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Abstract 

Background:  Estimated plasma volume status (ePVS) has been reported that associated with poor prognosis in 
heart failure patients. However, no researchinvestigated the association of ePVS and prognosis in patients with acute 
myocardial infarction (AMI). Therefore, we aimed to determine the association between ePVS and in-hospital mortality 
in AMI patients.

Methods and results:  We extracted AMI patients data from MIMIC-III database. A generalized additive model and 
logistic regression model were used to demonstrate the association between ePVS levels and in-hospital mortality in 
AMI patients. Kaplan–Meier survival analysis was used to pooled the in-hospital mortality between the various group. 
ROC curve analysis were used to assessed the discrimination of ePVS for predicting in-hospital mortality. 1534 eligible 
subjects (1004 males and 530 females) with an average age of 67.36 ± 0.36 years old were included in our study 
finally. 136 patients (73 males and 63 females) died in hospital, with the prevalence of in-hospital mortality was 8.9%. 
The result of the Kaplan–Meier analysis showed that the high-ePVS group (ePVS ≥ 5.28 mL/g) had significant lower 
survival possibility in-hospital admission compared with the low-ePVS group (ePVS < 5.28 mL/g). In the unadjusted 
model, high-level of ePVS was associated with higher OR (1.09; 95% CI 1.06–1.12; P < 0.001) compared with low-level 
of ePVS. After adjusted the vital signs data, laboratory data, and treatment, high-level of ePVS were also associated 
with increased OR of in-hospital mortality, 1.06 (95% CI 1.03–1.09; P < 0.001), 1.05 (95% CI 1.01–1.08; P = 0.009), 1.04 
(95% CI 1.01–1.07; P = 0.023), respectively. The ROC curve indicated that ePVS has acceptable discrimination for pre-
dicting in-hospital mortality. The AUC value was found to be 0.667 (95% CI 0.653–0.681).

Conclusion:  Higher ePVS values, calculated simply from Duarte’s formula (based on hemoglobin/hematocrit) was 
associated with poor prognosis in AMI patients. EPVS is a predictor for predicting in-hospital mortality of AMI, and 
could help refine risk stratification.
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Introduction
Acute myocardial infarction (AMI) is the most severe 
coronary artery disease and the leading cause of mor-
tality worldwide, which accounts for almost 1.8 million 
annual deaths in Europe [1], and the estimated annual 
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incidences of new and recurrent MI events in America 
are 0.55 million and 0.2 million events, respectively [2]. 
Although annual in-hospital mortality of AMI in Japan 
was decreased from 5.8% in 2006 to 5.2% in 2016 after 
adjusted age, this improvement was very slight [3]. 
How to reduce the in-hospital mortality of AMI further 
remains a problem that needs to be solved urgently. Dur-
ing the hospitalization of patients with AMI, fluid vol-
ume management is easy to overlook but an extremely 
important treatment strategy. However, whether the 
association between plasma volume (PV) and in-hospital 
mortality in AMI patients remains unclear, and there is 
no relevant research report until now.

Direct quantification of PV has been testified to have 
clinical utility to reveal volume overload severities in 
chronic heart failure (HF) patients, however, this meth-
odology was not easy for clinicians to obtain [4]. Most 
hemodialysis devices use hematocrit to monitor volume 
during the hemodialysis process, but this method was 
relatively rough for assessing PV status [5]. Recently, 
Duarte et al. proposed a simple formula based on hema-
tocrit and hemoglobin to estimate the plasma volume 
status [6]. A subsequent study confirmed that this for-
mula has an acceptable fitness to the actual plasma vol-
ume state, which is measured by 125-I human serum 
albumin (concordance index 0.6, P < 0.01) [7]. In addition, 
Kobayashi et al. indicated that ePVS derived from Duarte 
formula was significantly associated with echocardio-
graphic parameters of chronic HF patients [8].

Considering that PV status has essential value for the 
subsequent fluid volume management of AMI patients 
during the hospitalization, we aim to determine whether 
PV status derived from Duarte formula at hospital admis-
sion was associated with in-hospital mortality in AMI 
patients.

