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Abstract In this paper, we study static spherically sym-
metric wormhole solutions in extended teleparallel grav-
ity with the inclusion of noncommutative geometry under
a Lorentzian distribution. We obtain expressions of matter
components for a non-diagonal tetrad. The effective energy-
momentum tensor leads to the violation of energy conditions
which impose a condition on the normal matter to satisfy
these conditions. We explore the noncommutative wormhole
solutions by assuming a viable power-law f (T ) and shape
function models. For the first model, we discuss two cases
in which one leads to teleparallel gravity and the other is for
f (T ) gravity. The normal matter violates the weak energy
condition for the first case, while there exists a possibility for
micro physically acceptable wormhole solution. There exists
a physically acceptable wormhole solution for the power-law
b(r) model. Also, we check the equilibrium condition for
these solutions, which is only satisfied for the teleparallel
case, while for the f (T ) case, these solutions are less stable.

1 Introduction

General theory of relativity laid down the foundation of mod-
ern cosmology. The �CDM model is the simplest model
compatible with all cosmological observations but suffers
from some shortcomings, like the fine-tuning and cosmic
coincidence problems. The modified theories of gravity are
generalized models that came into being by modifying the
gravitational part in the general relativity (GR) action, while
the matter part remains unchanged. At large distances, these
theories modify the dynamics of the universe. In another
scenario, the modified matter part with unchanged gravita-
tional part results in dynamical models, such as cosmolog-
ical constant, quintessence, k-essence, Chaplygin gas, and
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HDE models [1–5]. After GR, Einstein attempted to unify
gravitation and electromagnetism based on the mathemati-
cal structure of absolute or distant parallelism, also referred
to as teleparallelism, which led to teleparallel (TP) gravity.
In this gravity, the gravitational field is established through
torsion using the Witzenböck connection instead of curvature
via the Levi-Civita connection as in GR.

The extended TP theory of gravity [or f (T ) gravity where
T represents the torsion scalar] is the generalization of TP
gravity in the same fashion as f (R) gravity generalizes GR.
This is attained by replacing the torsion scalar in the action of
TP gravity by a general differentiable function f (T ). Ferraro
and Fiorini [6,7] firstly introduced this theory by applying a
Born–Infeld strategy and solved the particle horizon problem
as well as obtained singularity-free solutions with a positive
cosmological constant. Afterwards, this theory has been stud-
ied extensively as regards many phenomena, like the accel-
erated expansion of the universe, solar system constraints, a
discussion of Birkhoff’s theorem, thermodynamics, a recon-
struction via dynamical models, static and dynamical worm-
hole solutions, the viability of models through a cosmo-
graphic technique, instability ranges of collapsing stars, and
many more. A vast area of research in f (T ) gravity uses a
spherically symmetric scenario [8–22].

A wormhole is a hypothetical path to connect different
regions of the universe, which can be regarded as a tunnel or
bridge from which an observer may traverse easily. Worm-
hole solutions are described by static as well as dynamical
configurations. In GR, the exotic matter (i.e., violating the
energy condition) constitutes a basic ingredient in the devel-
opment of the mathematical structure of the wormhole. The
violation of NEC is the necessary tool to form wormhole solu-
tions which also allow for two-way travel. Also, the inclusion
of an electromagnetic field, a scalar field, noncommutative
(NC) geometry, a NC Lorentzian (NCL) distribution, [23–26]
etc. establish more interesting and useful results. The search
for a realistic source which provides the violation (while
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normal matter satisfies the energy conditions) has recently
gained a lot of interest. The modified theory of gravity is one
of the directions to establish realistic wormhole solutions.

In f (T ) gravity, the effective energy-momentum tensor
is the cause for the corresponding violation, while normal
matter threads the wormhole solutions. In this regard, the
extra terms related to the underlying theory play an effective
role in violating the energy conditions, which is necessary
to keep wormhole throat open to be traversable. Böhmer-
break et al. [27] were the first who studied wormhole solu-
tions in this gravity by taking static spherically symmetric
traversable wormhole solutions and found some constraints
on the wormhole throat. They explored the behavior of the
energy conditions by taking a particular f (T ), shape, and
redshift functions and obtained physically acceptable solu-
tions. Jamilbreak et al. [28] studied these solutions by tak-
ing the fluid isotropic and anisotropic, as well as choosing a
particular equation of state; they found that the energy con-
ditions are violated in the anisotropic case, while these are
satisfied for the remaining two cases. Sharif and Rani [29]
explored dynamical wormhole solutions for traceless as well
as barotropic equations of state. With the help of analytic
and numerical f (T ) models, they concluded that the weak
energy condition (WEC) holds in specific time intervals for
these cases.

