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Abstract High energy (CERN SPS and LHC) pp (p p̄)
scattering is treated in the framework of the Additive Quark
Model together with Pomeron exchange theory. Reasonable
agreement with experimental data is achieved both for the
elastic scattering and for the diffractive dissociation with
natural parameters for the strong matter distribution inside
proton.

1 Introduction

Regge theory provides a useful tool for the phenomenological
description of high energy hadron collisions [1–4]. The quan-
titative predictions of Regge calculus are essentially depen-
dent on the assumed coupling of participating hadrons to the
Pomeron. In our previous paper [5] we described elastic pp
(p p̄) scattering including the recent LHC data in terms of
a simple Regge exchange approach in the framework of the
Additive Quark Model (AQM) [6,7]. In the present paper we
extend our description to the processes of single and double
diffractive dissociation.

In AQM the baryon is treated as a system of three spa-
tially separated compact objects – the constituent quarks.
Each constituent quark is colored and has an internal quark–
gluon structure and a finite radius that is much less than the
radius of the proton, r2

q � r2
p. This picture is in good agree-

ment both with SU (3) symmetry of the strong interaction
and the quark–gluon structure of the proton [8,9]. The con-
stituent quarks play the roles of incident particles in terms of
which pp (or πp) scattering is described in AQM [6].

The transverse range of the interaction increases with
the energy [10], while the AQM approach is reliable until
r2
q � r2

p. When r2
q � r2

p the AQM relations between the
cross sections are modified by Gribov universality [10] (i.e.
the ratio σ tot

pp/σ
tot
πp = 3/2 valid for not very high energies
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transforms with the energy growth into σ tot
pp/σ

tot
πp � 1). In

the present calculations we assume that the LHC energies
are not high enough for Gribov universality.

To make the main ingredients and notations of our
approach clearer we start from the elastic scattering in Sect. 2.
The formalism used to describe single and double diffrac-
tive dissociation is presented in Sect. 3, while the obtained
numerical results are compared with the experimental data
in Sect. 4.

2 Elastic scattering amplitude in AQM

Elastic amplitudes for large energy s = (p1 + p2)
2 and small

momentum transfer t are dominated by Pomeron exchange.
We neglect the small difference in pp and p p̄ scattering com-
ing from the exchange of negative signature Reggeons, Odd-
eron (see e.g. [11] and references therein), ω-Reggeon etc.,
since their contribution is suppressed by s.

The single t-channel exchange results into the amplitude
of constituent quarks scattering

M (1)
qq (s, t) = γqq(t) ·

(
s

s0

)αP (t)−1

· ηP (t), (1)

where αP (t) = αP (0) + α′
P · t is the Pomeron trajectory

specified by the intercept, αP (0), and slope, α′
P , values. The

Pomeron signature factor,

ηP (t) = i − tan−1
(

παP (t)

2

)
,

determines the complex structure of the amplitude. The factor
γqq(t) = g1(t) · g2(t) has the meaning of the Pomeron cou-
pling to the beam and target particles, the functions g1,2(t)
being the vertices of the constituent quark–Pomeron interac-
tion (filled circles in Fig. 1).

Due to factorization of the longitudinal and transverse
degrees of freedom the longitudinal momenta are integrated
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Fig. 1 The AQM diagrams for pp elastic scattering. The straight lines
stand for quarks, the waved lines denote Pomerons, Q is the momentum
transferred, t = −Q2. a The one of the single Pomeron diagrams, b
and c represent double Pomeron exchange with two Pomerons coupled
to a different quark (b) and to the same quarks (c), q1 + q2 = Q

over separately in the high energy limit. After this the trans-
verse part of the quark distribution is actually relevant only.
It is described by the wave function ψ(k1, k2, k3), where the
ki are the quark transverse momenta, normalized as

∫
dK |ψ(k1, k2, k3)|2 = 1, (2)

and a shorthand notation is used,

dK ≡ d 2k1d 2k2d 2k3 δ(2)(k1 + k2 + k3).