Methods
Data source
The primary data of our study was derived from MIMIC-
III database. MIMIC-III database is an extensive and 
single-center database, constructed by Institutional 
Review Boards (IRB) of the Massachusetts Institute of 
Technology (MIT, Cambridge, MA, America) and Beth 
Israel Deaconess Medical Center. It contained more than 
50,000 hospital patients admitted to intensive care units 
between 2001 and 2012 [9]. One of our authors (C.J, cer-
tification ID: 8979131) gained permission to documented 
the database after online training at the National Insti-
tutes of Health (NIH).

Population selection
We included patients (aged > 18  years old) diagnosed 
with AMI at hospital admission by the International 

Classification of Diseases (ICD)-9 diagnosis codes 
between 410.00 and 410.52 in the MIMIC-III database. 
The diagnostic criteria of AMI were typical symptoms 
(defined as chest pain or dyspnea for < 6  h) and either 
ischemic changes on electrocardiography or elevated car-
diac troponin on admission [10]. The exclusion criteria 
were: (I) Multiple admissions; (II) Missing survival out-
come data; (III) During pregnancy and the postpartum 
period; (IV) Duration of hospital stay < 24 h; (V) Incom-
plete or unobtainable documented or other vital medi-
cal data records; (VI) Missing hemoglobin, hematocrit, 
weight, and height data.

Clinical and laboratory data
Patients’ baseline characteristics (age, height, weight, 
diabetes history, hypertension history, liver disorders 
history, renal failure history) were collected. BMI was 
calculated as weight (kg) divided by height2 (m2). The 
first document of vital signs data and laboratory tests 
data of patients with AMI admitted to the hospital were 
extracted. Vital signs data included body temperature 
(T), systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), mean blood pressure (MBP), heart rate (HR), 
respiratory rate (RR), pulse oximetry derived oxygen 
saturation (spo2). Laboratory tests data included creati-
nine, anion gap, PH, blood urea nitrogen (BUN), chlo-
ride, glucose, hemoglobin, hematocrit, white blood cell 
count, platelet count, serum potassium, serum sodium, 
and activated partial thromboplastin time (APTT). 
Therapy included the use of vasoactive drugs (norepi-
nephrine), percutaneous coronary intervention (PCI), 
coronary bypass graft surgery (CABG), and continuous 
renal replacement therapy (CRRT) during the hospitali-
zation were also recorded. The simplified acute physiol-
ogy score II (SAPSII) [11] and sequential organ failure 
assessment (SOFA) score [12] were also calculated for 
each patient. The endpoint of our study was in-hospital 
mortality which was defined as survival status at hospital 
discharge.

Estimated plasma volume status equations
Two formulas were introduced to calculate the ePVS. The 
Duarte formula included hematocrit and hemoglobin as 
follows: ePVS (mL/g) = 100 × (1-hematocrit)/hemoglobin 
(g/dL) [6]. The Hakim formula was derived from hemato-
crit and dry body weight using the following equations. 
Actual plasma volume: (1-hematocrit) × (a + b × body 
weight in kg). Ideal plasma volume = c × body weight 
in kg. ePVS = [(actual plasma volume-ideal plasma vol-
ume)/ideal plasma volume] × 100 (males: a = 1530, 
b = 41.0, c = 39; females; a = 864, b = 47.9, c = 40) [13].
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Statistical analysis
Severe data (more than 20% data) missing was aban-
doned, and acceptable data missing was conducted with 
the multiple imputation [14]. The generalized additive 
model (GAM) was used to demonstrate the relation-
ship between ePVS and all-cause hospital mortality, then 
select the cut-off value of ePVS according to the GAM 
for grouping. Continuous variables that exhibited a nor-
mal distribution were documented as the mean ± stand-
ard deviation (SD). Otherwise, they were documented 
as medians with upper and lower quartiles. Categorical 
variables were documented as frequencies with percent-
ages. Groups comparison were pooled using the t-test or 
Wilcoxon rank-sum test for continuous variables, and the 
chi-square test or Fisher’s exact test for categorical vari-
ables. Kaplan–Meier survival analysis was used to pooled 
the difference of in-hospital mortality between the vari-
ous groups and analyzed by Log-rank test. Variables 
based on epidemiological and laboratory test indicators 
may exist potential confounders [15]. Thus, three logis-
tic regression models were introduced to adjusted those 
potential confounders. In the model I, covariates were 
mainly adjusted for vital signs data (age, gender, MBP, 
spo2) and comorbidities (hypertension, renal failure). In 

