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Abstract In this paper, we continue our previous work
of studying viscous generalized Chaplygin gas as a uni-
fied dark fluid but the bulk viscosity perturbations. By
using the currently available cosmic observational data
from SNLS3, BAO, HST, and recently released Planck, we
obtain a constraint on the bulk viscosity coefficient: ζ0 =
0.0000138+0.00000614+0.0000145+0.0000212

−0.0000105−0.0000138−0.0000138 in 1, 2, 3σ regions,
respectively, via the Markov Chain Monte Carlo method. The
result shows that when considering perturbations of the bulk
viscosity, the current cosmic observations favor a smaller
bulk viscosity coefficient.

1 Introduction

Several astronomical observations (such as high-redshift
supernovae of type Ia (SN Ia) [1–5], cosmic microwave back-
ground (CMB) radiation [6], matter power spectra [7], etc.)
strongly suggest that at present about 96 % of the cosmo-
logical total energy content is dynamically dominated by a
dark sector which is responsible for the acceleration of our
universe. This dark sector is generally assumed to have two
different components: dark energy and dark matter. To inves-
tigate this dark sector, many cosmological models have been
built based on the dynamics governed by Einstein’s general
relativity. Validity of the cosmological principle at large cos-
mic scales is assumed and also that the medium of the uni-
verse can be modeled as an idealized perfect fluid; this means
that all components of the matter-energy in our universe are
considered as a perfect fluid without any viscosity or it may
be interpreted as the result of the gross grain approximation
having been taken. The most natural dark energy candidate
is a cosmological constant which arises as the result of a
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combination of quantum field theory and general relativity.
But research has shown that constant dark energy models
are not well confirmed by observations nor by theoretical
considerations [32,33]. One of the alternatives to the cosmo-
logical constant is to describe dark matter and dark energy
within a unified dark fluid model. To the best of our knowl-
edge, the first proposal along this line was the Chaplygin gas
[8–10] in its original and generalized forms [11–14]. How-
ever, the unified Chaplygin gas type models, in spite of many
attractive features, seemed to suffer from a major drawback:
it predicted strong small scale oscillations or instabilities in
the matter power spectrum, in complete disagreement with
the observational data [15]. These apparently unrealistic pre-
dictions are the result of an adiabatic perturbation analysis.
It has been suggested that non-adiabatic perturbations may
alleviate or even avoid this problem [16,17,28]. A reason-
able possibility is to allow the generalized Chaplygin gas to
have non-adiabatic perturbations, which is a natural assump-
tion, since it is not a pressureless fluid actually. An attempt
in this direction has already been performed in [30] and [31].
Furthermore, in recent years, more and more cosmological
observations have suggested that our universe is permeated
by an imperfect fluid, in which we have a negative pressure,
as was argued in [28,29]; an effective pressure including
bulk viscosity might play the role of the agent that drives
the present acceleration of universe.

The viscous generalized Chaplygin gas (hereafter referred
to as VGCG) is a widely studied model among those pro-
posed to describe the observed accelerated expansion of the
universe. In contrast to many models describing dark energy
alone, the VGCG gives a unified description of dark matter
and dark energy, enrolling itself in the class of so-called uni-
fied dark fluid (UDF) cosmological models see e.g. [18–22].
A common characteristic of these papers is that only the
impact of the bulk viscosity on the background expansion
of the universe is studied without considering perturbations
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of the bulk viscosity. However, the perturbation analysis of
the viscous cosmological models is crucially important to the
evolution of cosmology. The different approaches mentioned
imply a generally different dynamics at the perturbative level.
The unifying view on the background level is accompanied
by a difference in the perturbation dynamics. This circum-
stance renders the different approaches potentially testable
alternatives to the �CDM model while sharing the same
background dynamics of the latter. Therefore, it is interesting
to study the behavior of the VGCG under perturbations. The
cosmological perturbation issue was first tackled and studied
by Lifshitz in 1946 in the synchronous gauge [23,24]. Subse-
quently in 1980 Bardeen developed gauge-invariant perturba-
tion theory [25] through constructing suitable combinations
of metric and stress-energy tensor perturbations which are
invariant under a generic gauge transformation. The gauge-
invariant formalism has been used and reviewed by many
authors.

