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*Correspondence:
zoran.mitrovic@etf.unibl.org
2Faculty of Electrical Engineering,
University of Banja Luka, Patre 5,
78000, Banja Luka, Bosnia and
Herzegovina
Full list of author information is
available at the end of the article

Abstract
Chemical graph theory is a field of mathematics that studies ramifications of chemical
network interactions. Using the concept of star graphs, several investigators have
looked into the solutions to certain boundary value problems. Their choice to utilize
star graphs was based on including a common point connected to other nodes. Our
aim is to expand the range of the method by incorporating the graph of hexasilinane
compound, which has a chemical formula H12Si6. In this paper, we examine the
existence of solutions to fractional boundary value problems on such graphs, where
the fractional derivative is in the Caputo sense. Finally, we include an example to
support our significant findings.
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1 Introduction
A subfield of mathematics known as chemical graph theory is concerned with the impli-
cations of the connectedness of chemical networks. Whether natural or synthetic, almost
every chemical system may be represented by a chemical graph (i.e., molecular transfor-
mations in a chemical reaction). Moreover, the word “chemical” is used to highlight that,
in contrast to graph theory, we may depend on scientific investigation of many ideas and
theorems rather than exact mathematical proofs, which is a significant difference.

When it comes to graph theory, Lumer [1] was the first to use differential equation the-
ory on graphs. With the use of ramification spaces and different operator specifications,
he explored the solutions of extended evolution equations. Zavgorodnij [2] investigated
linear differential equations in 1989 using a geometric network, with suggested bound-
ary value problem solutions arranged at the network interior nodes. On the other hand,
Gordeziani et al. [3] utilized the double-sweep method to obtain analytical results for dif-
ferential equations, which they observed to be more productive on graphs;.

However, utilizing fixed point methods, a limited amount of studies on star graphs (see
Fig. 1) associated with the solutions of boundary value problems has emerged in the par-
ticular research (see, e.g., [4, 5]).
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Figure 1 A picture of a star graphG
� having k edges and a junction node v0

In 2014, Graef et al. [4] used the idea of a star graph and proposed the existence of
solutions to the following fractional differential equation:

⎧
⎨

⎩

–RL D�zγ (s) = hγ (s)Lγ (s, y(s)) (s ∈ (0, �̃γ ),γ = 1, 2),

z1(0) = z2(0) = 0, z1(�̃1) = z2(�̃2), RLDνw1(�̃1) +RL Dνw2(�̃2) = 0,
(1.1)

where � ∈ (1, 2], ν ∈ (0,�) and hγ : [0, �̃γ ] → R are continuous functions with hγ (s) �= 0 on
[0, �̃ν], and Lγ : [0, �̃γ ] ×R →R are continuous functions. Also, RLD� and RLDν represent
the Riemann–Liouville fractional derivatives of orders � and ν , respectively.

Mehandiratta et al. [5], extended the work of Graef et al. [4] by proposing the following
fractional differential equation:

⎧
⎨

⎩

D�zγ (s) = Sγ (s, zγ (s),Dνzγ (s)) (s ∈ (0, �̃γ ),γ = 1, 2, . . . , n),

zγ (0) = 0, zγ (�̃γ ) �= zγ̃ (�̃γ̃ ) (γ �= γ̃ ),
∑n

γ =1 z′
γ (�̃γ ) = 0,

(1.2)

where � ∈ (1, 2], ν ∈ (0,� – 1], Sγ : [0, �̃γ ] ×R×R →R are continuous functions, and Dδ

denotes the Caputo fractional derivative of order δ ∈ {�,ν}.
Recently, Mophou et al. [6] investigated the solution of the following fractional Sturm–

Liouville boundary value problems on a star graph:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D�

b–1
γ

(βγD�
a+ zγ )(s) + qγ (s)zγ (s) = Sγ (s), s ∈ (a, bγ ),γ = 1, 2, . . . , n,

I1–�
a+ zγ (a+) = I1–�

a+ zν(a+), � �= ν = 1, 2, . . . , n,
∑n

γ =1 βγ (a)D�
a+ zγ (a+) = 0,

I1–�
a+ z1(b–

1 ) = 0,

I1–�
a+ zγ (b–

γ ) = vγ , γ = 2, 3, . . . , p,

βγ (bγ )D�
a+ zγ (b–

γ ) = vγ , γ = p, p + 1, . . . , n,

(1.3)

where D�
a+ and D�

b–1
γ

, γ = 1, 2, . . . , n, are, respectively, the left Riemann–Liouville and right

Caputo fractional derivatives of order � ∈ (0, 1), I�
a+ is the Riemann–Liouville fractional
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Figure 2 Chemical structure of hexasilinane compound H12Si6

Figure 3 A hexasilinane compound graph with vertices 0 or 1

integral of order �, the real functions βγ and qγ are defined on [a, bγ ] (γ = 1, 2, . . . , n), the
functions Sγ belong to L2(a, bγ ), γ = 1, 2, . . . , n, and the controls vγ , γ = 1, 2, . . . , n, are real
variables.

