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Abstract Employing a relativistic rotational transforma-
tion to study and analyze rotational phenomena, instead of
the rotational transformations based on consecutive Lorentz
transformations and Fermi coordinates, leads to different pre-
dictions. In this article, after a comparative study between the
Fermi metric of a uniformly rotating eccentric observer and
the spacetime metric in the same observer’s frame obtained
through the modified Franklin transformation, we consider
rotational phenomena including the transverse Doppler effect
and the Sagnac effect in both formalisms and compare their
predictions. We also discuss length measurements in the two
formalisms.

1 Introduction

Rotation and rotating phenomena have always puzzled peo-
ple and looking at the history of the theory of relativity (both
special and general) it seems that rotating observers and
their spatio-temporal measurements had a key role in form-
ing Einstein’s thoughts on the relation between non-inertial
observers/frames and the gravitational field [1], encoded in
the equivalence principle and the geometrical formulation of
GR. Specifically the problem of a rigidly rotating disk and
its spatial geometry seems to be one of the main elements
in the development of general relativity, leading to the Ein-
stein field equations in 1915 [2]. A general feature in study-
ing rotational phenomena is the coordinate transformation
between inertial (non-rotating) and rotating observers. This is
not only a matter of convenience in using the right coordinates
but also a matter of getting the most plausible interpretation
for the measurements made by different observers and their
relations. It is expected that the relation between the spatio-
temporal measurements in the two frames (rotating and non-
rotating) should be different if one employs different kine-
matical transformations between them. Different kinematical
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transformations are also expected to result in spatially dif-
ferent flat spacetime metrics in the rotating observer’s frame.
The common practice in treating rotational phenomena is the
employment of the so-called Galilean rotational transforma-
tion (GRT) between the rotating and non-rotating frames.
Noting that in a rotating frame there are both inertial (cen-
tric) and non-inertial (eccentric) observers, one should be
cautious with the restrictions in applying GRT which is only
applicable to the former [3]. By the same token, its applica-
tion to eccentric observers is also questionable on the grounds
that for relativistic rotational velocities one requires a rela-
tivistic rotational transformation (RRT), very much in the
same way as Lorentz transformation replacing the Galilean
transformation among inertial frames at relativistic veloci-
ties. Proposals for an RRT date as far as back to the 1920s
and the introduction of the first relativistic rotational trans-
formation by Philip Franklin [4]. On the other hand the usual
approach to the study and analysis of physical phenomena
in accelerated frames (of which the uniformly rotating frame
is a special case), in flat and curved spacetimes, employs
the so-called hypothesis of locality [5–7]. This hypothesis
asserts that accelerated observers are instantaneously equiv-
alent to hypothetical inertial observers having the velocity
of the accelerated observer at each moment on its worldline.
Therefore to find the coordinate transformation between two
different positions of the accelerated observer on its world-
line, one uses Lorentz transformations between the corre-
sponding hypothetical inertial frames and a reference inertial
frame. For example, consider an observer at a given radius
on a uniformly rotating platform. The coordinates that this
observer assigns to an event at its two different rotational
positions A and B around the origin O is found by a Lorentz
transformation from the hypothetical inertial frame at A to
the central inertial frame O , followed by a Lorentz transfor-
mation from O to the hypothetical inertial frame at B. This
is the same process as which leads to the so-called Thomas
precession.
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Therefore to study physical phenomena in a uniformly
rotating eccentric observer’s frame and relate the measure-
ments in such a frame to those in an inertial frame, one can
either use an RRT or employ the hypothesis of locality and
the resultant coordinate transformation.

To emphasize once more the fundamental difference
between the two approaches, we note that at the heart of
the two approaches lie two different kinematical transforma-
tions. In the first approach, one uses an RRT, such as the mod-
ified Franklin transformation employed in the present study,
which is fundamentally different from LT. In the second
approach, the hypothesis of locality is employed, which is
based on consecutive Lorentz transformations among hypo-
thetical inertial observers which are instantaneously equiva-
lent to the accelerated one at each moment on its world line.

It should be noted that it is the implicit application of the
same hypothesis which leads to the so-called Fermi coordi-
nates and Fermi metric that an accelerated, spatially rotating
observer would assign to his/her reference frame [8]. It is
interesting to find that Fermi coordinates were introduced
in exactly the same year as the Franklin transformation was
introduced [9–11]. Our main goal here is to study these two
approaches and compare their predictions for the well known
rotational phenomena as measured by non-inertial rotating
observers. The plan of the paper is as follows. In the next
section we introduce the Fermi coordinates of an accelerated
spinning observer and in Sect. 3 the same coordinates are
used to find the Fermi metric in a rotating frame. In Sect. 4 the
modified Franklin transformation as an RRT, relating coordi-
nates of events in rotating and inertial (non-rotating) frames,
is introduced and the spacetime metric based on this trans-
formation is given in the rotating observer’s frame. In Sect. 5
both the transverse Doppler effect (TDE) and the Sagnac
effect, in a rotating observer’s frame, are studied compara-
tively by applying these two different approaches. In the same
section the relation between length measurements in rotating
and inertial frames will be discussed in both approaches. In
what follows Roman indices run from 1 to 3 while Greek ones
run from 0 to 3 and our metric signature is (−,+,+,+).