Rahaman et al. [30] examined the NC wormhole solutions
in GR for a higher dimensional static spherically symmet-
ric spacetime and found their existence in a regular way up
to four dimensions, and in a very restrictive way for five-
dimensional space. Beyond these dimensions, the possibility
of wormhole solutions is over. Jamil et al. [31] also explored
f (R) wormhole solutions in the same background. Recently,
Sharif and Rani have studied wormhole solutions [32] in the
background of NC geometry for f (T ) = αT n model as
well as the shape function. They concluded that the effec-
tive energy-momentum tensor serves as the basic ingredient
to thread the wormhole solutions, and normal matter gives
some physically acceptable solutions. They extended [33]
this work to a study of the effects of an electrostatic field.
The same authors explored these solutions for galactic halo
regions [34] for exponential and logarithmic models but no
physically acceptable solutions are obtained.

Recently, Bhar and Rahaman [35] studied the wormhole
solutions in Lorentzian distribution as the density function
in a noncommutativity-inspired spacetime. They obtained a
stable wormhole which is asymptotically flat in the usual
four-dimensional spacetime. In order to search for some real-
istic wormhole solutions, we extended this work in extended
teleparallel gravity for specific f (T ) and shape function
models. The paper is organized as follows. In the next section,
we provide wormhole geometry for a static spherically sym-
metric spacetime and briefly discuss the energy conditions.
Section 3 is devoted to a discussion of f (T ) gravity. In Sect.

4, we construct the field equations and matter content for
the wormhole solutions. Section 5 contains the construction
of wormhole solutions for particular f (T ) and b(r) func-
tions. In Sect. 6, we check the equilibrium condition for the
obtained solutions. The last section summarizes the results.

2 Wormhole geometry

One of the most fascinating features of GR is the possible
existence of spacetimes with a non-trivial topological struc-
ture. Well-known examples of this structure are described by
Misner and Wheeler [36] and Wheeler [37] as solutions of
the Einstein field equations known as wormhole solutions.
Basically, the wormhole, having appearance as a tube, a tun-
nel or a bridge, represents a shortcut way to communicate
between two distant regions. If there exist some other paths
between these regions, then these are called “intra-universe”,
otherwise “inter-universe” wormholes. The simplest exam-
ple of such a connection is the Einstein–Rosen bridge (or
Schwarzschild wormhole), which unfortunately fails to pro-
vide a way of communication to another region of space to
which it is connected. The reason behind this is that any pho-
ton or particle falling in it reaches the singularity at r = 0
and thus has no link with the other end of the wormhole.

The Lorentzian traversable wormholes are the most favor-
able in the sense that a human may traverse from one side of
the wormhole to the other through these wormholes. Being
the generalized form of the Schwarzschild wormhole (hav-
ing an event horizon which permits one way travel) with no
event horizon, these wormholes lead to two-way travel. Mor-
ris and Thorne [38] established a static spherically symmetric
wormhole spacetime given by

ds2 = e2�(r)dt2 − dr2

1 − b(r)
r

− r2dθ2 − r2 sin2 θdφ2. (1)

Here, �(r) represents the redshift (or potential) function
which determines the gravitational redshift of a light parti-
cle (photon). The magnitude of the redshift function must be
finite everywhere for the two-way travel through the worm-
hole. The function b(r) denotes the shape function which
sets the shape of the wormhole.

The essential characteristics required for a wormhole
geometry are discussed in [38,39] and given as follows.

• The no-horizon condition [�(r) must be finite everywhere
in the spacetime] must be satisfied by the redshift function.
Usually, it is taken as zero, which gives e2�(r) → 1.

• The shape function must satisfy the flaring out condition
on the throat, i.e., to have the proper shape for a wormhole,
the ratio of the radial coordinate to the shape function at
that coordinate must be 1, while this coordinate expresses
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a non-monotonic behavior away from the throat. Taking
the throat radius as r0 yields b(r0) = r0 and b′(r0) < 1.

• The proper radial distance, τ(r) = ± ∫ rr0

dr√
1−b(r)/r

,

r ≥ r0, should be finite throughout the space. The signs ±
associate the two parts which are joined by the throat for
the wormhole configuration.

• At large distances, the asymptotic flatness should be a fea-
ture of the spacetime, i.e., b(r)

r → 0 as r → ∞.

Notice that the Morris–Thorne wormhole is not a particular
wormhole solution like the Schwarzschild wormhole, which
depends on a single parameter, the mass of the wormhole.
Instead, it is a class of solutions for an arbitrarily large number
of redshift as well as shape functions satisfying the above
constraints.