For the recent research in this area, we refer to [7–9] and the references therein.
To extend the work presented in [4–6], we use the concept of hexasilinane graphs (see

Fig. 2), which are more general than star graphs.
Moreover, the techniques employed in [4–6] are inadequate since the hexasilinane

graphs contain more junction points than star graphs. As a result, we adopt a different
method, in which the graph vertices are labeled by 0 or 1 with edge length |b̃k| = 1 (see
Fig. 3).
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Here we examine the existence of solutions to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

D�zγ (s) = Sγ (s, zγ (s),Dνzγ (s), z′
γ (s), z′′

γ (s)) (s ∈ [0, 1]),

	1zγ (0) = 	2D
1zγ (1) + 	3D

2zγ (1),

	1zγ (1) = 	2D
�–1zγ (1) + 	3

∫ θ

0 D�–1zγ (ξ ) dξ ,

(1.4)

where 	p (p = 1, 2, 3) are real constants with 	p �= 0, θ ∈ (0, 1), D� and Dν denote the
Caputo fractional derivatives of orders 2 < � ≤ 3 and ν ∈ (0, 2), respectively. Also, Sγ :
[0, 1] × R × R × R × R → R is a given continuously differentiable function for γ = 18,
where γ denotes the total number of edges of hexasilinane compound with |k̃γ | = 1.

Our goal is to prove the existence of solutions to the suggested problem (1.4) by using
appropriate fixed point theorems. Finally, we give an example to demonstrate the signifi-
cance of our findings in light of the existing literature.

For the details about fixed point theory and its applications in different spaces, we refer
to [10–18] and the references therein. Several new papers have recently been published
dealing with the existence of solutions to nonlinear fractional differential equations (for
details, see [19–24]).

2 Preliminaries
Definition 2.1 ([25]) The Caputo fractional derivative of order � > 0 for S ∈ Cξ [0, +∞) is
given by

D
�S(s) =

1
�(ξ – �)

∫ s

0
(s – θ )ξ–�–1S (ξ )(θ ) dθ

(
ξ – 1 < � < ξ , ξ = [�] + 1

)
,

where [�] is the integer part of �.

For � > 0, the general solution of D�z(s) = 0 is given as

z(s) = b0 + b1s + b2s2 + · · · + bn–1sn–1,

and

I
�
D

�z(s) = z(s) + b0 + b1s + b2s2 + · · · + bn–1sn–1

for bk ∈R and k = 0, 1, . . . , n – 1.

Lemma 2.2 Let φ1,φ2, . . . ,φ18 be continuous real-valued functions on [0, 1]. Then z�
γ is a

solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

D�zγ (s) = ϒγ (s) (s ∈ [0, 1],γ = 1, 2, . . . , 18),

	1zγ (0) = 	2D
1zγ (1) + 	3D

2zγ (1),

	1zγ (1) = 	2D
�–1zγ (1) + 	3

∫ θ

0 D�–1zγ (ξ ) dξ ,

(2.1)

if and only if z�
γ is a solution of the fractional integral equation

zγ (s) =
∫ s

0

(s – ξ )�–1

�(�)
ϒγ (ξ ) dξ +

1
V0

(
	2

	1
+ s

){

	3

∫ θ

0

∫ ξ

0
ϒγ (τ ) dτ dξ
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+ 	2

∫ 1

0
ϒγ (ξ ) dξ – 	1

∫ 1

0

(1 – ξ )�–1

�(�)
ϒγ (ξ ) dξ

}

+
(

V0 – 	2 – 	1s
	1V0

)

×
{

	2

∫ 1

0

(1 – ξ )�–2

�(� – 1)
ϒγ (ξ ) dξ + 	3

∫ 1

0

(1 – ξ )�–3

�(� – 2)
ϒγ (ξ ) dξ

}

, (2.2)

where

V0 =
[

	1 +
	2(�(3 – �) – 1)

�(3 – �)
–

	3θ
3–�

�(4 – �)

]

�= 0.

Proof Let z�
γ be a solution of (2.1), where γ = 1, 2, . . . , 18. Thus there are constants

b(γ )
0 , b(γ )

1 ∈R such that

z�
γ (s) =

∫ s

0

(s – ξ )�–1

�(�)
ϒγ (ξ ) dξ + b(γ )

0 + b(γ )
1 s. (2.3)

Using the boundary conditions for (2.1), we have

b(γ )
1 =

	3

V0

(∫ θ

0

∫ ξ

0
ϒγ (τ ) dτ dξ –

∫ 1

0

(1 – ξ )�–3

�(� – 2)
ϒγ (ξ ) dξ

)

+
	2

V0

(∫ 1

0
ϒγ (ξ ) dξ

–
∫ 1

0

(1 – ξ )�–2

�(� – 1)
ϒγ (ξ ) dξ

)

–
	1

V0

∫ 1

0

(1 – ξ )�–1

�(�)
ϒγ (ξ ) dξ ,

b(γ )
0 =

	3

	1

(
	2

V0

∫ θ

0

∫ ξ

0
ϒγ (τ ) dτ dξ +

(

1 –
	2

V0

)∫ 1

0

(1 – ξ )�–3

�(� – 2)
ϒγ (ξ ) dξ

)

+
	2

	1

(
	2

V0

∫ 1

0
ϒγ (ξ ) dξ +

(

1 –
	2

V0

)∫ 1

0

(1 – ξ )�–2

�(� – 1)
ϒγ (ξ ) dξ

)

–
	2

V0

∫ 1

0

(1 – ξ )�–1

�(�)
ϒγ (ξ ) dξ .