The elastic pp (or p p̄, here we do not distinguish between
them) scattering amplitude is basically expressed in terms of
the wave function as

Mpp(s, t) =
∫

dK dK ′ψ∗(k′
i + Q ′

i ) ψ∗(ki + Qi )

×V (Q, Q ′) ψ(k′
i ) ψ(ki ). (3)

In this formula ψ(ki ) ≡ ψ(k1, k2, k3) is the initial proton
wave function, ψ(ki+Qi ) ≡ ψ(k1+Q1, k2+Q2, k3+Q3) is
the wave function of the scattered proton, and the interaction
vertex V (Q, Q ′) ≡ V (Q1, Q2, Q3, Q ′

1, Q
′
2, Q

′
3) stands for

the multipomeron exchange. Qk and Q ′
l are the momenta

transferred to the target quark k or beam quark l by the
Pomerons attached to them, Q is the total momentum trans-
ferred in the scattering, Q2 = −t .

The scattering amplitude is presented in AQM as a sum
over the terms with a given number of Pomerons,

Mpp(s, t) =
∑
n

M (n)
pp (s, t), (4)

where the amplitudes M (n)
pp collect all diagrams comprising

various connections of the beam and target quark lines with
n Pomerons.

Similar to Glauber theory [12,13] one has to rule out the
multiple interactions between the same quark pair. AQM per-
mits the Pomeron to connect any two quark lines only once. It
crucially decreases the combinatorics, leaving the diagrams

with no more than n = 9 effective Pomerons. Several AQM
diagrams are shown in Fig. 1.

In what follows we assume the Pomeron trajectory in the
simplest form,
(
s

s0

)αP (t)−1

= e
·ξ e−r2
q q

2
, ξ ≡ ln

s

s0
, r2

q ≡ α′ · ξ.

The value r2
q defines the radius of the quark–quark interac-

tion, while S0 = (9 GeV)2 has the meaning of the typical
energy scale in Regge theory.

In the first order there are nine equal quark–quark contri-
butions due to one Pomeron exchange between qq pairs. The
amplitude (3) reduces to a single term with Q1 = Q ′

1 = Q,
Q2,3 = Q ′

2,3 = 0,

M (1)
pp = 9(γqqηP (t)e
·ξ ) e−r2

q Q2
FP (Q, 0, 0)2, (5)

expressed through the overlap function

FP (Q1, Q2, Q3) =
∫

dK ψ∗(k1, k2, k3)

×ψ(k1 + Q1, k2 + Q2, k3 + Q3). (6)

The function FP (Q, 0, 0) plays the role of the proton form
factor for the strong interaction in AQM.

An example of the second order diagrams is shown in
Fig. 1b, c. Denoting by q1,2 the transverse momenta carried
by the Pomerons, we have for diagram b Q1 = Q ′

3 = 0,
Q2 = Q ′

2 = q2, Q3 = Q ′
1 = q1 and for diagram c Q1 =

q1 + q2, Q2 = Q3 = 0, Q ′
2 = q1, Q ′

3 = 0.
Generally, the higher orders elastic terms are expressed

through the functions (6) integrated over the Pomerons’
momenta,

M (n)(s, t) = in−1(γqqηP (tn)e

·ξ )n

×
∫

d 2q1

π
· · · d 2qn

π
π δ(2)(q1 + · · · + qn − Q)

× e−r2
q (q2

1 +···+q2
n ) 1

n!∑
n connections

FP (Q1, Q2, Q3) FP (Q ′
1, Q

′
2, Q

′
3), tn � t/n.

(7)

The sum in this formula refers to all distinct ways to con-
nect the beam and target quark lines with n Pomerons in
the scattering diagram. The set of momenta Qi and Q′

l the
quarks acquire from the attached Pomerons is particular for
each connection pattern. A more detailed description can be
found in [5].

With the amplitude (4) the differential cross section in the
normalization adopted here is evaluated as

dσ

dt
= 4π |Mpp(s, t)|2. (8)
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The optical theorem, which relates the total elastic cross sec-
tion and the imaginary part of the amplitude, in this normal-
ization reads

σ tot
pp = 8π Im Mpp (s, t = 0).

Recall once more that exchanges of the positive signature
Reggeons determine, strictly speaking, half of the sum of the
pp and p p̄ elastic amplitudes. Their difference is neglected
in the present approach.

