
the past decelerated and recent accelerated expansion phase
of the universe. Furthermore, using the combined dataset, we
have observed that the reconstructed results of ωφ(z) andq(z)
are almost choice independent and the resulting cosmologi-
cal scenarios are in good agreement with the �CDM model
(within the 1σ confidence contour). We have also derived
the form of the potentials for each model and the resulting
potentials are found to be a quartic potential for constant ωφ

and a polynomial in φ for variable ωφ .

1 Introduction

One of the biggest challenges in modern cosmology is under-
standing the nature of the dark energy (DE), which seems to
be responsible for the observed accelerated expansion phase
of the universe at the present epoch [1,2]. Among the many
candidates for DE, the cosmological constant (�) emerges
as the most natural and the simplest possibility. However, �-
cosmology suffers from the so-called “fine tuning” and “cos-
mic coincidence” problems [3,4]. These theoretical prob-
lems motivated cosmologists to think beyond the cosmolog-
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ical constant and explore other unknown components which
may be responsible for the late-time accelerated expansion
phase of the universe. The scalar field models have played an
important leading role as a candidate of DE due to its dynami-
cal nature and simplicity. Till now, a variety of scalar field DE
models have been proposed, such as quintessence (canoni-
cal scalar field), k-essence, phantom, tachyon, dilatonic dark
energy, and so on (for details, see Ref. [5] and the references
therein). But the origin and nature of DE still remains com-
pletely unknown, despite many years of research.

It is strongly believed that the universe had a rapid expo-
nential expansion phase during a short era in the very early
epoch. This is known as inflation [6,7]; it can give a sat-
isfactory explanation to the problems of the Hot Big Bang
cosmology (for example, the horizon, flatness, and monopole
problems). Generally, cosmologists realized this inflationary
scenario by using a single canonical scalar field called the

“inflaton”, which has a canonical kinetic energy term ( φ̇2

2 ) in
the Lagrangian density. In the literature, there also exist some
inflationary models in which the kinetic energy term is differ-
ent from the standard canonical scalar field case (instead of

the standard form φ̇2

2 ). Such models are commonly known as
the non-canonical scalar field models of inflation. Such non-
canonical scalar fields have been found to have many attrac-
tive features compared to the canonical scalar field case, for
example, the slow-roll conditions can be achieved more eas-
ily as compared to the canonical case. Many interesting pos-
sibilities with these models have been recently studied in the
literature (see Refs. [8–23]). It has been first shown in Refs.
[8,9] that the k-essence model (which belongs to an impor-
tant class of non-canonical scalar field models) is capable of
generating inflation in the early epoch. Later, Chiba et al. [10]
showed that such models can equally effectively describe a
DE scenario. Since the nature of DE is completely unknown,
it is quite reasonable to consider a non-canonical scalar field
as a candidate for DE component and check for the viability
of such models. Within the framework of a non-canonical
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scalar field, in this work, we shall try to obtain an observa-
tionally viable cosmological model to analyze the behavior
of the deceleration parameter (q) and the equation of state
(EoS) parameter (ωφ) for describing the expansion history
of the universe. The motivation for this work is discussed in
detail in Sect. 2. As already mentioned, as the nature of DE
is unknown to us, we eventually have no firm idea regarding
whether the EoS parameter of DE is a constant quantity or
whether it is dynamical in nature. In this connection, the most
effective choice is to assume a specific functional form for
the dark energy EoS parameter ωφ as a function of the red-
shift z (for details see Sect. 3.2). To study the non-canonical
scalar field DE model in a more general framework, in this
paper, we have considered both possibilities. First, we have
studied the model for a constant EoS parameter ωφ , which
is in the range −1 < ωφ < − 1

3 so as to obtain accelera-
tion. Second, we have considered three different choices for
ωφ(z) in order to cover a wide range of the DE evolution.
We have then solved the field equations and analyzed the
respective cosmological scenarios for all the cases. For all
the models, the deceleration parameter q is found to exhibit
an evolution from early deceleration to late-time acceleration
phase of the universe. This feature is essential for the struc-
ture formation of the universe. For all the models, we have
also derived the potential V (φ) in terms of the scalar field φ

by considering a specific parametrization of f (φ). In order
to compare the theoretical models of DE (for dynamical ωφ)
with the observations, we have used the SN Ia, BAO, and
CMB dataset to constrain the various model parameters (for
details see Appendix A). We have found that the combined
dataset favors the �CDM model within the 1σ confidence
contour. We give the detailed results of this work in Sect. 4.

The present paper is organized in the following way. In the
next section, we introduce some basic equations of a general
non-canonical scalar field model and also discuss the motiva-
tion of this work. We then obtain the general solutions of the
field equations for a particular choice of the function f (φ)

and for different forms of the EoS parameter ωφ . In Sect.
4, we summarize the results of this work. Finally, the con-
clusions of this work are presented in Sect. 5. Additionally,
for completeness, we perform the combined data analysis in
Appendix A and find the observational constraints on ωφ(z)
and q(z) using the SN Ia, BAO, and CMB datasets.