the model II, covariates were mainly adjusted for labora-
tory data (creatinine, PH, Glucose) based on the model 
I. In the model III, covariates were mainly adjusted for 
treatments (PCI, CRRT, CABG) based on the model II. 
Subgroup analysis of the association between ePVS and 
in-hospital mortality was performed using stratified 
logistic regression models. The discrimination of ePVS 
for in-hospital mortality was assessed by receiver operat-
ing characteristic (ROC) curve analysis. The area under 
the curve (AUC) of the ROC curve more than 0.7 was 
regarded as good discrimination, 0.65–0.70 represented 
acceptable discrimination. These results were expressed 
as odds ratio (OR) with 95% confidence intervals (CIs). 
All tests were 2-tailed tests, and P ≤ 0.05 was considered 
statistically significant. Statistical analyses were per-
formed using R version 3.6.3 (R Foundation for Statistical 
Computing, Vienna, Austria).

Results
The characteristics of ePVS
The distribution of ePVS was displayed in Fig.  1. The 
value of ePVS appeared skewed distribution and mainly 
concentrated in the range of 4–7  mL/g. The relation-
ship between admission ePVS level and in-hospital 

Fig. 1  Distribution of ePVS in the entire study. ePVS: estimatedplasma volume status
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mortality was nonlinear; higher ePVS was associated with 
increased in-hospital mortality; however, the mortality 
was not significantly increased when ePVS ≥ 5.28  ml/g, 
as shown in Fig. 2. In the study patients, ePVS was higher 
in female than the male with a significant difference 
(Fig. 3A). Compared with patients who undergo PCI, the 
patients who have not performed PCI showed a higher 
ePVS (Fig. 3B). The relationship between age and admis-
sion ePVS level showed that ePVS level increased signif-
icantly with age when age under 75  years old (Fig.  3C). 
Higher BMI tend to be associated with a lower level of 
ePVS (Fig. 3D).

The characteristics of study patients
Totally, 1534 eligible patients (1004 males and 530 
females) with an average age of 67.36 ± 0.36  years old 
were included in our study finally, more details about 
the data extraction process and missing data as shown in 
Additional file 1: Tables S1 and S2. 136 patients (73 males 
and 63 females) died in hospital, with the prevalence of 
in-hospital mortality was 8.9%. Patients were divided into 
two groups according to the GAM for ePVS and in-hos-
pital mortality (the cut-off value of ePVS was 5.28 mL/g). 
The baseline characteristics of these patients were 
summarized in Table  1. The mean age for lower ePVS 
(ePVS < 5.28 mL/g) and higher ePVS (ePVS ≥ 5.28 mL/g) 
was 60.75 ± 0.59 and 70.28 ± 0.42  years old (P < 0.001). 
Patients with higher ePVS presented higher BUN level, 
higher creatinine level, higher SAPSII scores, and higher 
SOFA scores. The use of norepinephrine (17.99% vs. 
5.48%) and CRRT (5.96% vs. 0.60%) were also more 

common in the higher-ePVS group than the lower-ePVS 
group. While, the higher ePVS group showed a lower 
SBP, DBP, BMI, glucose, and WBC count. In terms of sur-
gical intervention, higher ePVS patients tend to undergo 
CABG (22.29% vs. 5.48%), however, lower ePVS patients 
tend to undergo PCI (82.0% vs. 33.53%). Also, patients 
with higher ePVS have a longer ICU and hospital stay 
than patients with the lower ePVS group.