2 Accelerated, rotating observers and Fermi
coordinates

As pointed out in [8] “it is very easy to put together the
words” the coordinate system of an accelerated observer
“but it is much harder to find a concept these words might
refer to” and it gets even harder, at least conceptually, if one
wishes to extend it to accelerated observers in curved space-
times. One could assign a coordinate system to an acceler-
ated spinning observer, who carries an orthonormal tetrad,
both in flat and curved spacetimes. Although the formalism,
to first order in the spatial coordinates, looks the same in

flat and curved spacetimes, it should be noted that the main
difference is in the size of the region in which such a coor-
dinate system is applicable. In the case of flat spacetime it
could be applied to a region within a finite distance from the
observer, but in the case of curved spacetime it is restricted
to an infinitesimal neighborhood of the tetrad’s origin on the
observer’s world line over which the curvature is not felt.1 In
this approach setting the origin of the accelerated observer’s
frame (S) on the observer’s world line, the orthonormal tetrad
eμ(τ) (consisting of one timelike and three spacelike vectors)
carried by the observer is Fermi–walker transported2 and the
coordinate transformation between an inertial (Laboratory)
observer and the accelerated observer is given by [8]

x ′μ = xk[ek(τ )]μ + Zμ(τ), k = 1, 2, 3, (1)

in which τ is the observer’s proper time and Zμ(τ) is its
worldline relative to an inertial frame. x ′μ and xk are the
coordinates assigned to an event in the inertial frame (S′) and
in the accelerated observer’s local frame (S), respectively.
Now if the accelerated observer has also a spatial rotation, its
tetrad endowed with an angular velocity is not Fermi–Walker
transported along his worldline but is transported according
to the following rule:

d[eα]μ
dτ

= −�μν[eα]ν (2)

where α is the tetrad (Lorentz) index and

�μν = aμuν − aνuμ + uα�βεαβμν (3)

is composed of two parts, the first part made out of uμ and
aμ (i.e. the 4-velocity and 4-acceleration of the observer),
indicates the Fermi–Walker part while the second part (last
term in (3)), which includes the observer’s 4-rotation �μ,
denotes the spatial rotation. The first order expression for the
metric near the observer’s world line is given by the so-called
Fermi metric [9–11],

ds2 = −(1 + 2a′′
l xl)dx02 − 2(ε jkl x

k�′′l)dx0dx j

+ δi j dxi dx j, (4)

in which a′′ and �′′ are the observer’s acceleration and (spin)
rotation measured in a comoving inertial frame (S′′) whose
velocity is momentarily the same as that of the accelerating
observer. In [14] by extending this method to the second order
in xi , the metric in an accelerated spinning frame in curved
spacetime is derived as follows:

1 For general restrictions on possible extended reference frames for
accelerated observers refer to [12].
2 For a historical account on the Fermi coordinates and Fermi–Walker
transport refer to [13].
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ds2 = −dx02[1 + 2a′′
j x j + (a′′

l xl)2 + (�′′
l xl)2 − �

′′2xl x
l

+R0l0m xl xm] + 2dx0dxi
(

εi jk�
′′ j xk − 2

3
R0lim xl xm

)

+dxi dx j
(

δi j − 1

3
Ril jm xl xm

)
, (5)

which in flat spacetime reduces to

ds2 = −dx02[1 + 2a′′
l xl + (a′′

l xl)2 + (�′′
l xl)2 − �′′2xl x

l ]
+ 2dx0dxi (εi jk�

′′ j xk) + dxi dx jδi j . (6)

In [15,16], looking for a generalization of the Lorentz
transformation to the case of accelerated rotating observers
(with a time-dependent velocity), a nonlinear coordinate
transformation was introduced which, not only incorporates
the Thomas precession, but which also leads to the above
spacetime metric exactly. Two of the main properties of the
metric (6) are as follows [17,18]:
(I) In the absence of any linear acceleration (a = 0) this
metric (in Cartesian coordinates) reduces to

ds2 = −[c2 − (x2 + y2)�2]dt2 + dx2 + dy2

+ dz2 − 2y�dxdt + 2x�dydt, (7)

which is the Galilean rotational metric assigned to the flat
spacetime by an observer at r = 0 with constant angu-
lar velocity �. The same metric in cylindrical coordinates
(t, r, z, φ) is given by [19]

ds2 = −(c2 − r2�2)dt2 + dr2 + dz2 + r2dφ2

+2�r2dφdt. (8)

(II) In the absence of any spatial rotation (� = 0), as
expected, this metric reduces to the Rindler metric,

ds2 = −dx02[1 + 2a′′
j x j + (a′′l xl)2] + dxi dx jδi j , (9)

which is the metric of the flat spacetime in the proper frame
of a uniformly accelerated observer. Obviously in the case
that both a and � are zero, the observer would be a freely
falling one.