2 Basic framework

Usually, the scalar field models are characterized by a general
action which has the following functional form:

S =
∫

d4x
√−g

(
R

2
+ L(φ, X)

)
+ Sm (1)

where R is the Ricci scalar, and L(φ, X) is the Lagrangian
density, which is an arbitrary function of the scalar field φ

and its kinetic term X . The kinetic term X is defined as X =
1
2∂μφ∂μφ, which is a function of time only. The last term, Sm ,
represents the action of the background matter. Throughout
this paper we shall work in natural units, such that 8πG =
c = 1.

The expressions for the energy density (ρφ) and pressure
(pφ) associated with the scalar field are given by

ρφ = 2X
∂L
∂X

− L (2)

pφ = L(φ, X) (3)

where X = 1
2 φ̇2.

In general, the Lagrangian for a scalar field model can be
represented as (Melchiorri et al. [24])

L(φ, X) = f (φ)F(X) − V (φ) (4)

where f (φ) and F(X) are arbitrary functions of φ and X ,
respectively. V (φ) is the potential for the scalar field φ.

Let us consider a homogeneous, isotropic, and spatially
flat FRW universe which is characterized by the following
line element:

ds2 = dt2 − a2(t)
[
dr2 + r2dθ2 + r2sin2θdφ2

]
(5)

where a(t) is the scale factor of the universe. With the FRW
geometry, the equations of motion take the form

3H2 = 2 f (φ)XFX − f (φ)F + V (φ) + ρm, (6)

Ḣ = −1

2
[2 f (φ)XFX + ρm], (7)

[ f (φ)FX + 2 f (φ)XFXX ]φ̈+3H f (φ)φ̇FX + 2X
∂ f (φ)

∂φ
FX

− ∂ f (φ)

∂φ
F + ∂V (φ)

∂φ
= 0, (8)

ρ̇m + 3Hρm = 0, (9)

where H = ȧ
a denotes the Hubble parameter, an overdot

indicates differentiation with respect to the time coordinate t ,
and ρm represents the energy density of the matter component
of the universe, FX ≡ ∂F

∂X and FXX ≡ ∂2F
∂X2 .

It deserves mentioning that Eq. (4) includes all the popu-
lar single scalar field models. It reduces to a canonical scalar
field model when f (φ) = constant = 1 and F(X) = X .
Again, it describes a pure k-essence model when V (φ) = 0
and a phantom scalar field model when f (φ) = 1 and
F(X) = −X . It is interesting to note that Eq. (4) reduces
to the general non-canonical scalar field model [L(φ, X) =
F(X) − V (φ)] when f (φ) = 1. This type of non-canonical
scalar field models was proposed by Fang et al. [21]. They
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studied several aspects of this type of scalar fields for differ-
ent forms of F(X). Recently, these types of non-canonical
scalar field models have gathered attention due to their sim-
plicity. Unnikrishnan et al. [11] have showed that for non-
canonical scalar field models, the slow-roll conditions can
be more easily satisfied compared to the canonical infla-
tionary theory. They have shown that such models (with
quadratic and quartic potentials) are more consistent with
the current observational constraints relative to the canoni-
cal inflation. They have also shown that such non-canonical
models can drop the tensor-to-scalar ratio rather than their
canonical counterparts. In fact, a lot of work has been done
in the framework of the non-canonical inflationary scenario
in the early epoch [8–21]. Furthermore, Franche et al. [25]
showed that the non-canonical scalar fields are the most uni-
versal case with a general Lagrangian density satisfying cer-
tain conditions. These interesting properties of non-canonical
scalar field models motivated us to study the cosmologi-
cal aspects of such fields in a more general framework in
the context of dark energy. In the literature, a large num-
ber of functional forms of L(φ, X) have been proposed so
far; see for example [11,26–28]. In our earlier work [22,23],
we have considered a Lagrangian density of the following
form:

L(φ, X) = X2 − V (φ), (10)

which can be obtained from the general form of the
Lagrangian density [11,27,28]

L(φ, X) = X

(
X

M4
Pl

)α−1

− V (φ) (11)

for α = 2 and MPl = 1√
8πG

= 1. The above equation
describes a purely canonical scalar field Lagrangian density
[L(φ, X) = X − V (φ)] when α = 1.

In this present work, we try to extend our previous work in
[22,23] by considering a general non-canonical scalar field
model which has the following Lagrangian density:

L(φ, X) = f (φ)X

(
X

M4
Pl

)α−1

− V (φ). (12)

Here, following [22,23] also, we consider α = 2 and MPl =
1√

8πG
= 1.

In this case, the energy density and pressure of the scalar
field are given by

ρφ = 3

4
f (φ)φ̇4 + V (φ), (13)

pφ = 1

4
f (φ)φ̇4 − V (φ). (14)

It is evident from Eqs. (13) and (14) that the usual definition
of ρφ (= 1

2 φ̇2 + V (φ)) and pφ (= 1
2 φ̇2 − V (φ)) for a stan-

dard canonical scalar field model gets modified due to the
Lagrangian density (12). Also, the equations of motion for
this Lagrangian (Eqs. (6)-(9)) turn out to be

3H2 = 3

4
f (φ)φ̇4 + V (φ) + ρm, (15)

Ḣ = −1

2

[
f (φ)φ̇4 + ρm

]
, (16)

ρ̇φ + 3H(ρφ + pφ) = 0, (17)

ρ̇m + 3Hρm = 0. (18)

The solution for ρm from Eq. (18) is obtained:

ρm(z) = ρm0(1 + z)3 (19)

where ρm0 is the matter density at the present time, z = a0
a −1

is the redshift, and the present value of the scale factor a0 is
normalized to unity.