Substituting the values of b(γ )
0 and b(γ )

1 into (2.3), we obtain the desired solution (2.2).
With regard to the contrary, when z�

γ is a solution of (2.1), it is self-evident that z�
γ is a

solution of (2.2). �

We now present the fixed point theorems of Krasnoselskii and Schaefer.

Theorem 2.3 ([26]) Let V be a closed, bounded, convex, and nonempty subset of a Banach
space U , and let S1,S2 : V → U be two operators such that S1k +S2k′ ∈ V whenever k, k′ ∈
V . Suppose that S1 is compact and continuous and S2 is a contraction. Then S1 +S2 has a
fixed point.

Theorem 2.4 ([26]) Let U be a Banach space, and let S : U → U be a completely continu-
ous mapping. If the set {z ∈ U : z = ϑSz for some ϑ ∈ [0, 1]} is bounded, then S has at least
one fixed point in U .

3 Main results
Throughout this paper, Uγ = {zγ : zγ ,Dνzγ , z′

γ , z′′
γ ∈ C[0, 1]} is a Banach space with norm

‖zγ ‖Uγ = sup
s∈[0,1]

∣
∣zγ (s)

∣
∣ + sup

s∈[0,1]

∣
∣Dνzγ (s)

∣
∣ + sup

s∈[0,1]

∣
∣z′

γ (s)
∣
∣ + sup

s∈[0,1]

∣
∣z′′

γ (s)
∣
∣
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for γ = 1, 2, . . . , 18. It is obvious that the product space U = U1 ×U2 ×· · ·×U18 is a Banach
space with norm

‖z = (z1, z2, . . . , z18)‖U =
18∑

γ =1

‖zγ ‖Uγ .

Referring to Lemma 2.2, we introduce the operator S : U → U by

S(z1, z2, . . . , z18)(s) :=
(
S1(z1, z2, . . . , z18), . . . ,S18(z1, z2, . . . , z18)(s)

)
, (3.1)

where

Sγ (z1, z2, . . . , z18)(s)

=
∫ s

0

(s – ξ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

+
1

V0

(
	2

	1
+ s

)

×
[

	3

∫ θ

0

∫ ξ

0
Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)
dτ dξ

+ 	2

∫ 1

0
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

– 	1

∫ 1

0

(1 – ξ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

]

+
1

	1V0
(V0 – 	2 – 	1s) (3.2)

×
[

	2

∫ 1

0

(1 – ξ )�–2

�(� – 1)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

+ 	3

∫ 1

0

(1 – ξ )�–3

�(� – 2)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

]

for s ∈ [0, 1] and zγ ∈ Uγ .
To facilitate calculations, we use the following notation:

V0 =
[

	1 +
	2(�(3 – �) – 1)

�(3 – �)
–

	3θ
3–�

�(4 – �)

]

�= 0, (3.3)

V1 =
[

|	1| +
|	2||(�(3 – �) – 1)|

�(3 – �)
+

|	3|
�(4 – �)

]

�= 0, (3.4)

I∗
0 =

1
�(� + 1)

+
( |	2| + |	1|

|	1|V1

)( |	3|
2

+ |	2| +
|	1|

�(� + 1)

)

+
( |V1 – 	2 – 	1|

|	1|V1

)( |	2|
�(�)

+
|	3|

�(� – 1)

)

, (3.5)

I∗
1 =

1
�(� – ν + 1)

+
(

1
V1�(2 – ν)

)

×
( |	3(2 + �(� – 1))|

2�(� – 1)
+

|	2(1 + �(�))|
�(�)

+
|	1|

�(� + 1)

)

, (3.6)
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I∗
2 =

1
�(�)

+
1

V1

( |	3(2 + �(� – 1))|
2�(� – 1)

+
|	2(1 + �(�))|

�(�)
+

|	1|
�(� + 1)

)

, (3.7)

I∗
3 =

1
�(� – 1)

, (3.8)

I∗
4 =

( |	2| + |	1|
|	1|V1

)( |	3|
2

+ |	2| +
|	1|

�(� + 1)

)

+
( |V1 – 	2 – 	1|

|	1|V1

)( |	2|
�(�)

+
|	3|

�(� – 1)

)

, (3.9)

I∗
5 =

(
1

V1�(2 – ν)

)( |	3(2 + �(� – 1))|
2�(� – 1)

+
|	2(1 + �(�))|

�(�)
+

|	1|
�(� + 1)

)

, (3.10)

I∗
6 =

1
V1

( |	3(2 + �(� – 1))|
2�(� – 1)

+
|	2(1 + �(�))|

�(�)
+

|	1|
�(� + 1)

)

. (3.11)

Theorem 3.1 Let S1,S2, . . . ,S18 : [0, 1] × R × R × R × R → R be continuous functions,
and let there exist constants Mγ > 0, γ = 1, 2, . . . , 18, satisfying

∣
∣Sγ (s, z1, z2, z3, z4)

∣
∣ ≤ Mγ

for all z, z1, z2, z3, z4 ∈R and s ∈ [0, 1]. Then problem (1.4) has a solution.