3 Uniformly rotating observers in Fermi coordinates

Having discussed the general case of an accelerated rotating
observer and the corresponding spacetime metric in the pre-
vious section, here we are interested in the particular case
of an observer who moves on a circular path such as the
one fixed on a uniformly rotating disk. Both in [17] (based
on the hypothesis of locality) and in [18] (based on the for-
mulation introduced in [15,16]), a coordinate transforma-
tion between such an observer and an inertial (laboratory)
observer has been introduced. In their setup the origin of
the rotating frame is on the circular path and oriented such

Fig. 1 Local coordinates of a rotating observer on a circular path with
axes x and y which are always along the radius of the path and tangent
to it, respectively

that its y-axis is always tangent to the circular path. Also
at t = 0 the axes of the inertial and rotating frames are
taken to be parallel (Fig. 1). Therefore as in the case of the
Fermi metric for an accelerated, rotating observer, the origin
of the rotating observer’s frame is on the observer’s world
line. Furthermore, the planar axes of the rotating observer’s
frame are always along the radius of the path and tangent to it
(Fig. 1). In this way the angular frequency of the observer’s
rotation about the inertial observer’s frame (O ′) would be
equal to the observer’s spinning frequency about the origin
of his local frame (O). This setup is automatically satisfied
in the case of a fixed observer on a uniformly rotating disk
with initially aligned axes. It may seem that this special case
reduces the generality of the problem, but it should be noted
that such a construction of frames is important as they are the
ones which are related to the real experimental setups such
as in the case of observers/detectors on the circumference of
a uniformly rotating disk. In [17] after introducing the cor-
responding tetrad for such an observer and using the same
method employed in obtaining the Fermi metric in [8], the
following coordinate transformation was introduced between
an inertial (primed) frame and a frame uniformly rotating
(unprimed) about it with angular velocity �:3

ct =γ −1(ct ′ − βγ y) x = x ′ cos(γ�t) + y′ sin(γ�t)−R

y = γ −1[−x ′ sin(γ�t) + y′ cos(γ�t)], z = z′, (10)

in which γ = (1 − β2)−1/2, β = R�
c , and R is the radius

of the circular path traversed by an eccentric observer, as
measured in an inertial observer’s frame. Note that at t = 0
we have x = x ′− R and y = γ −1 y′, which are in accordance
with the alignment of the local coordinates at that time as
shown in Fig. 1. By the above transformation the circular

3 To prevent any confusion it should be noted that up to now � rep-
resented the spinning angular velocity of a frame but hereafter it will
represent its orbital angular velocity. It should also be noted that in the
setup given in Fig. 1 (e.g. for a frame fixed on the rim of a rotating disk)
the two angular velocities have the same value.
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path x ′2 + y′2 = R2 in the inertial frame is an ellipse (x +
R)2 + γ 2 y2 = R2 with a contracted circumference (refer
to Sect. 5) in the rotating observer’s frame [20]. Using the
general Lorentz transformation introduced in [15,16] or the
orthonormal tetrad frame of a rotating observer, the inverse
of the above coordinate transformations is given in [18,20]
as follows:

⎛
⎜⎜⎝

ct ′
x ′
y′
z′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ 0 γ�R/c 0
0 cos(γ�t) −γ sin(γ�t) 0
0 sin(γ�t) γ cos(γ�t) 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ct
x
y
z

⎞
⎟⎟⎠

+R

⎛
⎜⎜⎝

0
cos(γ�t)
sin(γ�t)

0

⎞
⎟⎟⎠ . (11)

Using the differential form of the above coordinate trans-
formations and substituting them into the Minkowski metric
of the inertial observer, the line element in the rotating frame
is given by

ds2 = −γ 2[c2 − (R + x)2�2 − �2 y2]dt2 + dx2 + dy2

+dz2 − 2y�dxdt + 2x�dydt . (12)

Comparison with the general Fermi metric (6) reveals the
following 3-vectors [18]:

a
′′ l = (−γ 2 R�2, 0, 0), �′′l = (0, 0, γ 2�) (13)

as the observer’s acceleration and angular velocity measured
by the comoving inertial frame. In other words for an observer
with the above 3-acceleration and 3-angular velocity (6) con-
cludes (12). Since the acceleration is proportional to R, it
can be seen that at R = 0 (with x, y �= 0) the above metric
(12) reduces to the metric (7), which could be obtained by
applying the GRT to the flat spacetime metric of an inertial
observer in Cartesian coordinates. This is expected as the
transformation (10) itself reduces to GRT at R = 0. On the
other hand setting x = y = 0 (with R �= 0) in (12), i.e. at the
position of the rotating observer in its local frame, it reduces
to the Cartesian flat spacetime metric in accordance with the
characteristics of the Fermi metric.