EPVS levels and all‑cause in‑hospital mortality of AMI
In the unadjusted logistic regression model, high-level of 
ePVS (ePVS ≥ 5.28 mL/g) were associated with higher in-
hospital mortality (OR 1.15; 95% Cl 1.09–1.22; P < 0.001) 
compared with low-level of ePVS (ePVS < 5.28  mL/g). 
We used three logistic regression models to determine 
the association between ePVS and in-hospital mor-
tality in AMI patients after adjusted other confound-
ing factors (Table  2). In model I, high-level of ePVS 
(ePVS ≥ 5.28  mL/g) was associated with increased risk 
of in-hospital mortality after adjusting vital signs data 
and comorbidities (OR 1.06; CI 1.03–1.10; P < 0.001). In 
model II, covariates were adjusted for laboratory data 
(creatinine, PH, Glucose) based on model I, high-level of 
ePVS also showed a significantly higher in-hospital mor-
tality risk (OR 1.05; CI 1.01–1.08; P = 0.009). In model 
III, covariates were adjusted for treatments (PCI, CRRT, 
CABG) based on model II. The in-hospital mortality 
risk was also significantly higher in the high-ePVS group 
(OR 1.04; CI 1.01–1.07; P = 0.023). The survival curve 
for patients with different ePVS (ePVS ≥ 5.28  mL/g and 
ePVS < 5.28 mL/g) groups was shown in a Kaplan–Meier 
analysis plot in Fig.  4. The result showed that the high-
ePVS group had lower survival possibility during the 
hospitalization than the low-ePVS group, which reached 
statistical differences (log-rank test: P = 0.0063).

Subgroup analyses
Among these strata, we observed that patients with 
higher ePVS had significantly higher in-hospital mortal-
ity in the PCI group (OR 1.08; CI 1.04–1.11; P < 0.001), 
the male group (OR 1.09; CI 1.06–1.12; P < 0.001), 
the absence of CRRT group (OR 1.08; CI 1.05–1.11; 
P < 0.001), and the absence of norepinephrine use group 
(OR 1.04; CI 1.02–1.07; P < 0.001). In the no-CABG 
group, patients with higher ePVS values were also associ-
ated with higher in-hospital mortality (OR 1.11; CI 1.07–
1.14; P < 0.001) compared with lower ePVS value group. 
More details as seen Table 3.

The discrimination of ePVS for in‑hospital mortality
The area under the curve (AUC) was 0.667 (95% CI 
0.653–0.681) for Duarte-derived ePVS and 0.652 (95% 
CI 0.641–0.663) for Hakim-derived ePVS, it indicated 

Fig. 2  Cubic spline plot of relation of ePVS to risk of inpatient 
mortality. The model is fitted using restricted cubic splines with four 
knots in the generalized additive model. The ordinate represents 
log (RR) of in-hospital mortality. The abscissa represents the level 
of ePVS. The solid line represents the relationship between log (RR) 
of in-hospital mortality and admission ePVS level, and shaded area 
represents the 95% CI. When the log (RR) is 0, the corresponding ePVS 
level is used as the cut-off value. ePVS: estimated plasma volume 
status
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that ePVS have an acceptable discrimination for predict-
ing in-hospital mortality of AMI patients (Fig. 4). SOFA 
score was considered the best forecast scoring criteria for 
the in-hospital mortality of ICU patients [12]. The area 
under the curve (AUC) was 0.824 (95% CI 0.789–0.859) 
for the SOFA score (Fig. 5).