Proof It is obvious from (3.2) that the fixed points of the operator S given in (3.1) exist if
and only if (1.4) has a solution. To prove this, we first show thatS is completely continuous.

As S1,S2, . . . ,S18 are continuous, S : U → U is continuous too. Let V ∈ U be a bounded
set, and let z = (z1, z2, . . . , z18) ∈ U . So for each s ∈ [0, 1], we have

∣
∣(Sγ z)(s)

∣
∣

≤
∫ s

0

(s – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
1

V1

( |	2|
|	1| + s

)

× [|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ ]

+
|V1 – 	2 – 	1s|

|	1|V1

×
[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ 	3

∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

≤ MγI∗
0 ,
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where I∗
0 is given in (3.5). Also,

∣
∣
(
D

νSγ z
)
(s)

∣
∣

≤
∫ s

0

(s – ξ )�–ν–1

�(� – ν)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
(

s1–ν

V1�(2 – ν)

)

×
[

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

+
(

s1–ν

V1�(2 – ν)

)

×
[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

≤ MγI∗
1 ,

∣
∣
(
S ′

γ z
)
(s)

∣
∣

≤
∫ s

0

(s – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
1

V1

[

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

+
1

V1

[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

≤ MγI∗
2 ,

and

∣
∣
(
S ′′

γ z
)
(s)

∣
∣ ≤

∫ s

0

(s – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

≤ MγI∗
3
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for all s ∈ [0, 1], where I∗
1 –I∗

3 are defined in (3.6)–(3.8), respectively. Therefore

∥
∥(Sγ z)(s)

∥
∥
Uγ

≤ Mγ

(
I∗

0 + I∗
1 + I∗

2 + I∗
3
)
.

Hence

∥
∥(Sz)(s)

∥
∥
U =

18∑

γ =1

∥
∥(Sγ z)(s)

∥
∥
Uγ

≤
18∑

γ =1

Mγ

(
I∗

0 + I∗
1 + I∗

2 + I∗
3
)

< ∞,

which reveals that S is uniformly bounded.
Now we have to show that S is equicontinuous. For this purpose, let z = (z1, z2, . . . , z18) ∈

V and s1, s2 ∈ [0, 1] with s1 < s2. Then we have

∣
∣(Sγ z)(s2) – (Sγ z)(s1)

∣
∣

≤
∫ s1

0

(s2 – θ )�–1 – (s1 – θ )�–1

�(�)

× ∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
∫ s2

s1

(s2 – θ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
(

s2 – s1

V1

)

×
[

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

+
(

s2 – s1

V1

)

×
[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

.

We can see that if s1 → s2, then, independently, the right-hand side of the expression con-
verges to zero. Also,

lim
s1→s2

∣
∣
(
D

νSγ z
)
(s2) –

(
D

νSγ z
)
(s1)

∣
∣ = 0,

lim
s1→s2

∣
∣
(
S ′

γ z
)
(s2) –

(
S ′

γ z
)
(s1)

∣
∣ = 0,
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lim
s1→s2

∣
∣
(
S ′′

γ z
)
(s2) –

(
S ′′

γ z
)
(s1)

∣
∣ = 0.

As a result, ‖(Sz)(s2) – (Sz)(s1)‖U → 0 as s1 → s2. This proves that S is equicontinuous on
U = U1 ×U2 × · · ·×U18. Now the Arzelà–Ascoli theorem implies the complete continuity
of the operator.

Further, we define the subset � of U as

� :=
{

(z1, z2, . . . , z18) ∈ U : (z1, z2, . . . , z18) = ϑS(z1, z2, . . . , z18),ϑ ∈ (0, 1)
}

.