The limitations in length measurements by a uniformly
rotating observer in this construction are discussed in [20].
Although the existence of a rotating disk is not considered
explicitly in the above construction of the Fermi metric, a
uniformly rotating observer as introduced here (with equal
spinning and orbiting angular frequencies) could be realized
in an experimental setup with a detector at a nonzero radius
on a uniformly rotating disk. As we will discuss later, this
is basically the experimental setup used to investigate trans-
verse Doppler effect as a rotational phenomenon.

4 Uniformly rotating eccentric observers and modified
Franklin transformation

In [3], looking for a consistent relativistic rotational trans-
formation between an inertial observer (frame S′) and an
observer at a nonzero radius (eccentric observer) on a uni-
formly rotating disk (frame S),4 the following modification
of the so-called Franklin transformation (in cylindrical coor-
dinates) was introduced:

t = cosh(�R/c)t ′ − R

c
sinh(�R/c)φ′; r = r ′

φ = cosh(�R/c)φ′ − c

R
sinh(�R/c)t ′; z = z′, (14)

in which � is the uniform angular velocity of the disk and
R is the radial position of the observer on the disk. Note that
the origin of the rotating frame S is chosen to be at the center
of the rotating disk so that both the inertial and the rotating
frames assign the same radial coordinate to an event (Fig. 2).
The corresponding metric in the rotating observer’s frame is
given by (β = �R

c ),

ds2 = −c2 cosh2 β

(
1 − r2

R2 tanh2 β

)
dt2 + dr2

+r2 cosh2 β

(
1 − R2

r2 tanh2 β

)
dφ2

−2cR sinh β cosh β

(
1 − r2

R2

)
dtdφ + dz2. (15)

As in the case of Franklin transformation, this is the
flat spacetime metric with non-Euclidean spatial sector. But
contrary to the spacetime metric obtained in the rotating
observer’s frame through Franklin transformation, it reduces
to the spacetime metric obtained via GRT in the limit β � 1,
i.e. close to the rotation axis [3] where the rotational veloc-
ity is non-relativistic. Also as in the case of Fermi metric, at
the position of the observer i.e., r = R, this metric reduces
to that of spatially Euclidean Minkowski metric in cylindri-
cal coordinates. To compare the above metric for a rotating
observer with that obtained for the same observer in Fermi
coordinates, we rewrite it in Cartesian coordinates as follows:

ds2 = −c2
[

cosh2 β − x2 + y2

R2 sinh2 β

]
dt2

+
[

x2

r2 +
(

cosh2 β − R2

r2 sinh2 β

)
y2

r2

]
dx2

+
[

y2

r2 +
(

cosh2 β − R2

r2 sinh2 β

)
x2

r2

]
dy2

− sinh2 β

(
1 − R2

r2

)
xy

r2 dxdy

4 Since here we are interested in the quantities from the rotating
observer’s perspective, the assignments of primed and unprimed frames
are opposite to that in [3].
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+2R sinh β cosh β

(
1

r2 − 1

R2

)
ydtdx

−2R sinh β cosh β

(
1

r2 − 1

R2

)
xdtdy + dz2. (16)

Since both metrics at the position of the observer reduce to the
spatially Euclidean flat spacetime metric, to compare them,
the above line element is expanded around the position of
the observer at (x0 = R, y0 = 0) (Fig. 2), leading to the
following nonzero components of the metric:

g00 = −1 + 2 sinh2 β

R
ξ1 + sinh2 β

R2 (ξ1
2 + ξ2

2),

g02 = 2 sinh β cosh β

R
ξ1

g11 = 1, g22 = 1 + −2 sinh2 β

R
ξ1, g33 = 1, (17)

in which ξi = (ξ1, ξ2) represents a small (Cartesian) dis-
placement from the position of the rotating observer at O .
By expanding sinh β and cosh β in (17) and also γ in (12)
to the second order in β = R�

c it can easily be seen that the
time–time components g00 in the two metrics agree (iden-
tifying ξi with xi = (x, y) in (12)) to the same order in β.
Consequently it is expected that the rotational effects origi-
nating from the time–time component of the metric in both
approaches lead to the same predictions up to the second
order in β = R�

c . This assertion will be examined in the next
section where we comparatively study rotational phenom-
ena from the perspective of inertial (non-rotating) observers
and eccentric (non-inertial) observers on a rotating platform,
employing the two approaches based on MFT and the hypoth-
esis of locality.