In the present paper, we follow the notation of [26] and
study only scalar perturbations. We will describe the bulk
viscous pressure by Eckart’s expression [34], pv = −ζuμ;μ,
where the (non-negative) quantity ζ is the (generally not con-
stant) bulk viscosity coefficient and uμ;μ is the fluid-expansion
scalar, which in a homogeneous and isotropic background
reduces to 3H , where H = ȧ

a is the Hubble parameter and
a is the scale factor of the Robertson–Walker metric. As a
continuation of our previous work [27], here we investigate
the VGCG model by including a bulk viscosity perturbation.

The structure of this paper is as follows. In the next sec-
tion, we briefly introduce some basic equations of the viscous
generalized Chaplygin gas model. The derivation of the evo-
lution equations for the density perturbation and the velocity
perturbations are presented in Sect. 3. Then in Sect. 4, by
using the MCMC method, we perform a global fitting to the
current observational data and analyze the constraint results.
The discussion and conclusion are in the final section.

2 Basic equations of viscous generalized Chaplygin
gas model

In an isotropic and homogeneous universe, we consider the
standard Friedmann–Robertson–Walker metric,

ds2 =−dt2+a2(t)

[
1

1−kr2 dr2+r2(dθ2+sin2 θ dφ2)

]
.

(1)

For the sake of simplicity, we choose the flat geometry k = 0,
which is also favored by the update result of the cosmic back-
ground radiation measurement. The general stress-energy-
momentum tensor is

Tμν = (ρ + p)UμUν + pgμν. (2)

To consider the effect of bulk viscosity, we modify the pres-
sure only by redefining the effective pressure peff , according
to peff = p + pv = p − 3Hζ , and we re-write the viscous
energy-momentum tensor [35] as

Tμνviscous = ρUμU ν +
(

p − 3ζ
ȧ

a

) (
gμν + UμU ν

)
≡ peff gμν + (peff + ρ)UμU ν . (3)

From the equation above, we see that the effect of the bulk
viscosity is to change the pressure p to an effective pressure
peff = p − 3ζ ȧ/a. The physical interpretation is clear: the
viscous pressure can play the role of an agent that drives the
present acceleration of the universe. Note that the possibil-
ity of a viscosity dominated late epoch of the universe with
accelerated expansion was already mentioned by Padmanab-
han and Chitre in [36].

Using the GCG equation of state pg = −A/ραg , which
yields an analytically solvable cosmological dynamics if the
universe is GCG dominated, we obtain the equation of state
(EoS) of the viscous GCG (VGCG) model as given in the
form of

pVGCG = −A/ραVGCG − 3Hζ. (4)

This EoS includes the GCG model as a special case when

ζ = 0; when ζ �= 0, for the normal form ζ = ζ0ρ
1
2
VGCG, we

have the EoS

pVGCG = −A/ραVGCG − √
3ζ0ρVGCG, (5)

where A, ζ0 and α are model parameters. Applying energy
conservation of VGCG, one can deduce its energy density as

ρVGCG = ρVGCG0

[
Bs

1 − √
3ζ0

+
(

1 − Bs

1 − √
3ζ0

)

× a−3(1+α)(1−√
3ζ0)

] 1
1+α

, (6)

where Bs = A/ρ1+α
VGCG0, α and ζ0 are model parameters.

From Eq. (6) one finds that 0 ≤ Bs ≤ 1 and ζ0 <
1√
3

are
required to keep positivity of the energy density. If α = 0 and
ζ0 = 0 in Eq. (6), the standard �CDM model is recovered.
Taking VGCG as a unified component, one has the Fried-
mann equation

H2 = H2
0

{
(1 −
b −
r −
k)

[
Bs

1 − √
3ζ0

+
(

1 − Bs

1 − √
3ζ0

)
a−3(1+α)(1−√

3ζ0)

] 1
1+α

+ 
ba−3 +
r a−4 +
ka−2
}
, (7)

where H is the Hubble parameter with its current value
H0 = 100 h km s−1 Mpc−1, and 
i (i = b, r, k) are dimen-
sionless energy parameters of baryon, radiation, and effec-
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tive curvature density, respectively. In this paper, we only
consider the spatially flat FRW universe.