3 Cross section of single and double diffractive
dissociation

Glauber theory makes it possible to find as well the cross sec-
tions of excitation or disintegration of one or both colliding
objects. The close approximation (completeness condition)
([13,14] allows one to calculate the total cross sections of all
processes related to the elastic scattering of the constituents
but without giving rise to new particles production,

dσ

dt
(pp → p′ p′) = dσ

dt
(pp → pp) + 2

dσ

dt
(pp → p∗ p)

+ dσ

dt
(pp → p∗ p∗).

Here dσ(pp → pp)/dt = dσel/dt is the elastic pp scatter-
ing cross section shown in Fig. 2a. The situations when one
scattered constituent receives a comparatively large trans-
verse momentum is shown in Fig. 2b, c. In the case of
nucleus–nucleus collisions it results in the excitation or dis-

integration of one of the nuclei. In the case of pp collisions
in AQM a scattered quark moves far away from the rem-
nant at the distance ∼1 fm, where a new qq̄ pair is produced
due to quark confinement effects. It can be interpreted as a
diffractive production of single jets, σ(pp → pp∗) = σSD,
say, of one or several pions, p → p + n × π . Similarly
two diffractive jets are produced in the case of Fig 2d,
σ(pp → p∗ p∗) = σDD. In Fig 2e a new qq̄ pair is pro-
duced as part of a multiperipheral ladder independently of the
quarks wave function leaving it essentially intact. This pro-
cess is related to the inelastic interaction of the constituents
and does not contribute to dσ(p ′ p ′)/dt in AQM.

The amplitude of single diffraction dissociation reads

MSD(s, t) =
∫

dK dK ′ψ∗(k′
i + Q ′) ψ̃∗

m(ki + Qi )

×V (Q, Q ′) ψ(k′
i ) ψ(ki ). (9)

Here the wave function of one of the protons remains
unchanged whereas the other proton turns into the p∗ final
state specified with the wave function ψ̃m(ki ).

The double diffraction dissociation implies both protons
to be in the p∗ final states,

MDD(s, t) =
∫

dK dK ′ψ̃∗
m(k′

i + Q ′) ψ̃∗
n (ki + Qi )

×V (Q, Q ′) ψ(k′
i ) ψ(ki ). (10)

To obtain the cross section one has to square the modulus
of the appropriate amplitude. Making no distinction between
the individual final states it should be summed over m for
the process of (9) or over m and n indices for the process of

Fig. 2 Different final states in
the high energy pp collision:
a elastic pp scattering, b and
c single diffractive dissociation
of first or second proton,
d double diffractive dissociation,
e process with one qq̄ pair
inelastic production that does
not contribute to the calculated
σSD but can contribute to the
experimental value σSD

a b c

d e
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(10). For the DD case it gives

dσel

dt
+ 2

dσSD

dt
+ dσDD

dt

= 4π
∑
m,n

∫
dK dK ′ dP dP ′ ψ̃∗

m(k′
i + Q ′

i ) ψ̃∗
m(ki + Qi )

×V (Q, Q ′)ψ(k′
i ) ψ(ki ) × ψ∗(pi )ψ∗(p′

i ) V ∗(Q ′′, Q ′′′)
×ψ̃m(p′

i + Q ′′′
i )ψ̃n(pi + Q ′′

i ). (11)

Using now the completeness condition,

∑
n

ψ̃n(pi + Q ′′
i ) ψ̃∗

n (ki + Qi )

= δ(2)(pi + Q ′′
i − ki − Qi )

along with the same condition for the index m we get

dσel

dt
+ 2

dσSD

dt
+ dσDD

dt

=
∫

dK dK ′ψ∗(ki + Qi − Q ′′′
i )ψ∗(k′

i + Q ′
i − Q ′′

i )

×V (Q, Q ′)V ∗(Q ′′, Q ′′′)ψ(k′
i )ψ(ki ). (12)

The double diffractive dissociation cross section is provided
by the two sets of the Pomeron exchange diagrams separately
associated with the “left” interaction vertex V (Q, Q ′) and
the “right” one V ∗(Q ′′, Q ′′′). They are summed indepen-
dently over the total numbers of the Pomerons participating in
the diagram “from the left” or “from the right”, m, n = 1, 9,

dσel

dt
+ 2

dσSD

dt
+ dσDD

dt
=

∑
m,n

|M (m,n)

p ′ p ′ |2(s, t).