Discussion
Our study demonstrated a “M-shaped” relationship 
between admission ePVS and in-hospital mortality 
among patients with AMI. The total in-hospital mortality 
was 8.9% in our study, which was similar to Yamamoto 
et al. study (5.2%) [3]. The present study investigated the 
relationship between Duarte-derived ePVS and prog-
nostic of patients with AMI. Our main findings were: (1) 
higher-level of ePVS was independently associated with 
a higher risk of in-hospital death of patients with AMI; 
(2) Patients with higher-level ePVS have a significantly 
lower survival possibility during hospitalization than 
the patients with lower-level ePVS; (3) Duarte-derived 
ePVS and Hakim-derived ePVS have the similar accu-
racy for predicting in-hospital death of AMI patients; 

(4) Duarte-derived ePVS is also a promising biomarker 
for predicting in-hospital death of AMI patients who 
undergo PCI.

Previous researches have confirmed that ePVS derived 
from hemoglobin and hematocrit was independently 
associated with cardiovascular outcomes, rehospitaliza-
tion, and death in acute or chronic HF [16–18]. Fudim 
et  al. [19] reported that PVS was associated with in-
hospital outcomes in decompensated HF. Duarte-ePV, 
trended towards an association with early decompen-
sated HF clinical outcomes. Lin et  al. [20] higher ePVS 
remained significantly associated with increased rate 
of primary outcome in chronic systolic HF (adjusted 
HR 1.567, 95% CI 1.267–1.936; P < 0.001). Two studies 
confirmed the clinical value of ePVS for predicting the 
prognosis of patients with fever [21], and the progno-
sis of patients with acute dyspnoea [22]. To our knowl-
edge, there was only one study discuss the ePVS in AMI 
patients up to now. Maznyczka et  al. found that higher 
ePVS (derived from Hakim formula) was associated 
with a worse prognosis of AMI patients who undergoing 
CABG, and the ePVS could help refine risk stratification 

Fig. 3  Comparison between different groups for ePVS. A the comparison of distribution differences of ePVS between man and women, B the 
comparison of distribution differences of ePVS between PCI group and NO-PCI group, C the comparison of distribution differences of ePVS among 
multiple ages, D the comparison of distribution differences of ePVS among multiple BMI
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for AMI patients who received CABG (AUC of ROC 
analysis:0.66, 95% CI 0.58–0.74, P < 0.001) [23]. How-
ever, our study showed that ePVS is a good biomarker 
for AMI patients’ prognosis after PCI rather than CABG. 
The insufficient sample size of CABG group patients in 
our study may be the major factor for the insignificant 
results. We found that Duarte-derived ePVS ≥ 5.28 mL/g 
is a risk factor for in-hospital death. After adjusted other 
influence factors, ePVS levels ≥ 5.28  mL/g were also 
linked to a 2–8% increased risk of 30-Day mortality and 
5–1% increased risk of in-hospital mortality. Our findings 
outline certain underlying features of plasma volume that 
have not been previously addressed. Estimated plasma 
volume status was closely related to age. The elderly 
tend to present higher ePVS. Moreover, our study found 
that ePVS calculated by Duarte formula or calculated by 
Hakim formula have the similar accuracy for predicting 
in-hospital mortality of AMI patients. Compared with 
ePVS calculated by Hakim formula, Duarte-derived ePVS 
is easier to obtain just complete from the routine blood 
test. Therefore, Duarte-derived ePVS could become a 
quick and useful prognostic tool in patients with AMI.

The interpretation of high PV load state associated with 
the poor prognosis of AMI is currently unclear. Several 
potential interpretation should be taken into account. 
Coronary atherosclerotic heart disease patients with 
higher levels of ePVS may be accompanied by excessive 
activation of the renin–angiotensin–aldosterone system. 
Excessive neurohormones activation will cause water 
and sodium retention, leading to hemodynamic conges-
tion and extravascular edema [16, 24, 25]. Furthermore, 
the excessive activation of the renin–angiotensin–aldos-
terone system would result in cardiac remodeling, 
which diminished cardiac function [26]. The oxygen 
supply–demand imbalance was the fundamental patho-
physiology of AMI [27]. Reducing myocardial oxygen 
consumption (MVO2) during AMI restored the myocar-
dial oxygen supply–demand balance in the presence of 
reduced supply and resulted in the reduction of infarct 
range [28]. Left ventricular (LV) mechanical work and 
heart rate were significant determinants of MVO2 [29]. 
In our study, the higher-level of ePVS group presented a 
higher heart rate (82.35 ± 0.48 vs. 76.93 ± 0.59, P < 0.001) 
compared with the lower-level of ePVS group. Thus, 
higher-level of ePVS means increased MVO2. Once AMI 
occurs, high PV load leads to increased myocardial oxy-
gen consumption, progressive ventricular dilatation, 
and increased wall stress, which can exacerbate myocar-
dium ischemia. On the other hand, higher levels of ePVS 
may be a manifestation of disease severity. Recently, the 
PARADISE registry study, which enrolled 1369 patients 
admitted for acute dyspnoea in the emergency depart-
ment, found that ePVS values greater than 5.12  mL/g 