Here, we treat VGCG as a unified dark fluid which inter-
acts with the remaining matter purely through gravity. With
the assumption of a pure adiabatic contribution to the pertur-
bations, the adiabatic sound speed for VGCG is

c2
s,ad = ṗVGCG

ρ̇VGCG
= −αweff − √

3ζ0, (8)

where weff is the EoS of VGCG in the form of

weff = − Bs

Bs + (1 − Bs)a−3(1+α) − √
3ζ0. (9)

From the above equation, one can find that in order to protect
the sound of speed from negativity,α ≥ 0 is required because
of the non-positive values of weff .

We studied the perturbation evolution equations of VGCG
in order to study the effects on the CMB anisotropic power
spectrum. In the synchronous gauge, using conservation of
the energy-momentum tensor, T(viscous)

μ

ν;μ = 0, one has the
perturbation equations of the density contrast and the velocity
divergence for the VGCG

δ̇VGCG = −(1 + weff)

(
θVGCG + ḣ

2

)

− 3H(c2
s − weff)δVGCG, (10)

θ̇VGCG = −H(1 − 3c2
s )θVGCG + c2

s

1 + weff
k2δVGCG

− k2σVGCG, (11)

following the notation of Ma and Bertschinger [37]. For the
perturbation theory in a gauge-ready formalism, please see
[38]. For the shear perturbation σVGCG = 0 is assumed
and adiabatic initial conditions are adopted in our calcula-
tion. When the EoS of a pure barotropic fluid is negative, it
has an imaginary adiabatic sound speed, which causes insta-
bility of the perturbations; for example, the w = constant
quintessence dark energy model. The way to overcome this
problem is to allow an entropy perturbation and to assume a
positive or null effective speed of sound; of this we will give
a detailed study in the following.

3 Perturbation equations

3.1 Perturbed metric and energy-momentum tensor

Scalar perturbations of the flat FRW metric are given in the
following form:

ds2 = a2
{
−(1 + 2φ) dτ 2 + 2∂i B dτ dxi

+[(1 − 2ψ)δi j + 2∂i∂ j E] dxi dx j
}
, (12)

where a is the scale factor, τ is the conformal time, xi are the
spatial coordinates and φ andψ are the metric perturbations.
The background four-velocity is ūμ = a−1(1, 0, 0, 0), which
can be derived as follows:

ūμ = −dτ

ds
= −1

a

dt

ds
= 1

a
δ
μ
0 . (13)

The spatial part is the perturbation; we can set it as
∂ iv for scalar perturbations only. Then using the equality
gμνuμuν = −1, one has

u0 = ± 1√
g00

= +1

a
(1 − φ), (14)

so one has the following four-velocity of the fluid:

uμ = a−1(1 − φ, ∂ iv),

uμ = gμνuν = a(−1 − φ, ∂i [v + B]), (15)

where v is the peculiar velocity potential. The local volume
expansion rate is θ = �∇ · �v. Then one has the expansion
rate θ = −k2(v + B) for the fluid. Let uμ be the energy-
frame four-velocity (zero momentum flux relative to uμ).
The energy density is the eigenvalue for this four-velocity,
i.e., Tμν uμ = −ρuμ. The energy-momentum tensor can be
written as

Tμν = (ρ + peff)u
μuν + peffδ

μ
ν , (16)

where ρ = ρ̄ + δρ and p = p̄ + δp. The effective pressure
peff is given as

peff = p − ζ (∇γ uγ ) = p − 3H
a
ζ. (17)

The general energy-momentum tensor is

T 0
0 = −ρ̄ − δρ, (18)

T 0
i = (ρ̄ + peff)∂i (v + B) = (ρ̄ + peff)(vi + Bi ), (19)

T i
0 = −(ρ̄ + peff)v

i , (20)