We will show that � is bounded. For this, let (z1, z2, . . . , z18) ∈ �. Then we can write

(z1, z2, . . . , z18) = ϑS(z1, z2, . . . , z18),

and so

zγ (s) = ϑSγ (z1, z2, . . . , z18)

for all s ∈ [0, 1] and γ = 1, 2, . . . , 18. Thus

∣
∣zγ (s)

∣
∣ ≤ ϑ

[∫ s

0

(s – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
1

V1

( |	2|
|	1| + s

){

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

}

+
|V1 – 	2 – 	1s|

|	1|V1

×
{

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

}]

≤ ϑMγI∗
0 ,

and by similar computations we have

∣
∣Dνzγ (s)

∣
∣ ≤ ϑMγI∗

1 ,
∣
∣z′

γ (s)
∣
∣ ≤ ϑMγI∗

2 ,
∣
∣z′′

γ (s)
∣
∣ ≤ ϑMγI∗

3 ,

where I∗
0 –I∗

3 are given in (3.5)–(3.8). Hence

‖z‖U =
18∑

γ =1

‖zγ ‖Uγ
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≤ ϑ

18∑

γ =1

Mγ

(
I∗

0 + I∗
1 + I∗

2 + I∗
3
)

< ∞,

which shows the boundedness of �. Now using Theorem 2.4 and Lemma 2.2, we see that
S has a fixed point in U . This demonstrates that (1.4) does indeed have a solution. �

We will now examine the solution of problem (1.4) by applying various conditions.

Theorem 3.2 Suppose that S1,S2, . . . ,S18 : [0, 1] × R × R × R × R → R are continuous
functions and that there exist bounded continuous functions G1,G2, . . . ,G18 : [0, 1] → R,
Z1,Z2, . . . ,Z18 : [0, 1] → [0,∞) and nondecreasing continuous functions L1,L2, . . . ,L18 :
[0, 1] → [0,∞) such that

∣
∣Sγ (s, z1, z2, z3, z4)

∣
∣ ≤Zγ (s)Lγ

(|z1| + |z2| + |z3| + |z4|
)

and

∣
∣Sγ (s, z1, z2, z3, z4) – Sγ (s, z̃1, z̃2, z̃3, z̃4)

∣
∣

≤ Gγ (s)
(|z1 – z̃1| + |z2 – z̃2| + |z3 – z̃3| + |z4 – z̃4|

)

for all s ∈ [0, 1], z1, z2, z3, z4, z̃1, z̃2, z̃3, z̃4 ∈R, and γ = 1, 2, . . . , 18. If

� :=
(
I∗

4 + I∗
5 + I∗

6
)

18∑

γ =1

‖Gγ ‖ < 1,

then (1.4) has a solution, where ‖Gγ ‖ = sups∈[0,1] |Gγ (s)|, and the constants I∗
4 –I∗

6 are given
in (3.9)–(3.11), respectively.

Proof Let ‖Zγ ‖ = sups∈[0,1] |Zγ (s)|. Suppose that for suitable constants εγ , we have

εγ ≥
18∑

γ =1

Lγ

(‖zγ ‖Uγ

)‖Zγ ‖{I∗
0 + I∗

1 + I∗
2 + I∗

3
}

, (3.12)

where I∗
0 –I∗

3 are given in (3.5)–(3.8). We define the set

Vεγ :=
{

z = (z1, z2, . . . , z18) ∈ U : ‖z‖U ≤ εγ

}
,

where εγ is defined in (3.12). It is obvious that Vεγ is a nonempty, closed, bounded, and
convex subset of U = U1 × U2 × · · · × U18. Now we define S1 and S2 on Oεγ by

S1(z1, z2, . . . , z18)(s) :=
(
S (1)

1 (z1, z2, . . . , z18)(s), . . . ,S (18)
1 (z1, z2, . . . , z18)(s)

)
,

S2(z1, z2, . . . , z18)(s) :=
(
S (1)

2 (z1, z2, . . . , z18)(s), . . . ,S (18)
2 (z1, z2, . . . , z18)(s)

)
,
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where

(
S (γ )

1 z
)
(s) =

∫ s

0

(s – ξ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ , (3.13)

and

(
S (γ )

2 z
)
(s)

=
1

V0

(
	2

	1
+ s

)[

	3

∫ θ

0

∫ ξ

0
Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)
dτ dξ

+ 	2

∫ 1

0
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

+ 	1

∫ 1

0

(1 – ξ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

]

+
(

V0 – 	2 – 	1s
	1V0

)

(3.14)

×
[

	2

∫ 1

0

(1 – ξ )�–2

�(� – 1)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

]

for all s ∈ [0, 1] and z = (z1, z2, . . . , z18) ∈ Vεγ .
Let L̃γ = supzγ ∈Uγ

Lγ (‖zγ ‖Uγ ). For all z̃ = (z̃1, z̃2, . . . , z̃18), z = (z1, z2, . . . , z18) ∈ Vεγ , we
have

∣
∣
(
S (γ )

1 z̃ + S (γ )
2 z

)
(s)

∣
∣

≤
∫ s

0

(s – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , z̃γ (ξ ),Dν z̃γ (ξ ), z̃′

γ (ξ ), z̃′′
γ (ξ )

)∣
∣dξ

+
1

V1

( |	2|
|	1| + s

)

×
[

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

+
|V1 – 	2 – 	1s|

|	1|V1

×
[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

]

≤
∫ s

0

(s – ξ )�–1

�(�)
Zγ (ξ )Lγ

(∣
∣z̃γ (ξ )

∣
∣ +

∣
∣Dν z̃γ (ξ )