One of the important quantities in cosmology is the dark
energy EoS parameter ωφ = pφ

ρφ
, which, in our case, is given

by

ωφ = f (φ)φ̇4 − 4V (φ)

3 f (φ)φ̇4 + 4V (φ)
. (20)

From Eq. (17), one can then obtain the expression for the
energy density of the scalar field as

ρφ(z) = ρφ0exp

[
3
∫ z

0

1 + ωφ(z′)
1 + z′

dz′
]

(21)

where ρφ0 is an integration constant.
Now, the Friedmann equation can be written in the fol-

lowing integrated form:

H2(z) = H2
0

[
�m0(1 + z)3 + �φ0exp

(
3

∫ z

0

1 + ωφ(z′)
1 + z′

dz′
)]

(22)

where H0 is the Hubble parameter at the present epoch,
�m0 = ρm0

3H2
0

, and �φ0(= ρφ0

3H2
0
) = 1 − �m0 are the density

parameters of the matter and scalar field (or dark energy),
respectively, at the present epoch.

For this model, from Eqs. (13) and (14), the potential can
be expressed (as a function of redshift z) as

V (z) = 1

4
(1 − 3ωφ(z))ρφ(z) (23)
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and

f (φ)φ̇4 = (1 + ωφ)ρφ. (24)

In order to solve the field equations analytically we will
proceed as follows. Out of Eqs. (15)–(18), only three are inde-
pendent equations in view of the Bianchi identity (with five
unknown quantities: H , ρm , f (φ), V (φ), and φ). So natu-
rally one has to assume two relationships among the different
variables to solve the system of equations.

Following the above argument, in this paper, we assume
that the quantity f has the functional form

f =
(

f0
H

)4

(25)

where f0 is an arbitrary constant. It deserves mentioning here
that the above parametrization of f (φ) helps us to close the
system of equations. With this input, Eq. (24) can be written
in the following integral form:

φ(z) = φ0 +
∫ z

0
F(z′)dz′ (26)

where φ0 is an arbitrary constant of integration and F(z′) =
[(1+ωφ(z′))ρφ(z′)] 1

4

f0(1+z′) .
Another important observable quantity, the deceleration

parameter q(z), can also be expressed in terms of H(z) as

q(z) = − ä

aH2 = −1 + (1 + z)
d ln H(z)

dz
, (27)

which describes the evolution of our universe.
We shall now concentrate on the dark energy EoS param-

eter ωφ(z). If a function of ωφ(z) is given, then we can find
the evolution of ρφ(z) from Eq. (21). As a result, we can also
find the evolutions of H(z), q(z), V (z), and φ(z). Inverting
φ(z) into z(φ) and using Eq. (23), one can then obtain the
potential V (φ) in terms of φ. As already mentioned, we have
considered a specific parametrization of f (φ) and still we
need another assumption to match the number of unknown
parameters with the number of independent equations. With
this freedom, we choose different functional forms for ωφ(z),
the equation of state parameter. In the next section, we try to
obtain the functional forms of various cosmological param-
eters for different choices of ωφ(z) and study their cosmo-
logical implications.

3 Theoretical models

In this section, we shall consider two phenomenological DE
models for obtaining the current acceleration of the universe
in the framework of a general non-canonical scalar field the-
ory.

3.1 Model I: Accelerating universe driven by a constant
EoS parameter for dark energy (−1 < ωφ < − 1

3 )

In this model, we shall investigate the properties of an accel-
erated expanding universe driven by a non-canonical scalar
field dark energy with a constant EoS parameter. Recent
observations suggest that the dark energy EoS ωφ is very
close to −1 and the approximate bound on ωφ is −1.1 ≤
ωφ ≤ −0.9 [29,30]. Keeping this limit in mind, we choose a
constant ωφ in the limit −1 < ωφ < − 1

3 , which ensures that
the model does not deviate much from a �CDM model.

In this case, the energy density of DE can be obtained
(from Eq. (21)):

ρφ(z) = ρφ0(1 + z)3(1+ωφ) (28)

where ρφ0 is the integration constant which represents the
dark energy density at the present time. Then the correspond-
ing Friedmann equation becomes

H2(z) = H2
0

[
�m0(1 + z)3 + (1 − �m0)(1 + z)3(1+ωφ)

]
.

(29)

Inserting the Hubble parameter H(z) (as given in the above
equation) into Eq. (27), we obtain the deceleration parameter
as

q(z) = −1 + 3 + 3κ1(1 + z)3ωφ

2 + 2κ2(1 + z)3ωφ
(30)

where κ1 = (1−�m0)(1+ωφ)

�m0
and κ2 = 1−�m0

�m0
. The plot of q(z)

against z is shown in Fig. 1 for different values of ωφ (within
the range −1 < ωφ < − 1

3 ) and �m0 = 0.3. Figure 1 shows
that q(z) crosses its transition point from its positive value
regime to the negative value regime in the recent past, which
is consistent with the independent measurements reported by
several authors (see Ref. [31] and the references therein).