T i
j = peffδ

i
j + δpeffδ

i
j . (21)

Then one has the background energy-momentum tensor

T̄ 0
0 = −ρ̄, T̄ 0

i = 0, T̄ i
0 = 0, T̄ i

j = peffδ
i
j . (22)

Thus the perturbed energy-momentum tensor can be written
as

δT 0
0 = −δρ, δT 0

i = (ρ̄ + peff)(vi + Bi ),

δT i
0 = −(ρ̄ + peff)v

i , δT i
j = δpeffδ

i
j . (23)

3.2 Calculation of Christoffel symbols

The formula of the Christoffel symbols is

�
μ
αβ = 1

2
gμν(gαν,β + gβν,α − gαβ,ν), (24)
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where the comma in the index stands for the derivative, and
Greek letters μ, ν, α, β take the values 0, 1, 2, 3. In the fol-
lowing, the prime stands for the derivative with respect to the
conformal time τ . So one has the following equations:

�0
00 = H + φ′, (25)

�0
0i = φi + HBi , (26)

�0
i j = Hδi j − [ψ ′ + 2H(ψ + φ)]δi j

+ ∂i∂ j (E
′ − B + 2HE), (27)

�i
00 = ∂ i (φ + B ′ + HB), (28)

�i
j0 = Hδi

j − ψ ′δi
j + ∂ j∂

i E ′, (29)

�i
jk = −H∂ i Bδ jk + δ jk∂

iψ − δi
j∂kψ

− δi
k∂ jψ + ∂ j∂k∂

i E . (30)

The nonzero Christoffel symbols are shown in the following;
the background items are

�̄0
00 = H, �̄0

i j = Hδi j , �̄i
j0 = Hδi

j , (31)

the perturbed items are

δ�0
00 = φ′, δ�i

00 = ∂ i (φ + B ′ + HB),

δ�0
0i = ∂iφ + H∂i B, δ�i

j0 = −ψ ′δi
j + ∂ j∂

i E ′,
δ�0

i j = −[ψ ′ + 2H(φ + ψ)]δi j + ∂i∂ j [E ′ + 2HE − B],
δ�i

jk = −H∂ i Bδ jk + δ jk∂
iψ − δi

j∂kψ − δi
k∂ jψ

+ ∂ j∂k∂ i E . (32)

3.3 Evolution equations for density perturbation
and velocity perturbations

In this section, we will given a derivation of the perturbed
energy-momentum equations. From the formulas

δ∇μTμ0 = δgμσ∇μT 0
σ + ḡμσ δ∇μT 0

σ ,

δ∇μTμi = δgμσ∇μT i
σ + ḡμσ δ∇μT i

σ , (33)

and

∇μT νσ = T νσ,μ + �νρμT ρσ − �ρσμT νρ ,

∇μT νσ = T̄ νσ,μ + �̄νρμT̄ ρσ − �̄ρσμT̄ νρ , (34)

namely

∇0T 0
0 = −ρ̄′, δ∇0T 0

0 = −δρ′,

∇0T 0
i = 0, ∇i T 0

j = H(ρ̄ + peff)δi j ,

∇i T 0
0 = 0, δ∇i T

0
0 = −H(ρ̄ + peff)(2vi + Bi ),

δ∇0T 0
i = [(ρ̄ + peff)(vi + Bi )]′

+ (ρ̄ + peff)(∂iφ + H∂i B),

δ∇i T
0
j = (ρ̄ + peff)(∂i∂ jv + ∂i∂ j B)+ H(δρ + δpeff)δi j

− (ρ̄ + peff)[ψ ′ + 2H(ψ + φ)]δi j

+ (ρ̄ + peff)∇2(E ′ + 2HE − B), (35)

we obtain the following perturbed energy-momentum equa-
tion:

δ∇μTμ0 = 1

a2

{
δρ′ + 3H(δρ + δpeff)− 3(ρ̄ + peff)ψ

′

+ (ρ̄ + peff)∇2(v + E ′)− 2φ[ρ̄′ + 3H(ρ̄ + peff)]
}
.