∣
∣ +

∣
∣z̃′

γ (ξ )
∣
∣ +

∣
∣z̃′′

γ (ξ )
∣
∣
)

dξ
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+
1

V1

( |	2|
|	1| + s

)[

|	3|
∫ θ

0

∫ ξ

0
Zγ (τ )

×Lγ

(∣
∣zγ (τ )

∣
∣ +

∣
∣Dνzγ (τ )

∣
∣ +

∣
∣z′

γ (τ )
∣
∣ +

∣
∣z′′

γ (τ )
∣
∣
)

dτ dθ

+ |	2|
∫ 1

0
Zγ (ξ )Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)

dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
Zγ (ξ )

×Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)

dξ

]

+
|V1 – 	2 – 	1s|

|	1|V1

[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
Zγ (ξ )

×Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)

dξ

+ |	3|
∫ 1

0

(1 – ξ )�–3

�(� – 2)
Zγ (ξ )

×Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)

dξ

]

≤ ‖Zγ ‖L̃τI∗
0 .

By using similar computations we have

∣
∣
(
D

νS (γ )
1 z̃

)
(s) +

(
D

νS (γ )
2 z

)
(s)

∣
∣ ≤ ‖Zγ ‖L̃τI∗

1 ,
∣
∣
(
S (γ )

1 z̃
)′(s) +

(
S (γ )

2 z
)′(s)

∣
∣ ≤ ‖Zγ ‖L̃τI∗

2 ,

and

∣
∣
(
S (γ )

1 z̃
)′′(s) +

(
S (γ )

2 z
)′′(s)

∣
∣ ≤ ‖Zγ ‖L̃τI∗

3 .

This yields that

‖S1z̃ + S2z‖U =
18∑

γ =1

∥
∥S (γ )

1 z̃ + S (γ )
2 z

∥
∥
Uγ

≤ ‖Zγ ‖L̃τ

(
I∗

0 + I∗
1 + I∗

2 + I∗
3
)

≤ εγ ,

and so S1z̃ + S2z ∈ Vεγ . Furthermore, the continuity of S1 is implied by the continuity of
the operator Sγ .

We will now demonstrate that S1 is uniformly bounded. For this, we have

∣
∣
(
S (γ )

1 z
)
(s)

∣
∣ ≤

∫ s

0

(s – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

≤ 1
�(� + 1)

‖Zγ ‖Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)
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for all z ∈ Vεγ . Also,

∣
∣
(
D

νS (γ )
1 z

)
(s)

∣
∣ ≤

∫ s

0

(s – θ )�–ν–1

�(� – ν)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

≤ 1
�(� – ν + 1)

‖Zγ ‖Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)
,

and

∣
∣
(
S (γ )

1 z
)′(s)

∣
∣ ≤ 1

�(�)
‖Zγ ‖Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)
,

∣
∣
(
S (γ )

1 z
)′′(s)

∣
∣ ≤ 1

�(� – 1)
‖Zγ ‖Lγ

(∣
∣zγ (ξ )

∣
∣ +

∣
∣Dνzγ (ξ )

∣
∣ +

∣
∣z′

γ (ξ )
∣
∣ +

∣
∣z′′

γ (ξ )
∣
∣
)

for all z ∈ Vεγ . Thus

‖S1z‖U =
18∑

γ =1

∥
∥S (γ )

1 z
∥
∥
Uγ

≤
{

�2

�(� + 1)
+

1
�(� – ν + 1)

} 18∑

γ =1

‖Zγ ‖Lγ

(‖zγ ‖Uγ

)
,

which shows that S1 is uniformly bounded on Vεγ .
Now we will prove that S1 is compact on Vεγ . For this, let s1, s2 ∈ [0, 1] with s1 < s2. Then

we have

∣
∣
(
S (γ )

1 z
)
(s2) –

(
S (γ )

1 z
)
(s1)

∣
∣

≤
∣
∣
∣
∣

∫ s2

0

(s2 – θ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

–
∫ s1

0

(s1 – θ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ s1

0

(s2 – θ )�–1 – (s1 – θ )�–1

�(�)

× Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s2

s1

(s2 – θ )�–1

�(�)
Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)
dξ

∣
∣
∣
∣

≤
∫ s1

0

(s2 – θ )�–1 – (s1 – θ )�–1

�(�)

× ∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

+
∫ s2

s1

(s2 – θ )�–1

�(�)
∣
∣Sγ

(
ξ , zγ (ξ ),Dνzγ (ξ ), z′

γ (ξ ), z′′
γ (ξ )

)∣
∣dξ

≤
{

s�
2 – s�

1 – (s2 – s1)�

�(� + 1)
+

(s2 – s1)�

�(� + 1)

}

‖Zγ ‖Lγ

(‖zγ ‖Uγ

)
.
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Hence |(S (γ )
1 z)(s2) – (S (γ )

1 z)(s1)| → 0 as s1 → s2. Also, we have

lim
s1→s2

∣
∣
(
D

νS (γ )
1 z

)
(s2) –

(
D

νS (γ )
1 z

)
(s1)

∣
∣ = 0,

lim
s1→s2

∣
∣
(
S (γ )

1 z
)′(s2) –

(
S (γ )

1 z
)′(s1)

∣
∣ = 0,

lim
s1→s2

∣
∣
(
S (γ )

1 z
)′′(s2) –

(
S (γ )

1 z
)′′(s1)

∣
∣ = 0.