5 Application to rotational phenomena

In the last two sections we have introduced two differ-
ent kinematical transformations between an inertial frame
and a rotating non-inertial frame. They were based on the
hypothesis of locality (consecutive Lorentz transformations)
and an exact relativistic rotational transformation (modified
Franklin transformation) respectively. Consequently they led
to two different spatially non-Euclidean flat spacetime met-
rics in the rotating frame, with the same time–time com-
ponent to the second order in β = �R

c . To compare their
predictions, here we are going to study the application of
these transformations to rotational phenomena. In each case
we employ the transformations introduced in the two for-
malisms to obtain the relation between the physical quanti-
ties in the inertial (non-rotating) and rotating frames. These
are then expanded in terms of the parameter β = �R

c to
see how the results differ in the two formalisms from those
obtained through the classical (non-relativistic) treatment in

O

Y

Ω

X

P
(t ,   )φ
(t ,    )φ

r

φ

φ
X 

ξ

ξ

1

2

*

OR

Y 

Fig. 2 Inertial frame (X ′, Y ′) and the frame (X, Y ) of a centrally rotat-
ing observer which are always parallel to those used by the observer
O at the rim of a uniformly rotating disk with radius R. In cylindrical
coordinates, an event P has temporal and angular coordinates (t, φ) and
(t ′, φ′) in rotating and inertial frames, respectively

which GRT or its equivalent metric is used. In other words
the comparison is made between the results obtained in the
two relativistic approaches at the classical limit �R � c. It
should be emphasized again that although in the formalism
based on Fermi coordinates and/or hypothesis of locality, a
rotating disk or platform is not mentioned explicitly, but the
authors employ what they call “a rotating measuring device”
and the measurements are done in the comoving frame of this
device [20], which in principle could be mounted on a rotat-
ing platform at a nonzero radius. In what follows the results
of the measurements of such an observer/device are com-
pared with those based on MFT when we set r = R, that is,
in the comoving frame of an eccentric observer fixed at radial
distance R from the rotation axis on a rotating platform. In
other words one should note that, in general, the radial coor-

dinate of an event r =
√

x ′2 + y′2 could be different from
R, the position of an observer/device (Fig. 2). This distinc-
tion makes the limit R → 0 meaningful in the kinematical
interpretation of either of the transformations [3].

5.1 Transverse Doppler effect

The transverse Doppler effect is a direct consequence of the
time dilation in special relativity. In the simplest setup, an
observer moving on a rotating disk will measure the fre-
quency of a light signal sent from a centrally located source.
So to examine the effect of employment of a relativistic rota-
tional transformation or consecutive Lorentz transformations
based on the hypothesis of locality, one should examine the
relation between the time intervals in the inertial and rotating
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frames. In this regard, the relation between the time intervals
in an inertial observer’s frame and a uniformly rotating one in
the formalism based on the Fermi coordinates is given by the
first equation in (10). Looking at that equation it is clear that
the transverse Doppler effect in this approach is the same as
what one gets in the usual special relativistic treatment [21].
If the source and receiver are both on the rotating disk at radii
R1 and R2, respectively, the ratio of the emitted frequency to
that received is given by

ν1

ν2
= γ1

γ2
≈ 1 + �2

2c2 (R2
1 − R2

2)

+�4

c4

(
3

8
R4

1 − 1

8
R4

2 − 1

4
R2

1 R2
2

)
. (18)

On the other hand, using the same setup in the context of
the MFT, by the time transformation in (14) one arrives at
the following result:

ν1

ν2
= cosh β1

cosh β2
≈ 1 + �2

2c2 (R2
1 − R2

2)

+�4

c4

(
1

24
R4

1 − 5

24
R4

2 − 1

4
R2

1 R2
2

)
, (19)

which differs from the previous result in the third term which
is of fourth order in β = �R

c . This verifies our expectation
on the rotational effects related to the time–time component
of the metric in the rotating frame in the two formalisms. The
same result could also be obtained by using the corresponding
metric (15) in the rotating frame and noting that the proper
time at the position of an observer at r = R1 is given by

dτ1
2 = cosh−2 β1dt ′2, (20)

in which β1 = �R1
c and t ′ is the coordinate (proper) time

in the inertial observer’s frame. So for two observers fixed
at two different radii r = R1 and r = R2, the frequencies
measured in terms of their proper times are related by

ν1

ν2
≡ dτ2

dτ1
= cosh β1

cosh β2
. (21)