Table 1  The characteristic of included subjects between 
different ePVS levels

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, 
MBP mean blood pressure, SPO2 Percutaneous oxygen saturation, BUN blood 
urea nitrogen, APTT activated partial thromboplastin time, WBC white blood 
cell, CRRT​ continuous renal replacement therapy, SOFA sequential organ failure 
assessment, SAPSII simplified acute physiology score II, PCI percutaneous 
coronary intervention, CABG coronary artery bypass grafting, ICU intensive care 
unit, HOS hospital, LOS long-term of stay

Characteristic Q1 (n = 511) Q2 (n = 1023) P value

Age (years old) 60.75 ± 0.59 70.28 ± 0.42  < 0.001

Man 443 (86.69%) 561 (54.83%)  < 0.001

BMI 29.62 ± 0.26 27.16 ± 0.17  < 0.001

Anion gap 13.29 ± 0.10 13.17 ± 0.10 0.390

SBP 116.38 ± 0.31 110.68 ± 0.45  < 0.001

DBP 66.72 ± 0.40 58.55 ± 0.29  < 0.001

MBP (mmHg) 82.30 ± 0.41 76.04 ± 0.29  < 0.001

Heart rate (beats/minute) 76.93 ± 0.59 82.35 ± 0.48  < 0.001

Respiratory rate (beats/minute) 18.28 ± 0.13 18.38 ± 0.11 0.6572

Temperature (°C) 36.78 ± 0.02 36.83 ± 0.02 0.215

SPO2 (%) 96.98 ± 0.10 97.54 ± 0.05  < 0.001

Comorbidities, n (%)