With the help of Eqs. (26) and (28), one can solve for the
scalar field in the flat FRW universe as

φ(z) = φ0 + β(1 + z)
3
4 (1+ωφ) (31)

where β = 4
3 f0

[
3H2

0 (1−�m0)

(1+ωφ)3

] 1
4

.

With the help of Eqs. (23) and (31), we find the form of
the potential in terms of φ as

V (φ) = V0(φ − φ0)
4 (32)

whereV0 = 3H2
0 (1−�m0)(1−3ωφ)

4β4 . Thus, the constant ωφ model
leads to a quartic potential. For φ0 = 0, the above potential
is similar to the potential used by Linde [7] in the context
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Fig. 1 Plot of q vs. z for ωφ = −0.7 (thick curve), ωφ = −0.8 (dashed
curve), and ωφ = −0.9 (dotted curve). For all these plots, we have taken
�m0 = 0.3. The horizontal line is for q(z) = 0

of chaotic inflation. Using the expression for φ(z), we also
obtain the functional form of f (φ) as

f (φ) = fα(φ − φ0)
− 8

1+ωφ

(
1 + fβ(φ − φ0)

4ωφ
1+ωφ

)−2

(33)

where fα = f 4
0 β

8
1+ωφ

H4
0 �2

m0
and fβ = (1−�m0)

�m0
β

− 4ωφ
1+ωφ . It is evi-

dent from the above equation that the function f (φ) can be
arranged as a series expansion in powers of (φ − φ0).

3.2 Model II: Accelerating universe driven by
time-dependent EoS parameter for dark energy

We shall now focus on the second possibility i.e., the EoS
parameter ωφ is dynamical in nature. For this purpose, in
this subsection, we have considered three different choices
of ωφ to study the model in a more general way. If ωφ is
dynamical in nature, then one way to study models going
beyond the cosmological constant is by using a particular
functional form for the dark energy EoS parameter ωφ(z).
However, a large number of functional forms for ωφ(z) have
appeared in the literature [32–41]. Usually, the parametrized
form of ωφ(z) is written as [5]

ωφ(z) =
∑
n=0

ωnxn(z) (34)

where the ωn’s are arbitrary constants and the xn(z)’s are
functions of the redshift z. The numerical values of the ωn’s
can be found by fitting to the observational data. Following
the first order expansions in Eq. (34), several authors con-

sidered many functional forms for xn(z) to investigate the
evolution of ωφ(z).

For example:

(i) ωφ(z) = ω0 = constant (as we have discussed in model
I) for x0(z) = 1 and xn = 0 (n ≥ 1).

(ii) ωφ(z) = ω0 + ω1z i.e., linear redshift parametrization
[32,33], for xn(z) = zn with n ≤ 1.

(iii) ωφ(z) = ω0+ω1log(1+z) i.e., logarithmic parametriza-
tion [36], for xn(z) = [log(1 + z)]n with n ≤ 1.

(iv) ωφ(z) = ω0+ω1
z

(1+z) i.e., CPL parametrization [34,35],

for xn =
(

z
1+z

)n
with n = 1.

There are many more. It is worth mentioning that the
parametrizations (ii) and (iii) diverge at high redshifts,
whereas the fourth one blows up in the future, when z → −1.
It should be noted that the assumed parametrization would
lead to possible biases in the study of the evolution of the DE
but in the absence of any information regarding the true nature
of DE, these parametrizations provide some insight regarding
the possible nature of DE component and are worth studying.
In this paper, we shall consider two different divergence-free
functional forms of ωφ(z) which do not diverge in the future
(z → −1). In addition, we shall also consider the linear red-
shift parametrization of ωφ(z) for the statistical model com-
parisons with the divergence-free parametrizations, at low
redshifts. In order to explore the evolution of DE, we shall
also try to reconstruct the deceleration parameter q(z) using
Eq. (27) for these different choices in Sect. 4.

• Assumption I
Here, we consider the linear redshift parametrization of

the EoS parameter ωφ [32,33], which has the following func-
tional form:

ωφ(z) = ω0 + ω1z (35)

where ω0 represents the present value of ωφ and the second
term measures the variation of ωφ with respect to z.

Inserting for ωφ(z) from Eq. (35) into Eq. (21), we obtain

ρφ(z) = ρφ0(1 + z)(1+ω0−ω1)exp(3ω1z). (36)

Now Eq. (22) can be written as

H2(z) =H2
0

[
�m0(1 + z)3

+(1 − �m0)(1 + z)(1+ω0−ω1)exp(3ω1z)
]
. (37)

Now by numerical investigations, we have plotted V as a
function of φ in Fig. 2 by considering ω0 = −0.95, ω1 =
0.15, �m0 = 0.3, f0 = 1, and φ0 = 150 for this case.
Figure 2 shows that the potential V (φ) increases initially but
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Fig. 2 Plot of V (φ) versus φ for the linear parametrization ωφ =
ω0 + ω1z, by assuming ω0 = −0.95, ω1 = 0.15, �m0 = 0.3, f0 = 1,
φ0 = 150, and H0 = 72 km s−1 Mpc−1

becomes almost flat as φ increases. The reason behind this
seems to be the form of the linear parametrization, which
is appropriate only for low redshifts (z << 1) and diverges
for large redshifts. The corresponding expressions for V (φ)

and f (φ) become approximately equal to (for details see
Appendix B)

V (φ) � 253.4φ3 − 75.04φ2 − 512.4φ + 10770 (38)

and

f (φ) � 2.53 × 10−8exp(32.17φ). (39)

In the context of DE (as it is a late-time phenomenon),
the above choice of ωφ(z) has been widely used due to its
simplicity and we find for the present parametrization of f
given in Eq. (25) that the potential turns out to be a polynomial
in φ.