In either of the relations, (18) and (19), one could set
R1 = 0 and R2 = R0 (with R0 the radius of the rotating
disk) to find the frequency ratio for the case in which the
source and receiver are at the center and rim of the disk,
respectively, so that (18) and (19) reduce to

ν1

ν2
=

√
1 − R0

2�2

c2 ≈ 1 − �2

2c2 R0
2 − 1

8

�4

c4 R4
0 (22)

and

ν1

ν2
=

√
1 − tanh2 R0�

c
≈ 1 − �2

2c2 R0
2 − 5

24

�4

c4 R0
4, (23)

respectively. In this way one could observe that in the for-
malism based on MFT, the frequency ratio arises from the

same relation as in the special relativistic case but now with
the nonlinear velocity v = c tanh β replacing the classical
relation v = R0� [3]. Indeed the above configuration of the
source and receiver is the same as that in the original exper-
imental setups in which the Mössbauer effect was used to
verify the transverse Doppler effect [22,23]. For example,
taking into account many side effects such as the stretching
of the rotor, Kündig finds his experimental results to be in
agreement with the theoretical prediction based on a Lorentz
transformation and a linear velocity distribution v = r� (to
the second order in β) within 1 % error. Since the theoret-
ical predictions based on MFT agree with those based on
Lorentz transformations up to the second order in β, one
needs to carry out the same experiment (� = 35000 rpm,
R0 = 9.3 cm) with a precision of at least 1 part in 1014 to
find any deviations in the fourth order. For the treatment of
the same effect using an alternative RRT refer to [24].

5.2 Sagnac effect

Perhaps one of the most famous rotational effects is the so-
called Sagnac effect [25], in which an interferometer on a
rotating platform measures the effect of rotation on the phases
of counterrotating photon beams. For two such beams starting
at the same point on a rotating platform with uniform angular
velocity �, the difference in their arrival time to the initial
point, as measured in an inertial frame, is given by [26]:

�t ′ = 4π R2�

c2(1 − R2�2

c2 )
, (24)

which, in the Galilean limit β = �R
c � 1, expanded in terms

of β gives

�t ′ = 4π R2 �

c2 (1 + β2 + O(β4)), (25)

in which R is the radius of the circular path traversed by
the two beams. This time difference leads to a phase shift
δφ = 2πc�t

λ
[26]. The same effect could also be analyzed

classically from a rotating observer’s point of view by using
the fact that in such a frame the spacetime metric, although
flat, is in a stationary form given by the Galilean transformed
metric (8) which has a non-Euclidean spatial sector. It should
be noted that obviously in this context the rotating observer
is the centrally rotating one which is in principle an inertial
observer [3]. In the context of the 1+3 (or threading) formu-
lation of spacetime decomposition [27], it could be shown
that this non-Euclidean character is rooted in the cross term
of the corresponding stationary metric, and consequently the
synchronization along a closed path will lead to the follow-
ing time difference (desynchronization) on returning to the
departure point [3,19]:
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�t ′ = −1

c

∮
g0α

g00
dxα. (26)

In the case of the metric (8) and for a circular path of radius
R on a rotating disk, it reduces to

�t ′± = ± 1

c2

∮
�R2dφ

1 − �2 R2

c2

= ± 2π R2�

c2(1 − R2�2

c2 )
, (27)

in which the ± signs refer to the corotating and counter-
rotating paths. Obviously their difference leads to the same
relation (24). In this formulation the Sagnac effect and the
so-called clock effect [28] are treated as different manifes-
tations (null and timelike) of the desynchronization effect in
axisymmetric stationary spacetimes.

Using a simple instantaneous Lorentz transformation, one
can relate the above inertial time difference to that in the rest
frame of the non-inertial observer at radius R, as follows
[26]:

�t = γ −1�t ′, (28)

in which γ = 1√
1−β2

. To study this rotational effect in the

context of the formalism based on MFT, we use the time
transformation relation in (14) between the time intervals
of the two events corresponding to the arrival of the two
counterrotating light beams (departing at the same time t0 in
frame S) to the same point on the rotating disk,

�t = (t2 − t0) − (t1 − t0) = t2 − t1 = cosh β(t ′2 − t ′1)

− R

c
sinh β(ϕ′

2 − ϕ′
1), (29)

where in the inertial frame (S′) they arrive at different angular
positions (Fig. 2), that is,

ϕ′
2 − ϕ′

1 = �(t ′2 − t ′1) = ��t ′. (30)

So by substitution from (24) we have

�t = �t ′
(

cosh β − R�

c
sinh β

)
, (31)

which, in the Galilean limit β = �R
c � 1, leads to

�t = 4π R2�

c2

(
1 + β2

2
+ O(β4)

)
. (32)

For the calculation of the same effect in the formalism
based on the Fermi metric we use the relation between time
coordinates in the inertial frame and the rotating one, namely
Eq. (10), from which the time interval between the two events
(t1, y1 = 0) and (t2, y2 = 0) in the rotating frame is related
to that in the inertial observer’s frame as follows:

�t = γ −1�t ′, (33)

which is obviously the same as that obtained in (28). Substi-
tuting for the inertial time interval from (25) and expanding
in terms of β we end up with

�t = 4π R2 �

c2

(
1 + 1

2
β2 + O(β4)

)
. (34)

Comparison of Eqs. (32) and (34) shows that the two for-
malisms, as expected, agree up to the second order in β but
start to differ in the next order (fourth order in β).