(36)

And in the same way, we make use of the following results:

∇0T i
0 = 0, ∇ j T i

0 = −H(ρ̄ + peff)δ
i
j ,

δ∇0T i
0 = −[(ρ̄ + peff)v

i ]′
− (ρ̄ + peff)∂

i (φ + B + HB),

∇0T i
k = p′

effδ
i
k, δ∇0T i

k = δ p′
effδ

i
k,

∇ j T i
k = ∂ j (peffδ

i
k),

δ∇ j T
i
k = H(ρ̄ + peff)[δi

j∂kv + δi
j∂k B + δk j∂

iv]
+ ∂ j (δpeffδ

i
k),

δ∇ j T
i
0 = −(ρ̄ + peff)(−ψ ′δi

j + ∂ i∂ j E ′)

−Hδi
j (δρ + δpeff)− (ρ̄ + peff)∂ j∂

iv, (37)

and we also have the following equation:

δ∇μTμi = 1

a2 ∂
i {[(ρ̄ + peff)(v + B)]′ + (ρ̄ + peff)φ

+ 4H(ρ̄ + peff)(v + B)+ δpeff

−[ρ̄′ + 3H(ρ̄ + peff)]B
}
. (38)

If the fluid is conserved, i.e. ρ̄′ + 3H(ρ̄ + pef f ) = 0, the
above perturbed equations can be rewritten as

δ∇μTμ0 = 1

a2

{
δρ′ + 3H(δρ + δpeff)− 3(ρ̄ + peff)ψ

′

+ (ρ̄ + peff)∇2(v + E ′)
}
, (39)

δ∇μTμi = 1

a2 ∂
i
{
[(ρ̄ + peff)(v + B)]′ + (ρ̄ + peff)φ

+ 4H(ρ̄ + peff)(v + B)+ δpeff

}
, (40)

where peff = p̄ − 3

a
Hζ ,

δpeff = δp − δζ (∇γ uγ )− ζ(δ∇γ uγ )

= δp − 3H
a
δζ − ζ

a
[∇2(v + E ′)− (3ψ ′ + 3Hφ)].

(41)

To solve the above equations or make them complete, we
need the relations between δp and δρ. The sound speed c2

s,eff
of a fluid or scalar field is the propagation speed of a pressure
fluctuation in the rest frame,

c2
s,eff = δpeff

δρ
|r f , (42)
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where ’|r f ’ denotes the rest frame. For a scalar field φ, the
rest frame is defined as the hypersurface δφ = 0, i.e. φ =
constant . So, one has δV = 0 and δρφ = δ( 1

2 a−2φ′2+V ) =
a−2φ′δφ′ = δpφ . Thus the sound speed of the scalar field
equals the speed of light and is independent from the form
of V (φ),

δφ|r f = 0 ⇒ c2
sφ = 1. (43)

The ‘adiabatic sound speed’ for any medium is defined as

c2
a,eff = p′

eff

ρ′ = weff + w′
eff

ρ′/ρ
. (44)

The rest frame (the zero momentum gauge or comoving
orthogonal gauge) is the comoving (v|r f = 0) orthogonal
(B|r f ) = 0) frame, so that

T i
0 |r f = 0 = T 0

i |r f. (45)

We make a gauge transformation, xμ → xμ + (δτ, ∂ iδx),
from the rest frame gauge to a general gauge,

v + B = (v + B)|r f + δτ, δp = δp|r f − p′δτ,
δρ = δρ|r f − ρ′δτ. (46)

Thus, one has δτ = v + B and

δpeff = δpeff |r f − p′
effδτ

= c2
s,effδρ + δρnad, (47)

where δρnad = (c2
s,eff −c2

a,eff)[δρ+ρ′(v+ B)] is the intrinsic
non-adiabatic perturbation in the fluid. When the fluid is con-
served, we have ρ̄′ = −3H(ρ̄ + peff). By using the relation
θ = −k2(v + B) in Fourier space, one has

δpeff = c2
s,e f f δρ + (c2

s,eff − c2
a,eff)ρ

′(v + B)