Diabetes 116 (22.70%) 270 (26.39%) 0.246

Hypertension 177 (34.64%) 489 (47.80%) 0.002

Liver disease 12 (2.35%) 29 (2.83%) 0.708

renal_failure 18 (3.52%) 126 (12.32%)  < 0.001

Laboratory parameters

BUN (mg/dL) 16.03 ± 0.31 21.02 ± 0.65  < 0.001

Bicarbonate 22.88 ± 0.15 21.54 ± 0.13  < 0.001

Creatinine (umol/L) 0.91 ± 0.02 1.23 ± 0.04  < 0.001

Chloride (mmol/L) 102.41 ± 0.17 102.69 ± 0.15 0.272

Glucose (mg/dL) 132.54 ± 2.00 119.33 ± 1.27  < 0.001

Hematocrit (%) 38.74 ± 0.12 28.77 ± 0.15  < 0.001

Hemoglobin (g/dL) 13.54 ± 0.04 9.84 ± 0.05  < 0.001

Platelet (109/L) 223.66 ± 3.09 206.27 ± 2.93  < 0.001

PH 7.34 ± 0.004 7.32 ± 0.003  < 0.001

Potassium (mmol/L) 3.75 ± 0.02 3.74 ± 0.02 0.595

APTT (seconds) 37.40 ± 1.06 36.75 ± 0.62 0.474

Sodium (mmol/L) 137.06 ± 0.13 135.79 ± 0.13  < 0.001

WBC (109/L) 11.66 ± 0.19 10.56 ± 0.14  < 0.001

Scoring systems

SOFA 2.13 ± 0.10 4.01 ± 0.10  < 0.001

SIRS 2.36 ± 0.05 2.89 ± 0.03  < 0.001

LODS 2.33 ± 0.03 3.96 ± 0.09  < 0.001

SAPSII 26.00 ± 0.49 32.95 ± 0.56  < 0.001

Treatment

norepinephrine 28 (5.48%) 184 (17.99%)  < 0.001

CRRT, n (%) 3 (0.60%) 61 (5.96%)  < 0.001

PCI 419 (82.0%) 343 (33.53%)  < 0.001

CABG 28 (5.48%) 228 (22.29%)  < 0.001

ICU LOS, days 2.94 ± 0.19 4.86 ± 0.23  < 0.001

HOS LOS (days) 5.23 ± 0.22 8.92 ± 0.29  < 0.001

HOS mortality, n (%) 16 (3.13%) 120 (11.73%)  < 0.001

30-day mortality, n (%) 24 (4.70%) 146 (14.27%)  < 0.001
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presented an adjusted odds ratio of 1.47 (95% CI 1.04–
2.09, P = 0.029) for in-hospital mortality [22]. Marawan 
et  al. [30] study showed that high ePVS was associated 

Table 2  EPVS levels and all-cause in-hospital mortality of AMI

Model I adjusted for: age, gender, mean blood pressure, SPO2, hypertension, renal failure

Model II adjusted for: Model I add creatinine, PH, Glucose

Model III adjusted for: Model II add CRRT, PCI, CABG

Variable Unadjusted model Model I Model II Model III

HR (95% CIs) P value HR (95% CIs) P value HR (95% CIs) P value HR (95% CIs) P value

In-hospital mortality

ePVS

Q1 1.0 (ref ) 1.0 (ref ) 1.0 (ref ) 1.0 (ref )

Q2 1.09 (1.06–1.12)  < 0.001 1.06 (1.03–1.10)  < 0.001 1.05 (1.01–1.08) 0.009 1.04 (1.01–1.17) 0.023

30 Day mortality

ePVS

Q1 1.0 (ref ) 1.0 (ref ) 1.0 (ref ) 1.0 (ref )

Q2 1.10 (1.06–1.12)  < 0.001 1.06 (1.02–1.10) 0.002 1.04 (1.00–1.07) 0.047 1.03 (0.99–1.07) 0.105

Fig. 4  Kaplan–Meier survival curve for ePVS stratified by 
optimal cut-off. The result showed that the high-ePVS group 
(ePVS ≥ 5.28 mL/g) had lower survival possibility during the 
hospitalization than the low-ePVS group (ePVS < 5.28 mL/g), which 
reached statistical differences (log-rank test: P = 0.0063). ePVS: 
estimatedplasma volume status

Table 3  Subgroup analysis of the relationship between ePVS 
and all-cause in-hospital mortality

BMI body mass index, MBP mean blood pressure, CRRT​ continuous renal 
replacement therapy, PCI percutaneous coronary intervention, CABG coronary 
artery bypass grafting

Characteristic N Q 1 (Ref) Q 2

OR (95% CI) P value

Age (years old)