For a possible experimental setup to measure this effect
one could think of an observer sitting on the equator of a
solid sphere (say Earth) rotating about its axis with angu-
lar velocity � which has a source and detector to send and
receive corotating and counterrotating light beams. Such an
observer would obviously be a non-inertial observer and the
two approaches mentioned above should be employed in
principle to predict the interference measurements. It should
be noted that in the case of an observer in the equator of
Earth, there would also be a general relativistic contribution,
rooted in the axisymmetric nature of the spacetime metric,
in this case that of Kerr weak field, produced by the sphere’s
(Earth’s) rotational inertia, which leads to the so-called grav-
itomagnetic clock effect [28]. This contribution being propor-
tional to the mass of the source is different from the kinemat-
ical effect discussed above and in principle distinguishable
from it [29]. Apart from the difficulty in measuring the fourth
order difference, there is a subtlety in measuring the Sagnac
effect in a non-inertial rotating observer’s frame, however.
This arises from the fact that unlike the measurement of the
transverse Doppler effect in which the angular velocity is an
input (as in Kündig experiment [23]), the Sagnac effect is
mostly used as a rotation sensor (in the inertial observer’s
frame) to measure (and/or control) the angular velocity of
the rotating platform on which the whole setup in mounted.
This is the case, for example in both optical-fiber and laser
ring interferometers used in navigation system gyroscopes
or in rotational seismometers [30–33]. So to examine the
above relation to the fourth order in β, one should try to
design an experimental setup in which a secondary effect,
originating from the time difference, such as the beat fre-
quency in a ring laser interferometry (whose period is lin-
early proportional to the angular velocity of the platform)
could be measured in both inertial and non-inertial frames of
reference [26].

5.3 Length measurement

The length measurements by accelerated observers and their
limitations in the formalism based on the hypothesis of local-
ity (and Fermi coordinates) are discussed in [20] and it is
shown that the arclength, subtended by angle � between two
uniformly rotating points on a circle of radius R (such that
β2 = R2�2

c2 � 1), as measured in the local frame of an
observer (frame S) in one of those points, is given by

l = 1√
1 − β2

[
1 − 3

4
β2

(
1 + sin 2� − 8 sin �

6�

)]
l ′, (35)
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in which l ′ = R� is the same arclength in an inertial/
laboratory observer’s frame (frame S′) who, in turn, assigns a
contracted length to it as compared to the arclength l ′′ = γ l ′
measured by a comoving inertial observer (frame S′′). Expan-
sion to the second order in β gives

l =
[

1 − 1

4
β2

(
1 + sin 2� − 8 sin �

2�

)]
l ′ + O(β4), (36)

which for small � (such that sin � ≈ �) reduces to

l =
(

1 + 1

2
β2

)
l ′ + O(β4), (37)

corresponding to length dilation. But when the circumference
(L) is found by setting � = 2π , the observer arrives at the
following relation in his local frame:

L =
(

1 − 1

4
β2

)
2π R + O(β4). (38)

In other words small arclengths are dilated in the rotating
frame but the whole path is contracted and this is so because
for comoving inertial observers the circular path is momen-
tarily an ellipse whose semi-minor axis is along the direction
of the observer’s motion (see Fig. 4 in [20]). But it should be
noted that the same observer, attached to a rotating disk, finds
his distance from the center of the disk to be always equal to
the instantaneous ellipse’s semi-major axis, which is equal to
the disk radius R, and hence on returning to the same point
(on the underlying spacetime) he finds that he has moved
on a circular path with circumference 2π R. This is consis-
tent with the flat spatial geometry the observer assigns to the
spacetime using the Fermi metric on his worldline (xl = 0
in (4) or x = y = 0 in (12)) [8]. This could be thought of
as another manifestation of the so-called Ehrenfest paradox
discussed in the literature [3].