= c2
s,effδρ + (c2

s,eff − c2
a,eff)

[
3H(ρ̄ + peff)

] θ
k2 . (48)

We define the density contrast δ = δρ/ρ̄; then one has the
evolution equations for the density perturbation and velocity
perturbation for a generic conservation fluid,

δ′ + 3H(c2
s,eff − weff)δ + (1 + weff)(θ − 3ψ ′) = 0, (49)

θ ′ + H(1 − 3c2
s,eff )θ − c2

s,eff k2δ

1 + weff
− k2φ = 0. (50)

In synchronous gauge, one has

φ = β ′′ + a′

a
β ′, (51)

ψ = −h

6
− 1

3
∇2β − a′

a
β ′. (52)

Therefore, k2φ = 0, −3ψ ′ = h′
2 . Finally, one has the fol-

lowing evolution equations for the density perturbation and

the velocity perturbation:

δ′ = −(1 + weff)

(
θ + h′

2

)
− 3H(c2

s,eff − weff)δ, (53)

θ ′ = −H
(

1 − 3c2
s,eff

)
θ + c2

s,eff k2δ

1 + weff
. (54)

Following the formalism for the generalized dark matter case
[39], one can recast Eqs. (53) and (54) into

δ′ = −(1 + weff)

(
θ + h′

2

)
+ w′

eff

1 + weff
δ

−3H(c2
s,eff − c2

a,eff)

[
δ + 3H(1 + weff)

θ

k2

]
, (55)

θ ′ = −H(1 − 3c2
s,eff )θ + c2

s,eff k2δ

1 + weff
, (56)

where

weff = − Bs

Bs + (1 − Bs)a−3(1+α) − √
3ζ0, (57)

c2
a,eff = weff − w′

eff

3H(1 + weff)
, (58)

c2
s,eff = c2

s −
√

3

2
ζ0 − ζ0√

3Hδ

(
θ + h′

2

)
, (59)

c2
s,eff − c2

a,eff = weff�nad,eff

δrest , (60)

�nad,eff = δpnad

peff
, (61)

δrest = δ + 3H(1 + w)
θ

k2 . (62)

4 Cosmological constraints from data sets: SNLS3,
BAO, Planck, and HST

In this section, we apply the Markov Chain Monte Carlo
method to the investigation of the observational constraints
on the viscous generalized Chaplyin gas model which
includes bulk viscous perturbations to obtain the parameter
space. The MCMC method is based on the publicly avail-
able cosmoMC package [40], which has been modified to
include the dark fluid perturbation in the CAMB [41] code,
which is used to calculate the theoretical CMB power spec-
trum. To get converging results, in the MCMC calculation
we stop sampling by checking the worst e-values [the vari-
ance(mean)/mean(variance) of 1/2 chains] and R − 1 is of
the order 0.01. In the following calculations, we take the total
likelihood L ∝ e−χ2/2 to be the product of the separate likeli-
hoods of SNLS3, BAO, Planck, and HST. Thenχ2 is given as

χ2 = χ2
SNLS3 + χ2

BAO + χ2
Planck + χ2

HST, (63)

with the following 8-dimensional parameter space:

P ≡ (ωb, 100θMC, τ, α, Bs, ζ0, ns, log[1010 As]). (64)
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Table 1 The mean values of the model parameters with 1σ , 2σ and 3σ
errors from the combination SNLS3+BAO+Planck+HST