 < 65 703 Ref 1.07 (1.04–1.10)  < 0.001

 ≥ 65 831 Ref 1.08 (1.02–1.14) 0.010

Gender

Male 1008 Ref 1.09 (1.06–1.12)  < 0.001

Female 526 Ref 1.05 (0.97–1.15) 0.209

BMI, kg/m2

 < 27 723 Ref 1.09 (1.03–1.14) 0.002

 ≥ 27 811 Ref 1.09 (1.05–1.13)  < 0.001

MBP, mmHg

 < 75 619 Ref 1.07 (1.00–1.15) 0.049

 ≥ 75 915 Ref 1.08 (1.04–1.11)  < 0.001

PCI

Yes 987 Ref 1.08 (1.04–1.11)  < 0.001

NO 547 Ref 1.07 (0.99–1.16) 0.070

CABG

Yes 256 Ref 1.06 (0.97–1.15) 0.196

NO 1278 Ref 1.11 (1.07–1.14)  < 0.001

CRRT​

Yes 64 Ref 1.03 (0.58–1.81) 0.925

NO 1470 Ref 1.08 (1.05–1.11)  < 0.001

Norepinephrine

Yes 212 Ref 1.10 (0.91–1.33) 0.335

NO 1322 Ref 1.04 (1.02–1.07)  < 0.001
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with an increased risk of all-cause death, with a hazard 
ratio of 1.29 (95% CI 1.24–1.25, P < 0.001), this results 
was similar to our findings. In our study, the higher-level 
of ePVS patients gained higher SAPSII (32.95 ± 0.56 vs. 
26.00 ± 0.49, P < 0.001) and SOFA score (4.01 ± 0.10 vs. 
2.13 ± 0.10, P < 0.001) compared with lower-level of ePVS 
ones. At the same time, higher levels of ePVS group pre-
sented a higher rate of renal failure (12.32% vs. 3.52%, 
P < 0.001), and CRRT (5.96% vs. 0.60%, P < 0.001) com-
pared with lower-levels of ePVS group. It suggested that 
congestion during AMI may be the critical factor for fur-
ther aggravation of myocardial ischemia, and excessive 
congestion was associated with renal function. However, 
Kobayashi et  al. [17] study did not find any statistical 
interaction between ePVS and estimated glomerular fil-
tration rate (eGFR). Their study suggested that there was 
no association between Duarte-derived ePVS and renal 
function. The specific relationship between ePVS and 
renal function needs further researches to confirm. Our 
study showed that AMI patients with the negative fluid 
balance on admission have better clinical outcomes. 
Restrictive fluid administration and a consequent early 

negative fluid balance were associated with lower in-
hospital mortality. These results have important impli-
cations for clinical practice. We need to closely monitor 
the PV load during hospitalization of patients with AMI, 
and guide their follow-up fluid treatment according to 
the PV load. PV estimated from hemoglobin/hematocrit 
using Duarte’s formula, may represent a quick and useful 
marker in patients with AMI in clinical routine.

Limitations
There were several limitations in our study. Firstly, this 
study was based on a observational study, and the sam-
ple size was not large enough. Therefore, large prospec-
tive cohorts study are needed to confirm our findings in 
the future. Secondly, our study only focused on the ePVS 
derived from the first laboratory test on admission with 
inevitable bias. Future studies could research the in-hos-
pital change trend of the ePVS of patients with AMI, and 
further explore the role of fluid volume management in 
AMI. Thirdly, several potential confounding variables 
(albumin, BNP) due to severe data missing were unable 
to assess. Given that, external validation was required to 

Fig. 5  Receiver operating characteristic (ROC) curve of the nomogram. The area under the curve (AUC) of ROC was 0.667 (95% CI 0.653–0.681) for 
ePVS derived from Duarte formula. The area under the curve (AUC) was 0.652 (95% CI 0.641–0.663) for ePVS derived from Hakim formula. The area 
under the curve (AUC) was 0.824 (95% CI 0.789–0.859) for SOFA
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test its utility. Fourth, our study included patients with 
AMI, however, we did not made further subdivision for 
AMI with STEMI or NSTEMI, STEMI have different 
pathological processes compared with NSTEMI. Finally, 
specific target ePVS goals was 5.28 mL/g in our study, but 
it is unclear whether the same targets should be applied 
to different subgroup patients.

Conclusion
In conclusion, a higher ePVS value, calculated simply 
from Duarte’s formula (based on hemoglobin/hema-
tocrit) was associated with poor prognosis in AMI 
patients. Duarte-derived ePVS would be a promising 
biomarker for predicting the prognosis of patients with 
AMI. Restrictive fluid administration is an essential 
treatment strategy for the management of AMI. Further 
study of ePVS in AMI patients may yield opportunities 
to reduce the in-hospital mortality risk of AMI patients 
and improve patient outcomes. Further investigations 
are warranted to evaluate the potential clinical utility of 
ePVS guided management in patients with AMI.
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