• Assumption II
Next, we propose

ωφ(z) = ω2 + 1

1 + ω3
(1+z)3

(40)

where ω2 and ω3 are arbitrary constants to be fixed by obser-
vations. It is easy to see that the EoS parameter reduces to

ωφ(z) =

⎧⎪⎪⎨
⎪⎪⎩

1 + ω2, for z → +∞ (early epoch),

ω2 + 1
1+ω3

, for z = 0 (present epoch),

ω2, for z → −1 (far future).

(41)

Thus the above choice of ωφ(z) is a bounded function
of the redshift throughout the entire cosmic evolution and
it also overcomes the shortcomings of the linear and CPL

115 120 125 130 135
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V
φ

Fig. 3 Plot of V (φ) vs. φ for the ansatz given by Eq. (40). The plot is
for ω2 = −1.25, ω3 = 5, �m0 = 0.3, f0 = 1, φ0 = 150, and H0 = 72
km s−1 Mpc−1
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0
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φ

V
φ

Fig. 4 The variation of V (φ) with φ for the ansatz given by Eq. (46).
The plot is for A0 = 3.5, A1 = 0.2, A2 = 0.4, �m0 = 0.3, f0 = 1,
φ0 = 150, and H0 = 72 km s−1 Mpc−1

parametrizations of ωφ(z). Although this is the main moti-
vation of proposing the ansatz given in Eq. (40), it can also
be thought of as a particular form of Eq. (34) for appropriate
choices of the ωn’s and xn(z)’s.

In this case, ρφ(z) and H(z) evolve as

ρφ(z) = ρφ0

1 + ω3
(1 + z)3(1+ω2)(ω3 + (1 + z)3) (42)

where ρφ0 is the present value of the scalar field density, and

H2(z) = H2
0 [�m0(1 + z)3

+ (1 − �m0)

1 + ω3
(1 + z)3(1+ω2)(ω3 + (1 + z)3)].

(43)
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Fig. 5 This figure shows the 1σ and 2σ confidence contours for each
choice of ωφ(z) using the SN Ia + BAO/CMB dataset. The plots are
for �m0 = 0.3 (for choices I and II) and �m0 = 0.3, A0 = 3.5 for
choice III. The upper, middle and lower panels represent the ω0 − ω1,
ω2 − ω3, and A1 − A2 parameter space for the choices I, II, and III,
respectively. In each panel, the large dot represents the best-fit values
of the model parameters, whereas the small dot represents the chosen
values of these parameters in the analytical models (as mentioned in
Sect. 3.2). The corresponding χ2 for the best-fit points are displayed in
the Table 1

Table 1 Best-fit values for various model parameters for the analy-
sis of SN Ia + BAO/CMB dataset. Here, ωφ(z = 0) represents the
present value of the EoS parameter ωφ(z) in the best-fit models. For
this analysis, we have considered �m0 = 0.3 (for choices I and II) and
�m0 = 0.3, A0 = 3.5 for choice III

Choice Best-fit values of ωφ(z = 0) χ2
m

model parameters

I ω0 = −1.01 ω1 = 0.10 −1.01 599.90

II ω2 = −1.19 ω3 = 7 −1.06 565.43

III A1 = −0.16 A2 = −0.14 −1.04 564.86

For this specific choice, V (φ) and f (φ) can be obtained
(see Appendix B):

V (φ) � 0.11φ4 − 58.5φ3 + 12136φ2 − 106φ + 4 × 107

(44)

and

f (φ) � f1φ
6 + f2φ

5 + f3φ
4 + f4φ

3 + f5φ
2 + f6φ + f7

(45)

where f1 = 6 × 10−15, f2 = −5 × 10−12, f3 = 10−9, f4 =
−2×10−7, f5 = 2×10−5, f6 = −0.001, and f7 = 0.0205.
These values of fn’s have been obtained for ω2 = −1.25,
ω3 = 5, �m0 = 0.3, f0 = 1, and φ0 = 150. In this case,
the evolution of the potential V (φ) is shown in Fig. 3 and
we have seen that V (φ) sharply decreases with φ from an
extremely large value to a fixed value.