Model parameters Mean value with errors


bh2 0.0222+0.000302+0.000603+0.000802
−0.000303−0.000590−0.000781

100θMC 1.051+0.000553+0.00109+0.00144
−0.000558−0.00110−0.00143

τ 0.0854+0.0121+0.0259+0.0347
−0.01354−0.0238−0.0309

α 0.192+0.0835+0.195+0.292
−0.134−0.192−0.192

Bs 0.808+0.0328+0.0629+0.0807
−0.0334−0.0624−0.0710

ζ0 0.0000138+0.00000614+0.0000145+0.0000212
−0.0000105−0.0000138−0.0000138

ns 0.964+0.00714+0.0141+0.0185
−0.00710−0.0138−0.0181

log(1010 As) 3.0820+0.0238+0.0502+0.0660
−0.0262−0.0470−0.0615


VGCG 0.955+0.00172+0.00331+0.00422
−0.00173−0.00322−0.00413


b 0.0453+0.00173+0.00322+0.00413
−0.00171−0.00331−0.00422

zre 10.626+1.101+2.172+2.834
−1.0813−2.159−2.900

H0 71.0621+1.202+2.504+3.287
−1.349−2.357−3.0527

Age/Gyr 13.723+0.0395+0.0797+0.103
−0.0397−0.0791−0.106

The pivot scale of the initial scalar power spectrum ks0 =
0.05 Mpc−1 is used and the priors to the model parame-
ters are taken as follows: the physical baryon density ωb(=

bh2) ∈ [0.005, 0.1]; the ratio of the sound horizon and
angular diameter distance 100θMC ∈ [0.5, 10]; the optical
depth τ ∈ [0.01, 0.8]; the model parameters α ∈ [0, 0.1],
Bs ∈ [0, 1] and ζ0 ∈ [0, 0.01]; the scalar spectral index
ns ∈ [0.5, 1.5], and the logarithm of the amplitude of the
initial power spectrum log[1010 As] ∈ [2.7, 4]. In addition,
the hard coded prior on the comic age 10Gyr < t0 < 20 Gyr
is imposed. Also, the weak Gaussian prior on the phys-
ical baryon density ωb = 0.022 ± 0.002 [42] from big
bang nucleosynthesis and the new Hubble constant H0 =
74.2 ± 3.6 km s−1 Mpc−1 [43] are adopted. Notice that the
current dimensionless energy density of VGCG 
VGCG is
not included in the model parameter space P , because it is
a derived parameter in a spatially flat (k = 0) FRW uni-
verse. To study the evolution of the perturbation, we should
fix the background evolution. To realize that, we use the cos-
mic observations from the type Ia supernovae SNLS3,cosmic

Fig. 1 The 1D marginalized
distribution on individual
parameter and 2D contours with
68 % C.L., 95 % C.L., and 99 %
C.L. by using
SNLS3+BAO+Planck+HST
data points
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Fig. 2 The evolution of c2
a,eff with respect to the scale factor a. The

solid curve corresponds to the VGCG2 model (including bulk viscosity
perturbations); the dashed curve corresponds to the VGCG1 model (not
considering bulk viscosity perturbations)

microwave background radiation from the recently released
Planck, baryon acoustic oscillation from the Sloan Digital
Sky Survey and the WiggleZ data points and High-redshift
SN observations from Hubble Space Telescope. For the
detailed description, please see Refs. [44–52].

The best fitting values of the cosmological parameters
and the mean values of model parameters with 1σ , 2σ
and 3σ regions in VGCG model from the combination
SNLS3+BAO+Planck+HST are listed in Table 1. Corre-
spondingly, the contour plots are shown in Fig. 1. We find
that the minimum χ2 is χ2

min = 5, 115.878. From Table 1
and Fig. 1, we obtain the constraint on the bulk viscosity
coefficient: ζ0 = 0.0000138+0.00000614+0.0000145+0.0000212

−0.0000105−0.0000138−0.0000138
in the 1, 2, 3σ regions, respectively, and it is obvious that
we obtain a tighter constraint than our previous results in
[27] due to the bulk viscosity perturbation being included.
From [27], we know that the value of the bulk viscosity
impacts the CMB power spectrum as regards its height of
the peak sensitively. Since the parameter ζ0 is related to

the dimensionless density parameter of the effective cold
dark matter 
c0, decreasing the values of ζ0 is equivalent
to increasing the value of the effective dimensionless energy
density of cold dark matter, so the smaller bulk viscos-
ity ζ0 will make the equality of matter and radiation ear-
lier, therefore the sound horizon is decreased; this can be
embodied in the CMB anisotropic power spectra by show-
ing that the first peak is depressed as observed in Fig. 2 in
[27].