Obviously in the above scenario one could take the two
points separated by the arclength, to be on the rim of a uni-
formly rotating disk of radius R. With this setup one can
use the formalism based on MFT to find the above discussed
relation between the arclength measurements by inertial and
rotating observers, both in the Galilean limit. This can be
obtained directly from the inverse angular transformation in
(14) by setting �t = 0 as follows:

l ′ ≡ Rdφ′ = cosh(β)Rdφ ≡ cosh(β)l, (39)

in which one can think of l as the small arclength subtended
by the rotating observer’s open feet. Expanding the above
relation to the second order in β we end up with

l =
(

1 + 1

2
β2

)
l ′ + O(β4), (40)

which compared to (37) shows that, to the second order in β,
the two formalisms agree on the relation between the small

arclengths as measured by the rotating (non-inertial) and iner-
tial observers, and the difference shows up at the fourth order.

To calculate the circumference of the disk, the rotating
observer finds the following relation between his measure-
ment and that of the inertial observer:

L =
(

1 + 1

2
β2

)
2π R + O(β4). (41)

In other words, contrary to the relation (38), employing
MFT the rotating observer finds that the circumference of the
path (disk) is dilated.

On the other hand, again on the observer’s world line,
i.e. at r = R, the spacetime metric in (15) reduces to the
Euclidean metric and consequently the circumference of the
disk is found to be 2π R. In other words using the spacetime
metric on the observer’s world line, both formalisms give
the same value 2π R for the disk circumference but different
values if the corresponding transformations are applied. This
shows that the discussion of the length measurements, in
both formalisms, is further complicated by the inclusion of
Ehrenfest’s paradox [3].

6 Discussion

In the present article first we introduced two fundamentally
different approaches to the study of rotational phenomena
as measured by non-inertial rotating observers. The first
approach employs consecutive Lorentz transformation on the
basis of the so-called hypothesis of locality in which an accel-
erated observer (frame) is taken to be instantaneously equiv-
alent to inertial observers (frames) which have the velocity
of the accelerated frame at each moment on its worldline.
Applying it to the special case of rotational acceleration (e.g.
on a rigidly rotating disk) one arrives at the coordinate trans-
formations given by (10). This is, in essence, special rela-
tivity (and local Lorentz transformations) applied to rotat-
ing frames in which the velocity distribution is given by the
classical relation v = r�. In the second approach a kine-
matical transformation between inertial and rotating frames
was given by introducing a relativistic rotational transfor-
mation, called MFT, which is intrinsically different from the
Lorentz transformation which only applies to inertial frames
at uniform relative motion. The main characteristic of this
approach is the introduction of a nonlinear velocity distribu-
tion v = c tanh r�

c on a uniformly rotating platform.
Two well known rotational effects, the transverse Doppler

effect and the Sagnac effect, were studied in the Galilean limit
(β � 1) in both formalisms to find how their predictions on
the relation between the quantities measured by inertial and
rotating observers differ from one another. It should be noted
that the rotational effects discussed are not just the artifact of
coordinates and their differences, since in both formalism a
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unique setup was analyzed in which a non-inertial observer
at nonzero radius on a uniformly rotating disk is involved in
the measurements.

In both effects the difference in the predicted relation
between the quantities measured by inertial on rotating
observers starts at the fourth order in β. The agreement
between the predictions in the two formalisms, up to the
second order in β, was expected from the fact that the time–
time components of the corresponding metrics (in the rotat-
ing frame) in both formalisms were equal up to the same
order in β. Indeed since our results and those of Mashhoon
et al. agree up to the second order in β, the precision of
the experiments carried out on rotating platforms are still far
from showing deviations which could differentiate between
the two formalisms.

Also the lifetime (energy) of an orbiting unstable particle
fixed at nonzero radius on a rigidly rotating disk, measured
by a comoving eccentric observer, and its lifetime (energy)
measured in the inertial observer’s frame, could be related
through MFT. Again, up to the second order in β = R�/c, it
is found to be in agreement with the relation obtained through
the application of instantaneous Lorentz transformation [3].
But one should be cautious and differentiate between the
experiments carried out on rotating platforms (e.g. a rigidly
rotating disk), and those on forced circular orbits such as in
the CERN Muon storage ring in which the lifetimes of muons
have been measured [34].

In the measurements of small arclengths, again the two
formalisms agree up to the second order in β and differ at
the fourth order and higher. The two approaches disagree
on the relation between the circumference of the circular
path as measured by an inertial observer and a rotating one
at nonzero radius. Measurements of the rotating observer
compared to the inertial one imply a contraction of the cir-
cumference in the formalism based on the Fermi metric and
dilation in the formalism based on MFT. All this is true if one
avoids discussing Ehrenfest’s paradox, by only working with
the coordinate transformations and not their corresponding
spatial metrics (geometries). If on the other hand one uses
the spacetime metric on the observer’s world line, the two
approaches lead to the same value 2π R for the circumfer-
ence of the disk. In other words, once again we face Ehren-
fest’s paradox which further complicates the discussion of
the length measurements in both formalisms [3].
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