In order to prevent shrinking of the wormhole throat and
to make it traversable, the matter distribution of the energy-
momentum tensor at the throat must be negative. More pre-
cisely, the sum of the energy density and the pressure of mat-
ter is negative, representing a violation of the null energy con-
dition (NEC) and such matter is named “exotic”. It is noted
that an ordinary energy-momentum tensor satisfies the NEC.
For viability of the wormhole solutions, it is necessary to
minimize the amount of exotic matter required to support the
wormhole solutions. The modified theories of gravity are one
of the sources which provide an effective energy-momentum
tensor to violate the WEC (contains NEC). In this regard, the
usual energy-momentum tensor may satisfy this condition.
To discuss NEC and WEC, we assume an energy-momentum
tensor in an appropriate orthonormal frame as

T αβ = diag(ρ, p1, p2, p3),

where ρ is the energy density and pn(n = 1, 2, 3) denote the
principal pressures.

• WEC The relationship between the Raychaudhuri equation
and attractiveness of gravity yields the WEC

TαβV
αV β ≥ 0,

for any timelike vector V α . In terms of the components of
the energy-momentum tensor, this inequality yields

ρ ≥ 0, ρ + pn ≥ 0, ∀n.

For modified theories of gravity, we replace the matter
content of the universe in an effective manner by T eff

αβ as
well as the matter components ρeff and peff

n .
• NEC By continuity, the WEC implies the NEC,

Tαβk
αkβ ≥ 0,

for any null vector kα . This inequality gives ρ+pn ≥ 0, ∀n.
In an effective manner, this becomes ρeff + peff

n ≥ 0.

3 f (T ) theory of gravity

It is well known that curvature and torsion are properties of
a connection and many connections may be defined on the
same spacetime. The Riemann–Cartan (generalized Rieman-
nian) spacetime yields two interesting models of spacetime
such as Riemannian and Weitzenböck spacetimes [40,41].
The concept of a curved manifold is a crucial characteris-
tic of GR which is described by a Riemannian spacetime
having the metric tensor as the dynamical variable. It uses
a curvature (Riemann) tensor to arrive at a Levi-Civita con-
nection whose curvature remains non-zero while the torsion
vanishes due to its symmetry property. On the other hand, the
non-zero torsion with vanishing curvature corresponds to the
Weitzenböck spacetime which parallel transports the tetrad
field. The TP theory is defined by a Weitzenböck connec-
tion with a tetrad field as the basic entity. This theory is an
alternative description of gravity having a translation group
which is related to a gauge theory. The existence of non-
trivial tetrad field in gauge theory leads to the teleparallelism
structure. The f (T ) theory of gravity is the generalization of
TP theory.

The geometry of TP theory is uniquely defined by an
orthonormal set of four-vector fields (three spacelike and one
timelike) named the tetrad field. The simplest type of tetrad
field is the trivial tetrad, which has the form ei = δ

μ
i ∂μ, e j =

δ
j
μdxμ, where δiμ is the Kronecker delta. However, this type

of tetrad field gives a zero torsion and is of less interest. The
non-trivial tetrad field provides non-zero torsion and yields
the construction of TP theory. It can be written as

hi = hi
μ∂μ, h j = h j

νdxν, (2)

satisfying the following properties: hiμh j
μ = δij , h

i
μhi ν =

δν
μ. This field establishes the metric tensor as a by-product

given as follows:

gμν = ηi j h
i
μh

j
ν . (3)

The torsion scalar has the following form:

T = Sγ
μνT γ

μν. (4)

The superpotential tensor Sγ
μν (antisymmetric in its upper

indices) is

Sγ
μν = 1

2
(Kμν

γ + δμ
γ T

θν
θ − δν

γ T
θμ

θ ). (5)
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The torsion tensor is as follows:

T γ
μν = �̃γ

νμ − �̃γ
μν = hi

γ (∂νh
i
μ − ∂μh

i
ν), (6)

which is antisymmetric in its lower indices, i.e., T γ
μν =

−T γ
νμ. The contorsion tensor can be defined as

K γ
μν = 1

2
[Tμ

γ
ν + Tν

γ
μ − T γ

μν]. (7)

To formulate a suitable form of the field equations which
establishes the equivalent description (up to equations level)
of these theories, we follow the covariant formalism [42–45].
Incorporating the above equations and after some algebraic
manipulations, it follows that

Gμν − 1

2
gμνT = −∇γ Sνγμ − Sσγ

μKγ σν, (8)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor. Finally,

we obtain the following field equations for f (T ) gravity:

fT Gμν + 1

2
gμν( f − T fT ) + Eμν fT T = κ2Tμν, (9)

where Eμν = Sνμ
γ ∇γ T . It is noted that Eq. (9) possesses an

equivalent structure like f (R) gravity and reduces to GR for
f (T ) = T . The trace equation is used to constrain and sim-
plify the field equations. Here, the trace of the above equation
is

E fT T − (R + 2T ) fT + 2 f = κ2T ,

with E = Eν
ν and T = T ν

ν . In terms of an effective energy-
momentum tensor, the f (T ) field equations can be rewritten
as

Gμν = κ2T eff
μν = κ2(T f

μν + T T
μν). (10)

The term T f
μν = T m

μν

fT
corresponds to the matter fluid, while,

using the trace equation, the torsion contribution is given by

T T
μν = 1

κ2 fT

[

−Eμν fT T − 1

4
gμν(T − E fT T + R fT )

]

.