• Assumption III
The next choice adopted in this paper was suggested by

Alam et al. [39,40], which is the functional form

ωφ(z) = −1 + A1(1 + z) + 2A2(1 + z)2

3[A0 + A1(1 + z) + A2(1 + z)2] . (46)

This choice is exact and gives the cosmological constant
ωφ = −1 for A1 = A2 = 0 and DE models with ωφ = − 1

3
for A0 = A1 = 0 and ωφ = − 2

3 for A0 = A2 = 0. The
above choice mimics a DE model very well, and also it can
be viewed as a power law in the redshift dependence of the
energy density for DE component. With this choice of ωφ(z),
Eq. (21) immediately gives

ρφ(z) = ρφ0

A0 + A1 + A2

[
A0 + A1(1 + z) + A2(1 + z)2

]

(47)

where ρφ0 is the present value of ρφ .
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In this case, the Hubble parameter is expressed as

H2(z) = H2
0

[
�m0(1 + z)3

+ (1 − �m0)

A0+A1+A2

(
A0+A1(1 + z)+A2(1 + z)2

)]
.

(48)

We have then solved Eqs. (23) and (26) numerically and
have plotted V as a function of φ for some specific values
of the model parameters (A0 = 3.5, A1 = 0.2, A2 = 0.4,
�m0 = 0.3, f0 = 1, and φ0 = 150) in Fig. 4. It is evident
from Fig. 4 that the potential V (φ) always decreases with the
scalar field φ. For the present model, V (φ) and f (φ) can be
explicitly expressed in terms of φ as (see Appendix B)

V (φ) � 20920 − 13210φ − 17300φ2 − 16510φ3 (49)

and

f (φ) � 1.004 × 10−53φ21.23. (50)

However, in general for Model II (which includes ansatz
I, II, and III) with the particular choice of Eq. (25), one can
write the potential V as a polynomial in φ in the following
manner:

V (φ) =
n∑

i=0

Viφ
i (51)

where n > 0, the Vi ’s are constants, and the values of these
parameters are different for different choices of ωφ(z). Inter-
estingly, we have found that it is a generalization of other
well-known potentials (see [5] and the references therein),
for example, a constant potential or a power-law potential.
We have also found that the parametrization (25) leads to
the quantity f (φ) as an exponential, polynomial, and power
law in φ for choices I, II, and III, respectively. In the fol-
lowing section, we shall use these choices to discuss the
possibility of constraining ωφ(z) and q(z) from observa-
tions.

4 Results

Following the statistical analysis (see Appendix A), in this
section, we present the fitting results for different choices of
the EoS parameter for DE. Figure 5 shows the 1σ and 2σ

confidence contours for each choice (I, II, and III) using the
SN Ia + BAO/CMB dataset.
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Fig. 6 This figure shows the evolution of q(z) with redshift z for the
choices I (upper panel), II (middle panel), and III (lower panel), respec-
tively. The reconstruction is done using the SN Ia + BAO/CMB dataset
by assuming �m0 = 0.3 for choices I, II and �m0 = 0.3, A0 = 3.5 for
choice III. In each panel, the thick solid line shows the best-fit curve, the
dashed lines represent the 1σ confidence level, and the thin lines rep-
resent the 2σ confidence level around the best fit. Also, in each panel,
the horizontal line indicates q(z) = 0
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Fig. 7 The upper and middle panel represent the plot of ωφ(z) versus
z with �m0 = 0.3 for ansatzes I and II, respectively. The lower panel
corresponds to the evolution of ωφ(z) for the ansatz III. This plot is
for �m0 = 0.3 and A0 = 3.5. Also, in each panel, the inset diagram
shows the evolution of the total EoS parameter ωtot(z) with z for these
ansatzes. The thick solid line shows the best-fit curve, the dashed lines
represent the 1σ confidence level, and the thin lines represent the 2σ

confidence level around the best fit

The best-fit values of the model parameters and ωφ(z = 0)

for these different choices are given in Table 1.
Using those best-fit values, we have reconstructed the

deceleration parameter q(z) for each model and the results
are plotted in Fig. 6.

It is evident from Fig. 6 thatq(z) shows a smooth transition
from a decelerated (q > 0) to an accelerated (q < 0) phase of
expansion of the universe at the transition redshift zt = 0.38
(for ansatz I), 0.36 (for ansatz II), and 0.43 (for ansatz III)
for the best-fit models. These results are in good agreement
with those obtained by several authors based on various other
considerations [42–44].

Furthermore, we also show the reconstructed evolution
history of the EoS parameter in Fig. 7 for each choice of
ωφ(z).

We have also plotted the total EoS parameter, which is
defined as ωtot(z) = pφ

ρφ+ρm
, as a function of z for these

choices (see the inset diagram of Fig. 7). From Table 1, we
have found that the current values of ωφ(z) for the best-fit
DE models are very close to −1, i.e., the models do not
deviate very far from the �CDM model (ω� = −1) at the
present epoch. However, as indicated in Table 1, the present
parametrized model favors a phantom model (ωφ < −1) in
the 2σ limit and thus requires further attention.