Substituting here the Pomeron–quark vertex and the overlap
function (6) introduced above, we express each term in the
sum as

|M (m,n)

p ′ p ′ |2 = (γqqe
·ξ )m+n[ iηP (tm)]m [−iη∗
P (tn)]n

×
∫

d 2q1

π
· · · d

2qm
π

π δ(2)(q1 + · · · + qm − Q)

× d 2qm+1

π
· · · d

2qm+n

π
π δ(2)(qm+1 + · · · + qm+n−Q)

× e−r2
q (q2

1 +···+q2
m+n)

1

m!
1

n!
∑

m,n connections

×FP (Q1, Q2, Q3) FP (Q ′
1, Q

′
2, Q

′
3). (13)

For single diffractive dissociation the cross section in-
cludes the single sum over the final states of one of the pro-
tons. In this case the completeness condition gives

dσSD

dt
+ dσel

dt
= 4π

∑
m,n

|M (m,n)

pp ′ | 2(s, t),

with

|M (m,n)

pp ′ |2 = (γqqe
·ξ )m+n[ iηP (tm)]m [−iη∗
P (tn)]n

×
∫

d 2q1

π
· · · d 2qm

π
π δ(2)(q1 + · · · + qm − Q)

× d 2qm+1

π
· · · d 2qm+n

π
π δ(2)(qm+1 + · · · + qm+n−Q)

e−r2
q (q2

1 +···+q2
m+n)

× 1

m!
1

n!
∑

m,n connections

FP (Q1, Q2, Q3) FP (Q ′
1, Q

′
2, Q

′
3)

×FP(Q ′′
1 , Q ′′

2 , Q ′′
3 ). (14)

The first function FP appears here from the completeness
condition written for the dissociating proton, while the two
other FP functions in the product stand for an elastically
scattered proton.

4 Numerical calculations

The expressions (13) and (14) have been used for the numer-
ical calculation of the single and double diffractive dissoci-
ation of the protons together with Eq. (7) for their elastic
scattering. The overlap function (6) is evaluated through the
transverse part of the quarks’ wave function, which has been
taken in the simple form of two Gaussian packets,

ψ(k1, k2, k3) = N [ e−a1(k2
1+k2

2+k2
3) + C e−a2(k2

1+k2
2+k2

3)],
(15)

normalized to unity (2). One packet parametrization, C = 0,
is insufficient to reproduce the experimental data on elas-
tic scattering [5], imposing too strong a mutual dependence
between the total cross section, the minimum position in
dσel/dt , and the value of the slope at t = 0. The two-
exponential form of the quarks’ wave function allows one to
reproduce the exponential form for the summary differential
cross section dσel/dt , which is observed in LHC experimen-
tal data until the minimum region.

All parameters used in the calculation naturally fall into
two different kinds: the parameters of the Pomeron and those
specifying the structure of colliding particles. The former
type, 
, α′, γqq , refers to the high energy scattering theory,
while the latter, a1,2 and C , details the matter distribution
inside the proton in the low energy limit (similar to the density
distribution in the atomic nuclear case).

We recalculate the elastic scattering cross section dσel/dt ,
obtained in our previous paper [5] assuming the argument of
the signature factor tn = t/n = −Q2/n, which is natural for
a Gaussian Q2 dependence. It causes a slight change of the
model parameters. Now the Pomeron parameters are
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Fig. 3 The differential cross section of elastic p p̄ scattering at
√
s =

546 GeV (left panel) and for the elastic pp collisions at
√
s = 7 TeV

(right panel, solid line) compared to the experimental data. The dotted

line in the right panel shows the predicted elastic pp cross section at√
s = 13 TeV. The experimental points have been taken from [15–18]

Table 1 The results obtained for the elastic, SD and DD cross sections
√
s σel (mb) σSD (mb) σDD (mb)

546 GeV 14.3 2.3 2.6

7 TeV 27.3 4.3 3.9

13 TeV 31.6 5.4 4.9


 = 0.107, α′ = 0.31 GeV−2, γqq = 0.44 GeV−2,

and the parameters of the matter distribution in the proton
are

a1 = 4.8 GeV−2, a2 = 1.02 GeV−2, C = 0.133.