Hence ‖(S1z)(s2) – (S1z)(s1)‖U tends to zero as s1 → s2. Thus S1 is equicontinuous, and
therefore S1 is relatively compact operator on Vεγ . So S1 is compact on Vεγ by the Arzelà–
Ascoli theorem.

It remains to prove that S2 is a contraction. To show this, letting z̃, z ∈ Vεγ , we obtain

∣
∣
(
S (γ )

2 z̃
)
(s) –

(
S (γ )

2 z
)
(s)

∣
∣

≤ 1
V1

( |	2|
|	1| + s

)

×
[

|	3|
∫ θ

0

∫ ξ

0

∣
∣Sγ

(
τ , z̃γ (τ ),Dν z̃γ (τ ), z̃′

γ (τ ), z̃′′
γ (τ )

)

– Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dτ dξ

+ |	2|
∫ 1

0

∣
∣Sγ

(
ξ , z̃γ (ξ ),Dν z̃γ (ξ ), z̃′

γ (ξ ), z̃′′
γ (ξ )

)

– Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dξ

+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
∣
∣Sγ

(
ξ , z̃γ (ξ ),Dν z̃γ (ξ ), z̃′

γ (ξ ), z̃′′
γ (ξ )

)

– Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dξ

]

+
|V1 – 	2 – 	1s|

|	1|V1

×
[

|	2|
∫ 1

0

(1 – ξ )�–2

�(� – 1)
∣
∣Sγ

(
ξ , z̃γ (ξ ),Dν z̃γ (ξ ), z̃′

γ (ξ ), z̃′′
γ (ξ )

)

– Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dξ

+ 	3

∫ 1

0

(1 – ξ )�–3

�(� – 2)
∣
∣Sγ

(
ξ , z̃γ (ξ ),Dν z̃γ (ξ ), z̃′

γ (ξ ), z̃′′
γ (ξ )

)

– Sγ

(
τ , zγ (τ ),Dνzγ (τ ), z′

γ (τ ), z′′
γ (τ )

)∣
∣dξ

]

≤ 1
V1

( |	2|
|	1| + s

)[

|	3|
∫ θ

0

∫ ξ

0
Gγ (s)

(∣
∣z̃γ (τ ) – zγ (τ )

∣
∣

+
∣
∣Dν z̃γ (τ ) – D

νzγ (τ )
∣
∣ +

∣
∣z̃′

γ (τ ) – z′
γ (τ )

∣
∣

+
∣
∣z̃′′

γ (τ ) – z′′
γ (τ )

∣
∣
)

dτ dξ + |	2|
∫ 1

0
Gγ (s)

(∣
∣z̃γ (ξ ) – zγ (ξ )

∣
∣

+
∣
∣Dν z̃γ (ξ ) – D

νzγ (ξ )
∣
∣ +

∣
∣z̃′

γ (ξ ) – z′
γ (ξ )

∣
∣ +

∣
∣z̃′′

γ (ξ ) – z′′
γ (ξ )

∣
∣
)

dξ
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+ |	1|
∫ 1

0

(1 – ξ )�–1

�(�)
Gγ (s)

(∣
∣z̃γ (ξ ) – zγ (ξ )

∣
∣ +

∣
∣Dν z̃γ (ξ ) – D

νzγ (ξ )
∣
∣

+
∣
∣z̃′

γ (ξ ) – z′
γ (ξ )

∣
∣ +

∣
∣z̃′′

γ (ξ ) – z′′
γ (ξ )

∣
∣
)
]

dξ

+
|V1 – 	2 – 	1s|

|	1|V1
[|	2|

∫ 1

0

(1 – ξ )�–2

�(� – 1)
Gγ (s)

(∣
∣z̃γ (ξ ) – zγ (ξ )

∣
∣

+
∣
∣Dν z̃γ (ξ ) – D

νzγ (ξ )
∣
∣ +

∣
∣z̃′

γ (ξ ) – z′
γ (ξ )

∣
∣ +

∣
∣z̃′′

γ (ξ ) – z′′
γ (ξ )

∣
∣
)

dξ

+ 	3

∫ 1

0

(1 – ξ )�–3

�(� – 2)
Gγ (s)

(∣
∣z̃γ (ξ ) – zγ (ξ )

∣
∣ +

∣
∣Dν z̃γ (ξ ) – D

νzγ (ξ )
∣
∣

+
∣
∣z̃′

γ (ξ ) – z′
γ (ξ )

∣
∣ +

∣
∣z̃′′

γ (ξ ) – z′′
γ (ξ )

∣
∣
)
] dξ

≤ ‖Gγ ‖I∗
4 ‖z̃γ – zγ ‖Uγ

for each γ = 1, 2, . . . , 18, where I∗
4 is given in (3.9). Also, by similar computations we have

sup
s∈[0,1]