5 Conclusions

In this work, we have studied various non-canonical scalar
field DE models in a spatially flat, homogeneous, and
isotropic FRW space-time. In this framework, we have
obtained the general solutions of the field equations for dif-
ferent choices of the EoS parameter. For completeness, we
have also investigated how the joint analysis of the SN Ia +
BAO/CMB datasets constrains the redshift evolutions of q(z)
and ωφ(z) for different choices of ωφ(z) (as given in Model
II). In Fig. 5, we have also shown the 1σ and 2σ contour
plots of the pairs (ω0, ω1) (upper panel), (ω2, ω3) (middle
panel), and (A1, A2) (lower panel) for the ansatzes I, II, and
III, respectively. In this analysis, we have also calculated the
best-fit values of the free parameters (as shown by large dots
in Fig. 5) and it has been found that the chosen values of
these parameters (which were chosen for solving the para-
metric relations in Appendix B) are well fitted within the 1σ

confidence contour (as shown by small dots in Fig. 5).
We have shown that the deceleration parameter q under-

goes a smooth transition from its deceleration phase (q > 0,
at high z) to an acceleration phase (q < 0, at low z) for all
of the considered parametrized models. However, as men-
tioned in the previous section, the value of zt , where the
signature flip of q (from the decelerating to an accelerat-
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ing expansion phase) takes place has been calculated and the
results obtained are consistent with the present day cosmo-
logical observations. From the SN Ia + BAO/CMB analysis,
we have also found q(z = 0) = −0.56, −0.64, and −0.60
for ansatzes I, II, and III, respectively, which also agree very
well with the recent observational results.

From Table 1, we have observed that the EoS parame-
ter ωφ(z = 0) ≈ −1, but slightly less than −1 for all
three choices (as discussed in Sect. 4). As we have seen
ωφ(z = 0) ≈ −1, our models do not deviate very far from
the �CDM model (see also Fig. 7), which is currently known
as the standard model for modern cosmology. In order to gain
more physical insight into these time evolutions of the EoS
parameter, we have also plotted the reconstructed total EoS
parameter ωtot(z) in Fig. 7 (see the inset diagram of Fig.
7). For each choice, this figure shows that ωtot(z) attains the
required value of − 1

3 around z = 0.62 (within 1σ confi-
dence level) and remains always greater than −1 up to the
present epoch. These scenarios also agree very well with the
observational data.

However, the models presented here are restricted because
the form of f (φ) chosen was ad hoc (as given in Eq. (25))
and did not follow from any principle. In this regard, we
have mentioned earlier that we make this choice in order
to close the system of equations. With this choice of f (φ),
we have derived the form of the potential V (φ) in terms
of φ for different models. We have found that Model I
leads to a quartic potential, whereas Model II leads to a
polynomial potential for each choice of ωφ(z). We have
seen that, with a suitable choice of Vi ’s for the potential
(as given in Eq. (51)), it is possible to reproduce the other
well-known potentials in the context of DE. However, many
possibilities are opened up to accommodate a physically
viable potential for other parametrizations of f (φ) or f (H).
Finally, we would like to emphasize that all the consid-
ered models provide a deceleration for high redshift and
an acceleration for low redshift as required for the struc-
ture formation of the universe. However, these results are
completely independent of any choice of f (φ). With the
increase of more good quality observational data at low,
intermediate, and high redshifts, the constraints on zt (or
q(z)) and ωφ(z) are expected to get improved in the near
future.
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Appendix A: Data analysis method

In this section, we shall fit the theoretical models with the
recent observational datasets from the type Ia supernova (SN
Ia), the baryonic acoustic oscillations (BAO), and the cos-
mic microwave background (CMB) data surveying. For com-
pleteness, we shall briefly summarize each of the datasets.

• SN Ia dataset
In this paper, we have considered the recently released

Union2.1 compilation [45], which totally contains 580 data
points with redshift ranging from 0.015 to 1.414. To constrain
the cosmological parameter using the SN Ia dataset, the χ2

function is defined as (see Ref. [46])

χ2
SN = ASN − B2

SN

CSN
(A.1)

where ASN, BSN, and CSN are defined as follows:

ASN =
580∑
i=1

[μobs(zi ) − μth(zi )]2

σ 2
i

, (A.2)

BSN =
580∑
i=1

[μobs(zi ) − μth(zi )]
σ 2
i

, (A.3)

and

CSN =
580∑
i=1

1

σ 2
i

(A.4)

where μobs represents the observed distance modulus, while
μth is for the theoretical one and σi is the error associated
with each data point.

• BAO/CMB dataset
Next, we have used BAO [47–49] and CMB [50] mea-

surements data to obtain the BAO/CMB constraints on the
model parameters. For the BAO/CMB dataset, the details
of the methodology for obtaining the constraints on model
parameters are described in Ref. [51]. The χ2 function for
this dataset is defined as

χ2
BAO/CMB = XTC−1X (A.5)

where the transformation matrix (X ) and the inverse covari-
ance matrix (C−1) are given in Ref. [51].

Finally, the total χ2 for these observational datasets is
given by

χ2
total = χ2

SN + χ2
BAO/CMB. (A.6)

For this analysis, we have used the normalized Hubble param-
eter which is defined as h(z) = H(z)

H0
. The quantity h(z) con-

tains only three free parameters, namely, �m0, ωi , and ω j

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2016) 76 :135 Page 11 of 12 135

for assumptions I (i = 0, j = 1) and II (i = 2, j = 3). For
the sake of simplicity, we have reduced the three dimensional
parameter space (�m0,ωi ,ω j ) into the two dimensional plane
(ωi , ω j ) by fixing �m0 to some constant value. On the other
hand, h(z) contains four free parameters (�m0, A0, A1, and
A2) for assumption III. In this case, we have also reduced the
four dimensional parameter space (�m0, A0, A1, A2) into
the two dimensional plane (A1, A2) by fixing �m0 and A0 to
some constant values. Now, we can deal with only two free
parameters for each ansatz and will perform a χ2 analysis
of the SN Ia + BAO/CMB dataset. The values of the model
parameters at which χ2

m (the minimum value of χ2 function)
is obtained are the best-fit values of these parameters for the
joint analysis of the observational datasets from SN Ia, BAO,
and CMB measurements.