(11)

4 Field equations for wormhole construction

Gravitational theories [like f (R) theory] developed through
the metric tensor as well as its dependent quantities are
local Lorentz invariant. Being the basic entity in f (T ) grav-
ity, the torsion tensor (taking a tetrad) which induces the
TP structure on spacetime fails to be invariant under local
Lorentz transformations [42–45]. This can be seen from

R = −T −2∇γ T ν
γ ν , where R is a covariant scalar, while T

as well as ∇γ T ν
γ ν are covariant scalars but not local Lorentz

invariant. However, the latter scalar can be neglected inside
the integral for TP theory and it becomes equivalent to GR.

The non-invariant theories might be sensitive in order to
choose a reasonable tetrad not uniquely determined by the
given metric gμν . In general, one comes across a more com-
plicated connection between the tetrad and metric, partic-
ularly for a non-diagonal tetrad with a diagonal metric (or
even sometimes a diagonal tetrad). Different field equations
are developed by taking a different tetrad, which successively
induces distinct solutions. In an appropriate limit, some of
these solutions lead to GR counterparts, while others fail to
provide a valid GR counterpart. Thus, the choice of tetrad is
a crucial point in f (T ) theory and needs particular attention.

When we deal with spherical coordinates, the diagonal
tetrads become unsuitable as they provide some constraints
on the T and f (T ) models [46]. We obtain an unwanted
condition, Ṫ fT T = 0 (or simply fT T = 0), which yields
a constant torsion scalar, or f (T ) = c1 + c2T represent-
ing TP theory. Thus, the diagonal tetrads do not represent a
useful choice for spherical symmetry. In order to search for
a realistic source toward wormhole solutions in f (T ) grav-
ity, we assume the following non-diagonal tetrad for static
spherically symmetric wormhole spacetime (1):

hiμ

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e2�(r) 0 0 0
0 1√

1− b
r

sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 1√
1− b

r

sin θ sin φ r cos θ sin φ r sin θ cos φ

0 1√
1− b

r

cos θ −r sin θ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The torsion scalar turns out to be

T = −2

r

[

2� ′
(√

1 − b

r
− 1 + b

r

)

−1

r

(

2

(

1 −
√

1 − b

r

)

− b

r

)]

. (12)

We assume an anisotropic energy-momentum tensor as

T μ
ν = (ρ + pt )U

μUν − ptδ
μ
ν + (pr − pt )V

μVν, (13)

where pr and pt are the radial and transverse components
of the pressure. The four-velocity of the fluid Uμ and the
unit spacelike vector Vμ satisfy UμUμ = 1, VμVμ =
−1, UμVμ = 0. The corresponding energy-momentum
tensor is

T μ
ν = diag(ρ,−pr ,−pt ,−pt ).
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Equation (9) yields the following field equations:

ρ

fT
− 1

r

(

1 − b

r
−
√

1 − b

r

)

T ′ fT T
fT

− J

fT
= b′

r2 , (14)

pr
fT

+ J

fT
= 1

r2

[

2r� ′
(

1 − b

r

)

− b

r

]

, (15)

pt
fT

+ 1

2

{

� ′
(

1 − b

r

)

− 1

r

(√

1 − b

r
− 1 + b

r

)}

× T ′ fT T
fT

+ J

fT
= 1

2r2

[

2r� ′ − � ′b − b′ + b

r
+ 2� ′′r2

− 2� ′′rb + 2� ′2r2 − 2� ′2rb − � ′rb′
]

, (16)

where the prime refers to the derivative with respect to r and
J (r) is given by

J (r) = 1

4
(T − E fTT + R fT ).

Taking the effective energy density and the pressure from
Eqs. (14) and (15), the NEC yields

ρeff + peff
r = b′r − b

r3 + 2

r

(

1 − b

r

)

� ′. (17)

Due to the flaring out condition, we obtain b > b′r , leading
to the violation of the NEC with � ′ < 0, i.e., ρeff + peff

r ≤ 0,
which implies that the effective energy-momentum tensor is
responsible for the necessary violation of the energy condi-
tions to support the wormhole geometry. Thus, it may impose
a condition on the usual matter to satisfy the energy condi-
tions in this scenario and establish some physically accept-
able solutions.