Note that the same set of the Pomeron parameters describes
proton and antiproton scattering, therefore both pp and p p̄
data have been commonly used to fix their values.

The model gives a reasonable description of elastic scatter-
ing experimental data both for pp collisions at

√
s = 7 TeV

and p p̄ collisions at
√
s = 546 GeV; see Fig. 3. The obtained

curves are only slightly different from those published in the
previous paper [5].

The results for the SD and DD cross sections are presented
in Table 1. The SD cross sections turn out to be rather small,
σSD/σel � 15–18 %, which probably matches the experi-
mental results at LHC energies [19–21]. It might indicate
that the contribution of the diagram in Fig. 2e is not large.

The total diffraction cross section is approximately half
the elastic one, 2σSD + σDD � σel/2, within the range of
available energy dependence of the probability of diffractive
to elastic scattering.

The ratio σSD/σel is in somewhat inconsistency (1.5 ÷ 2
times smaller) with the intermediate energy estimation in
[22]. We get σSD ≈ σDD, so that σDD/σel is not quadratically
small compared to σSD/σel. The reason for this comes in
AQM from an extra third form factor FP in the SD cross sec-
tion (14) compared to the two form factors in the DD formula
(13). On the other hand, the connection between diffractive
cross section calculated in AQM and the experimental data is
not straightforward, since AQM comprises only a part of the
processes involved in the scattering. The processes shown in
Fig. 2e are not accounted for in AQM although their contri-
bution to the experimentally measured σSD is quite possible.

Motivated by the recently announced new LHC run we
present also the predictions for the elastic pp scattering
and diffractive dissociation at

√
s = 13 TeV. In particular,

we expect the total cross section σ(pp)tot = 110 mb, the
parameter of the elastic slope cone (dσ/dt ∼ exp(−B · t))
B = 21.8 GeV−2, the minimum position at |t | = 0.45 GeV2,
while our results for the differential cross section, dσel/dt ,
are shown in Fig. 3.

Figure 4 shows our results for the differential cross sec-
tions dσSD/dt and dσDD/dt at

√
s = 546 GeV. The slope

of the differential cross section at |t | � 0.2 GeV2 is
BSD � 10 GeV−2 for the single diffractive diffraction and
BDD � 3 GeV−2 for the double diffractive dissociation.
These values are essentially smaller than the elastic slope,
which is about 15 GeV−2 [5].

Unfortunately we are unable to make predictions at small
|t | < 0.1 Gev2 because of the unknown effects of confine-
ment, which could lead to the transition between the ground
and excited states. However, such a transition cannot change
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Fig. 4 The cross section of single (solid line) and double (dotted line)
diffractive dissociation in p p̄ scattering at

√
s = 546 GeV. The exper-

imental SD points have been taken from [23]

the total cross sections (13), (14) calculated with the help of
the close approximation. The region |t | > 1 Gev2 is beyond
the reach of our model as well, since the internal structure
of the constituent quarks can no more be ignored there. The
diffractive cross section behavior in the intermediate interval
is in reasonable agreement with the experimental data.

5 Conclusion

We have presented the unified description of the elastic and
diffractive pp (p p̄) scattering in the framework of AQM. The
main feature of our model is the common set of parameters it
employs. After fitting the parameters that describe the elastic
scattering no more ones have been added for the diffractive
case. The parameters chosen are mainly determined by the
structure of the quark wave function for the initial state.

The ratio r2
q/r2

p, which is responsible for AQM applica-
bility, is not very small at the LHC energy (r2

q/r2
p � 0.4 at√

s = 7 TeV [5]). Despite this the model yields reasonable
predictions both for the elastic and diffractive dissociation
pp scattering, qualitatively consistent with LHC experimen-
tal data in the region 0.1 Gev2 < | t | < 1 GeV2.
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