Appendix B: Solutions of φ(z), V (z), and f (z) for each
choice of ωφ(z) (I, II, and III)

In this section, we shall briefly extend our discussion regard-
ing the solutions of φ(z), V (z), and f (z) for different choices
of ωφ(z) used in Model II.

• Assumption I
For this choice, we obtain the evolution of φ(z) by inte-

grating Eq. (26) numerically and it is given by

φ(z) = φ0

+ α1

G1(z)F1

[
5
4 , α3,− 1

4 , 9
4 , 1+ω0+ω1z

ω1(1+z) ,
α4(1+ω0+ω1z)

(1+z)

]

(1 + z)
3ω1−3ω0−4

4

(B.7)

where G1(z) = (1 +ω0 +ω1z)
5
4

(
− 1+ω0−ω1

ω1(1+z)

) 1
4 (1+3ω0−3ω1)

,

α1 =
4(1+ω0−ω1)

(
3H2

0 (1−�m0)

α2

) 1
4

5 f0ω2
1

, α2 = (1+ω0−ω1)
ω1(2+3ω0)

, α3 =
3
4 (3 +ω0 −ω1), and α4 = 3ω1−1

ω1(2+3ω0)
. It is worth mentioning

that we consider exp(ω1z) ≈ 1 + ω1z in Eq. (36) to com-
pute the integration numerically, otherwise it becomes very
difficult to get a solution for φ(z).

Now, using Eq. (23), we find the potential (in terms of z)
as

V (z) = V01(1 − 3ω0 − 3ω1z)(1 + z)3(1+ω0−ω1)exp(ω1z)

(B.8)

where V01 = 3H2
0 (1−�m0)

4 . From Eq. (25), we also obtain

f (z) = ( f0/H0)
4

[
�m0(1 + z)3 + (1 − �m0)(1 + z)(1+ω0−ω1)exp(3ω1z)

]2 .

(B.9)

• Assumption II
Similarly, for ansatz II, the functional forms of φ(z), V (z)

and f (z) can be expressed as

φ(z) = φ0 + β1(1 + z)
3
4 (2+ω2)

× 2F1

[
−1

4
,− (2 + ω2)

4
,
(2 − ω2)

4
,− β2

(1 + z)3

]
,

(B.10)

V (z) = V02(1 + z)3(1+ω2)
(
ω3 + (1 + z)3

)

×
[

1 − 3ω2 − 3(1 + z)3

ω3 + (1 + z)3

]
, (B.11)

and

f (z) = ( f0/H0)
4

[
�m0(1 + z)3 + (1−�m0)

1+ω3
(1 + z)3(1+ωφ)

]2 (B.12)

where β1 = − 4
f0

(
H2

0 (1−�m0)

27(1+ω3)(2+ω2)3

) 1
4

, β2 = (1+ω2)ω3
(2+ω2)

, and

V02 = 3H2
0 (1−�m0)

4(1+ω3)
.

• Assumption III
For ansatz III, we also obtain

φ(z) = φ0

+
G2(z)

(
−8A2 − 4A1

1+z + G3(z)2F1

[
1
2 , 3

4 , 3
2 ,− A1

2A2(1+z)

])

f0
(

4A2 + 2A1
1+z

) ,

(B.13)

V (z) = V03(A0 + A1(1 + z) + A2(1 + z)2)

×
[

4 − A1(1 + z) + 2A2(1 + z)2

A0 + A1(1 + z) + A2(1 + z)2

]
, (B.14)

and

f (z) = ( f0/H0)
4

[�m0(1 + z)3 + (1−�m0)
A0+A1+A2

(
A0 + A1(1 + z) + A2(1 + z)2

)]2

(B.15)

where

G2(z) =
⎡
⎣H2

0 (1 − �m0)(1 + z)2
(

2A2 + A1
1+z

)
A0 + A1 + A2

⎤
⎦

1
4

,

G3(z) =
2

1
4 A1

(
2 + A1

A2(1+z)

) 3
4

1 + z
and V03 = 3H2

0 (1 − �m0)

4(A0 + A1 + A2)
.
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To reconstruct V (φ), we proceed as follows. One can eas-
ily find that it is not possible to express V (φ) in terms of φ

explicitly, because φ(z) poses a very complicated form for
each choice of ωφ(z). These equations only give a parametric
representation of V (φ), which cannot be solved analytically.
Therefore, one can plot the potential V (φ) against φ for some
arbitrary values of the model parameters. After this, one can
obtain the form of V (φ) by using a fitting function to fit the
corresponding plot. Following this procedure, we have plot-
ted V (φ) as a function of φ for these choices (I, II, and III),
which are shown in Figs. 2, 3, and 4. Similarly, using the
parametric relations [ f (z), φ(z)] for each choice of ωφ(z),
we also obtain the form of f (φ) by a numerical method for
some given values of the model parameters.
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