To be a traversable wormhole solution, the magnitude of
its redshift function must be finite. Also, up to equation level
for a constant value of � other than zero, we note that only
� ′ is used for which � = constant gives the same scenario.
For the sake of simplicity, setting � = 0 in Eqs. (14)–(16),
the field equations can be written as

ρ = b′

r2 fT + 1

r

(

1 − b

r
−
√

1 − b

r

)

T ′ fT T , (18)

pr = − b

r3 fT , (19)

pt = 1

2r

(√

1 − b

r
− 1 + b

r

)

T ′ fT T − 1

2r2

(

b′ − b

r

)

fT ,

(20)

where the torsion scalar becomes

T = 2

r2

[

2 − b

r
− 2

√

1 − b

r

]

. (21)

It is noted that Eq. (17) gives the violation of the NEC in
terms of the flaring out condition.

5 Wormhole solutions

Noncommutative geometry is the intrinsic characteristic of
spacetime and it plays an effective role in several areas.
To formulate the NC form of GR, the coordinate coherent
state approach is widely used. The NC geometry is used
to eliminate the divergencies that appear in GR by replac-
ing the point-like structures with smeared objects. Taking a
Lorentzian distribution, the energy density of the particle-
like static spherically symmetric gravitational source having
mass M takes the following form [47]:

ρNCL = M
√

φ

π2(r2 + φ)2 , (22)

where φ is the NC parameter. Taking into account the corre-
spondence between ρ and ρNCL using Eqs. (18) and (22), we
obtain the following differential equation:

b′

r2 fT + 1

r

(

1 − b

r
−
√

1 − b

r

)

T ′ fT T = M
√

φ

π2(r2 + φ)2 ,

(23)

which contains two unknown functions, b and f . Thus, we
have to choose one of these functions and carried out steps
for the other one. We discuss the NCL wormhole solutions
in f (T ) gravity for a non-diagonal tetrad and investigate the
behavior of the energy conditions for specific f (T ) and shape
functions.

5.1 For power-law f (T ) model

We assume a model in power-law form of the torsion scalar
which is the generalization of GR and an analogy to f (R)

model like f (R) = R + δR2 taken to discuss the wormhole
solutions. The f (T ) model is

f (T ) = T + αT 2. (24)

This model has contributed as the most viable model due
to its simple form and we may directly compare our results
with GR. We discuss wormhole solutions for the following
two cases.

Case I: α = 0

We consider α = 0 in model (24) which leads to the whole
scenario in teleparallel gravity. In this case, Eq. (23) becomes

b′

r2 = M
√

φ

π2(r2 + φ)2 , (25)
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Fig. 1 Plots of shape function in the teleparallel case: evolution of i b versus r , ii b
r versus r , iii b − r versus r , iv db

dr versus r

yielding the solution

b(r) = M

2π2

(
r
√

φ

r2 + φ
+ tan−1

(
r√
φ

))

+ c, (26)

where c is an arbitrary constant.
In order to examine the geometry of the wormhole, we

draw the shape function taking different conditions in Fig. 1.
We choose arbitrarily the values of the model parameters,
such as φ = 0.5, M = 15, and c = 1. Figure 1i represents
the evolution of the shape function in an increasing manner
versus r . For an asymptomatically flat condition, we draw b

r
with respect to increasing r . It can be seen from plot ii that b

r
approaches 0 as r → 0. This implies that the asymptotically
flat condition for the wormhole construction is satisfied. In
plot iii, we draw b − r versus r to find the throat radius. It is
noted that the throat radius is the minimum value for which
b−r cuts the r -axis. In this case, the throat radius is obtained
as r0 = 1.6. This plot satisfies the condition 1 − b

r > 0 for
r > r0. In Fig. 1iv, we plot the first derivative of b(r) with
respect to r to check the validity of the condition b′(r0) < 1,
which shows that the corresponding condition is satisfied.
Thus, the shape function satisfies the required structure of
the wormhole.

Equations (18)–(20) are given as follows:

ρ = M
√

φ

π2(r2 + φ)2 , (27)

pr = − 1

r3

[
M

2π2

(
r
√

φ

r2 + φ
+ tan−1

(
r√
φ

))

+ c

]

, (28)

pt = − 1

2r2

[
M

√
φ

π2(r2 + φ)2

− 1

r

{
M

2π2

(
r
√

φ

r2 + φ
+ tan−1

(
r√
φ

))

+ c

}]

. (29)

The behavior of WEC (ρ, ρ + pr , and ρ + pt ) versus r is
shown in Fig. 2. The curves of ρ, ρ+pt represent a positively
decreasing behavior for increasing r , while ρ+ pr indicates a
negative behavior, which shows the violation of WEC. Thus
no physically acceptable wormhole solution is obtained in
the teleparallel case. These results are compatible with the
results of [35].