To show the effect of the bulk viscosity perturbation to
the efficient state parameter weff and the efficient adiabatic
sound speed c2

a,eff , we plot the evolution curves of c2
a,eff and

weff with respect to the scale factor a in Figs. 2 and 3, respec-
tively, which correspond to the VGCG1 model (not consid-
ering bulk viscosity perturbations) and the VGCG2 model
(including bulk viscosity perturbations). From Fig. 2, one
can conclude that the VGCG2 model provides a smaller effi-
cient adiabatic sound speed (which approximately is equal
to zero) than the VGCG1 model. It is well known that an
almost-zero adiabatic sound speed, which is characterized
by the perturbation of density contrast, is important for large
scale structure formation. So, the VGCG2 model makes it
possible to form large scale structures in our universe. From
the upper panel of Fig. 3, one can see that the two VGCG
models behave like cold dark matter with almost zero EoS at
an early epoch (a < 0.2), and they behave like dark energy
with EoS weff < 0 at late times, which pushes the universe
into an accelerated phase. Furthermore, from the lower panel
of Fig. 3, which enlarges the upper panel (from a = 2 to
the end), we can conclude that the VGCG1 model behaves
like quintessence (weff > −1) at present, and it behaves
phantom-like (weff < −1) in the distant future. However,
unlike the VGCG1 model, the VGCG2 model behaves like
quintessence at present and in the distant future, which will
avoid termination of our universe by a cosmic doomsday.
Therefore, it is more necessary and reasonable to include

Fig. 3 The evolution ofweff with respect to scale factor a. The solid curve corresponds to theVGCG2 model (including bulk viscosity perturbations);
the dashed curve corresponds to the VGCG1 model (not considering bulk viscosity perturbations)
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perturbations of the bulk viscosity when we study cosmic
evolution. In conclusion, the VGCG2 model (including bulk
viscosity perturbations) as proposed here is a more compet-
itive model than the one we studied previously.

5 Discussion and conclusion

In this paper, we have revisited the viscous generalized
Chaplygin gas (VGCG) model by including perturbations
of the bulk viscosity. We derived the cosmological evolu-
tion equations for density and velocity perturbations. By
using the MCMC method in combination with SNLS3,
BAO, HST and the recently released Planck data points,
we obtained tighter constraints as shown in Sect. 4 of this
paper. Since the parameter ζ0 is related to the dimension-
less density parameter of effective cold dark matter, decreas-
ing the values of ζ0 is equivalent to increasing the value
of the effective dimensionless energy density of cold dark
matter; this will make the equality of matter and radiation
earlier, therefore the sound horizon is decreased. So we
predict that the smaller bulk viscosity coefficient param-
eter ζ0 = 0.0000138+0.00000614+0.0000145+0.0000212

−0.0000105−0.0000138−0.0000138 in the
1, 2, 3σ regions, respectively, will depress the peak of the
decreases of CMB CTT

l power spectrum as regards its height.
From Fig. 2, one can conclude that the VGCG2 model pro-
vides a smaller efficient adiabatic sound speed than the
VGCG1 model, which is important for large scale struc-
ture formation. So, the VGCG2 model makes it possible
to form large scale structures in our universe. From Fig. 3,
one can see that the two VGCG models behave like cold
dark matter with almost zero EoS at early epoch (a < 0.2),
and they behave like dark energy with EoS weff < 0 at late
times, which pushes the universe into an accelerated phase.
Furthermore, we can see that the VGCG1 model behaves
like quintessence (weff > −1) at present, and it behaves
phantom-like (weff < −1) in the distant future. However,
unlike the VGCG1 model, the VGCG2 model behaves like
quintessence at present and in the distant future, which will
avoid termination of our universe by a cosmic doomsday.
Therefore, it is more reasonable to include perturbations of
the bulk viscosity when we study cosmic evolution. Because
of the almost-zero sound speed and the almost-negative state
parameter (in the distant future), we come to the conclu-
sion that the viscous generalized Chaplygin gas model which
includes bulk viscosity perturbations is a competitive alter-
native for the �CDM model.
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