Case II: α 
= 0

The case α 
= 0 leads to the extended teleparallel gravity.
Inserting Eq. (24) in Eq. (23), we obtain the following dif-
ferential equation:
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r2M
√

φ

π2(r2 + φ)2 = b′
{

1 + 4α

r2

(

2 − b

r
− 2

√

1 − b

r

)}

−4α

r2

(

1 − b

r
−
√

1 − b

r

)

×
⎡

⎣4

(

1 −
√

1 − b

r

)

− 2b

r

+ b′r − b

r

⎛

⎝1 − 1
√

1 − b
r

⎞

⎠

⎤

⎦ . (30)

We check the behavior of the shape function and the flaring
out conditions numerically through the graphs by taking the
same values of parameters along with three different values of
α such as α = −2,−3,−5 and the initial value as f (2.2) =
1. Figure 3i represents an increasing behavior of the shape
function versus r . In the right graph, ii, b

r versus r shows that
b
r approaches zero as we increase r , which represents that
asymptomatically flatness is obtained. To locate the throat of
the wormhole, we plot b(r) − r versus r as shown in plot
iii of Fig. 3. In this plot, the throat is located at very small
values of r . The first derivative of the shape function is also
plotted versus r as shown in plot iv, which indicates that db

dr
at r0 satisfies the condition b′(r0) < 1. Thus, similar to the

teleparallel case, the shape function satisfies the conditions
of wormhole geometry.

To check the behavior of WEC for power-law model, the
expressions of matter content using Eqs. (18)–(20) are given
by

ρ = b′

r2

{

1 + 4α

r2

(

2 − b

r
− 2

√

1 − b

r

)}

−4α

r2

(

1 − b

r
−
√

1 − b

r

)⎡

⎣4

(

1 −
√

1 − b

r

)

− 2b

r

+ b′r − b

r

⎛

⎝1 − 1
√

1 − b
r

⎞

⎠

⎤

⎦ , (31)

pr = − b

r3

{

1 + 4α

r2

(

2 − b

r
− 2

√

1 − b

r

)}

, (32)

pt = − 1

2r2

(

b′ − b

r

){

1 + 4α

r2

(

2 − b

r
− 2

√

1 − b

r

)}

−2α

r4

(

1 − b

r
−
√

1 − b

r

)⎡

⎣4

(

1 −
√

1 − b

r

)

− 2b

r

+ b′r − b

r

⎛

⎝1 − 1
√

1 − b
r

⎞

⎠

⎤

⎦ . (33)
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Figure 4 represents a graph of the WEC expressions versus r ,
which show that ρ and ρ+ pt show a decreasing behavior but
remain positive. For α = −2, ρ indicates a negative value at
r ≤ 0.52. The behavior of ρ + pr is negative but there exists
some part of the curves in the positive panel of the plot. Thus
there exists a possibility to have a micro or tiny wormhole.

5.2 For power-law b(r) model

Here, we examine the wormhole solution by considering a
specific shape function in terms of the power-law form and
construct the f (T ) function in the NCL background. We take
the following particular shape function [31,50,51]:

b(r) = r0

(
r

r0

)γ

, (34)

where γ is any constant. To meet the wormhole geometry, it
can be seen that b′(r0) < 1 implies that b′(r0) = γ < 1 and
b(r0) = r0 hold. The asymptotically flat spacetime is also
obtained for this shape function, i.e., b(r)

r = r1−γ
0 rγ−1 → 0

as r → ∞. Substituting the values of ρNCL and b(r) from Eqs.
(22) and (34) in Eq. (18), we obtain the following differential
equation:

1

r

⎡

⎣1 −
(
r

r0

)γ−1

−
√

1 −
(
r

r0

)γ−1
⎤

⎦ f ′′

T ′

+ γ

r2

(
r

r0

)γ−1 f ′

T ′ − 1

r

×
⎡

⎣1 −
(
r

r0

)γ−1

−
√

1 −
(
r

r0

)γ−1
⎤

⎦ T ′′ f ′

T ′2

= M
√

φ

π2(r2 + φ)2 , (35)

where

T = 2

r2

⎡

⎣2 −
(
r

r0

)γ−1

− 2

√

1 −
(
r

r0

)γ−1
⎤

⎦ ,

T ′ = − 2

r3

⎡

⎢
⎢
⎣4

⎛

⎝1 −
√

1 −
(
r

r0

)γ−1
⎞

⎠− 2

(
r

r0

)γ−1

+ (γ − 1)

(
r

r0

)γ−1

⎛

⎜
⎜
⎝1 − 1

√

1 −
(

r
r0

)γ−1

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ ,
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T ′′ = 12

r4

⎡

⎢
⎢
⎣2

⎛

⎝1 −
√

1 −
(
r

r0

)γ−1
⎞

⎠−
(
r

r0

)γ−1

− (γ − 1)(γ − 6)

6

(
r

r0

)γ−1

⎛

⎜
⎜
⎝1 − 1

√

1 −
(

r
r0

)γ−1

⎞

⎟
⎟
⎠

+ (γ − 1)2

12

(
r

r0

)2(γ−1)
(

1 −
(
r

r0

)γ−1
)− 3

2
⎤

⎦ .

We evaluate the f (T ) function numerically and draw its plot
as well as WEC versus T and r , respectively, as shown
in Fig. 5. Keeping the same values of NCL parameters
along with γ = 0.5 for three values of the throat radius,
r0 = 0.93, 0.95, 0.99. The plot i indicates the positively
decreasing behavior of f .

The expressions for the WEC become

ρ = γ

r2

(
r

r0

)γ−1 f ′

T ′ + 1

r

(

1 −
(
r

r0

)γ−1

−
√

1 −
(
r

r0

)γ−1
⎞

⎠
(

f ′′

T ′ − T ′′ f ′

T ′2

)

, (36)

ρ + pr = γ − 1

r2

(
r

r0

)γ−1 f ′

T ′ + 1

r

(

1 −
(
r

r0

)γ−1

−
√

1 −
(
r

r0

)γ−1
⎞

⎠
(

f ′′

T ′ − T ′′ f ′

T ′2

)

, (37)

ρ + pt = γ + 1

2r2

(
r

r0

)γ−1 f ′

T ′ + 1

2r

(

1 −
(
r

r0

)γ−1

−
√

1 −
(
r

r0

)γ−1
⎞

⎠
(

f ′′

T ′ − T ′′ f ′

T ′2

)

. (38)

Figure 5(ii–iv) shows the plots of these expressions versus r .
This shows that ρ, ρ+ pr , ρ+ pt indicate a positive behavior
of these expressions. Thus, physically acceptable wormhole
solutions are obtained for the specific shape function where
the basic role is played by the effective energy-momentum
tensor.

6 Equilibrium conditions

To discuss the equilibrium configuration of the wormhole
solutions, we consider the generalized Tolman–Oppenheimer
–Volkov equation [48,49],
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dpr
dr

+ σ ′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0, (39)

for the metric ds2 = diag(eσ(r),−eμ(r),−r2,−r2 sin2 θ).
Ponce de León suggested this equation for an anisotropic
mass distribution as follows:

2

r
(pt − pr ) − e

μ−σ
2 Meff

r2 (ρ + pr ) − dpr
dr

= 0. (40)

Here Meff = 1
2r

2e
σ−μ

2 σ ′ is the effective gravitational mass
which is measured from the throat to some arbitrary radius r .
This equation indicates the equilibrium configuration for the
wormhole solutions by taking gravitational, hydrostatic as
well as anisotropic force due to an anisotropic matter distri-
bution. Using Eq. (40), these forces are defined, respectively,
as

Fg f =−σ ′(ρ + pr )

2
, Fh f =−dpr

dr
, Fa f = 2(pt − pr )

r
.

For the wormhole solutions to be in equilibrium, it is required
that

Fg f + Fh f + Fa f = 0. (41)

It is noted here that σ represents the gravitational redshift,
which is taken constant, i.e., σ = 2� leads to σ ′ = 0 for

constant �. This shows that Fg f becomes zero and we are
left with hydrostatic and anisotropic forces with the corre-
sponding equilibrium condition Fh f + Fa f = 0. For the
teleparallel case, specifically the f (T ) and b(r) cases, Fh f

and Fa f take the following form, respectively:

Fh f = − 3

r4

[
M

2π2

(
r
√

φ

r2 + φ
+ tan−1

(
r√
φ

))

+ c

]

+ 1

r3

[
M

√
φ(5r3 + 3φ)

2π2r3(r2 + φ)2

3c

r4 − 3M

2πr4 tan−1
(

r√
φ

)]

,

Fa f = − 1

r3

[
M

√
φ

π2(r2 + φ)2 − 3

r

{
M

2π2

(
r
√

φ

r2 + φ

+ tan−1
(

r√
φ

))

+ c

}]

,

Fh f =
(
b′

r3 − 3b

r4

){

1 + 4α

r2

(

2 − b

r
− 2

√

1 − b

r

)}

+ b

r6

⎡

⎣− 8α

(

2 − b

r
− 2

√

1 − b

r

)

− 4α(b′r − b)

r

⎛

⎝1 − 1
√

1 − b
r

⎞

⎠

⎤

⎦ ,
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Fa f = − 1

r3

⎡

⎣
(

b′ − 3b

r

){

1 + 4α

r2

(

2

− b

r
− 2

√

1 − b

r

)}

+ 4α

r

(
b

r
− 1

+
√

1 − b

r

)⎡

⎣4

(

1 −
√

1 − b

r

)

− 2b

r

+ b′r − b

r

⎛

⎝1 − 1
√

1 − b
r

⎞

⎠

⎤

⎦

⎤

⎦ ,

Fh f = γ − 3

r3

(
r

r0

)γ−1 f ′

T ′ +
1

r2

(
r

r0

)γ−1 ( f ′′

T ′ − T ′′ f ′

T ′2

)

,

Fa f = 3 − γ

r3

(
r

r0

)γ−1 f ′

T ′ + 1

r2

⎛

⎝
(
r

r0

)γ−1

− 1 +
√

1 −
(
r

r0

)γ−1
⎞

⎠
(

f ′′

T ′ − T ′′ f ′

T ′2

)

.

We plot these equations for the obtained wormhole solu-
tions as shown in Figs. 6, 7, and 8, respectively. For the
teleparallel case, we examine that hydrostatic and anisotropic
forces show the same behavior but in opposite directions and
thus balance each other. This implies that the wormhole solu-
tion in the teleparallel case satisfies the equilibrium condi-
tion. In the case of a power-law f (T ) function, this condi-
tion shows wormhole solutions in an equilibrium state as r
increases. For smaller values of r , these solutions do not sat-
isfy the equilibrium condition properly or we may remark
that these solutions are less stable. For a specific b(r) func-
tion, the forces Fh f and Fa f do not balance each other. Since
all the curves behave in opposite manners there is no similar-
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Fig. 6 Plot of Fh f and Fa f in teleparallel case versus r : red curve
represents Fh f and blue curve represents Fa f . Evolution of Fh f and
Fa f
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Fig. 8 Plot of Fh f (dotted) and Fa f (solid) in specific b(r) case versus
r . Evolution of Fh f and Fa f forces

ity. Therefore the physically acceptable wormhole solutions
are not in equilibrium form.

7 Conclusion

A wormhole represents a shortcut distance to connect dif-
ferent regions of the universe. To study these solutions, the
violation of NEC plays the key role which is associated with
the exotic matter. To minimize the usage of exotic matter is an
important issue, which leads one to explore a realistic model
in favor of the wormhole. In this paper, we have studied static
spherically symmetric wormhole solutions in f (T ) gravity
by taking a NCL background. We have developed the f (T )

field equations in terms of an effective energy-momentum
tensor by taking a non-diagonal tetrad and proved that this
tensor is responsible for the WEC violation. By imposing
the condition on the matter content to thread the wormhole
solutions, we have assumed either the f (T )or the shape func-
tion and constructed the other one. The graphical behavior
of these solutions is discussed.
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For the power-law f (T ) model, we have discussed two
cases: teleparallel gravity and f (T )gravity in quadratic form.
Both models satisfied the conditions for the wormhole geom-
etry as regards the shape function. The WEC condition is vio-
lated for the first case, while the possibility of a tiny wormhole
solution is examined for the f (T ) case. In another case of par-
ticular form of power-law shape function, we have analyzed
the wormhole geometry. We have found physically accept-
able wormhole solutions as the WEC is satisfied in this case.
Also, we have examined the stability of these wormhole solu-
tions with the help of a generalized Tolman–Oppenheimer–
Volkov equation. We have found that teleparallel NCL worm-
hole solutions are stable, while f (T ) NCL wormhole solu-
tions are less stable. For the wormhole solutions in a specific
shape function case, we have obtained unstable solutions.

Bhar and Rahaman [35] investigated whether the worm-
hole solutions exist in different dimensional noncommuta-
tive inspired spacetimes with a Lorentzian distribution. For
four- and five-dimensional spacetime, there exist wormhole
solutions, while no solution exists for higher dimensions.
They observed a stable wormhole, i.e., satisfying the flare
out conditions and violating the energy conditions for four
dimensions. It is interesting to note that for the underlying
case, we also obtain asymptotically flat and stable solutions
in the teleparallel case, i.e., the behavior of all conditions is
identical. The wormhole solutions [32] in the background of a
NC geometry give physically acceptable wormhole solutions
in the f (T ) gravity case, while in the teleparallel case, the
energy conditions are violated. However, this work is done
taking a diagonal tetrad, which is less of interest for spher-
ical symmetry. In the case of a Lorentzian distributed NC
background, we have found physically acceptable wormhole
solutions in a more stable form. We have used a non-diagonal
tetrad, which is the favorable choice for spherical symmetry.
The NC wormholes in f (R) gravity with a Lorentzian dis-
tribution are discussed by Rahaman et al. [52]. They studied
the same cases and found a violation of the energy conditions
in all cases. That is, there are no physically acceptable solu-
tions in f (R) gravity. However, we have found physically
acceptable as well as stable solutions.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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