∣
∣
(
D

νS (γ )
2 z̃

)
(s) –

(
D

νS (γ )
2 z

)
(s)

∣
∣ ≤ ‖Gγ ‖I∗

5 ‖z̃γ – zγ ‖Uγ ,

sup
s∈[0,1]

∣
∣
(
S (γ )

2 z̃
)′(s) –

(
S (γ )

2 z
)′(s)

∣
∣ ≤ ‖Gγ ‖I∗

6 ‖z̃γ – zγ ‖Uγ ,

sup
s∈[0,1]

∣
∣
(
S (γ )

2 z̃
)′′(s) –

(
S (γ )

2 z
)′′(s)

∣
∣ ≤ 0,

where I∗
5 and I∗

6 are given in (3.10) and (3.11), respectively. Thus we have

‖S2z̃ – S2z‖U =
18∑

γ =1

∥
∥S (γ )

2 z̃ – S (γ )
2 z

∥
∥
Uγ

≤ (
I∗

4 + I∗
5 + I∗

6
)

18∑

γ =1

‖Gγ ‖‖z̃γ – zγ ‖Uγ ,

and so

‖S2z̃ – S2z‖U ≤ �‖z̃ – z‖U .

Since � < 1, S2 is a contraction on Vεγ . As a result of Theorem 2.3, we infer that S contains
a fixed point, which is a solution to problem (1.4). �

To illustrate the significance of our results, we provide the following example.

Example 3.3 Consider the differential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2.01z1(s) = 4s
1000 | arcsin z1(s)| + 8|D0.2z1(s)|s

2000+2000|D0.2z1(s)| + 0.004s| arcsin z′
1(s)|

+ 12s| sin z′′
1 (s)|

3000(1+| sin z′′
1 (s)|) ,

D2.01z2(s) = 21es| sin z2(s)|
3000(1+| sin z2(s)|) + 7es

1000 | sin(D0.2z2(s))| + 14| arctan z′
2(s)|es

2000+2000| arctan z′
2(s)|

+ 0.007es| arcsin z′′
2(s)|,

D2.01z3(s) = 0.011| arctan z3(s)|s + 44s|D0.2z3(s)|
4000(1+|D0.2z3(s)|) + 11

1000 | arcsin z′
3(s)|s

+ 22| sin z′′
3 (s)|s

2000+2000| sin z′′
3 (s)| ,

(3.15)
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associated with the boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9
11 z1(0) = 3

14D
1z1(1) + 6

19D
2z1(1),

9
11 z1(1) = 3

14D
1.01z1(1) + 6

19
∫ 0.05

0 D1.01z1(ξ ) dξ ,
9

11 z2(0) = 3
14D

1z2(1) + 6
19D

2z2(1),
9

11 z2(1) = 3
14D

1.01z2(1) + 6
19

∫ 0.05
0 D1.01z2(ξ ) dξ

9
11 z3(0) = 3

14D
1z3(1) + 6

19D
2z3(1),

9
11 z3(1) = 3

14D
1.01z3(1) + 6

19
∫ 0.05

0 D1.01z3(ξ ) dξ ,

(3.16)

where � = 2.01,ν = 0.2,	1 = 9
11 ,	2 = 3

14 ,	3 = 6
19 , and D�, Dν represent the Caputo frac-

tional derivatives of orders � and ν , respectively. Let S1,S2,S3 : [0, 1]×R×R×R×R→R

be continuous functions given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(s, z1(s), z2(s), z3(s), z4(s))

= 4s
1000 | arcsin z1(s)| + 8|D0.2z2(s)|s

2000+2000|D0.2z2(s)|
+ 0.004s| arcsin z′

3(s)| + 12s| sin z′′
4 (s)|

3000(1+| sin z′′
4 (s)|) ,

S2(s, z1(s), z2(s), z3(s), z4(s))

= 21es| sin z1(s)|
3000(1+| sin z1(s)|) + 7es

1000 | sin(D0.2z2(s))|
+ 14| arctan z′

3(s)|es

2000+2000| arctan z′
3(s)| + 0.007es| arcsin z′′

4(s)|,
S3(s, z1(s), z2(s), z3(s), z4(s))

= 0.011| arctan z1(s)|s + 44s|D0.2z2(s)|
4000(1+|D0.2z2(s)|)

+ 11
1000 | arcsin z′

3(s)|s + 22| sin z′′
4 (s)|s

2000+2000| sin z′′
4 (s)| .

Let z1, z2, z3, z4, z̃1, z̃2, z̃3, z̃4 ∈R. Then we have

∣
∣S1

(
s, z1(s), z2(s), z3(s), z4(s)

)
– S1

(
s, z̃1(s), z̃2(s), z̃3(s), z̃4(s)

)∣
∣

≤ 4s
1000

(∣
∣arcsin z1(s) – arcsin z̃1(s)

∣
∣ +

∣
∣z2(s) – z̃2(s)

∣
∣

+
∣
∣sin z3(s) – sin z̃3(s)

∣
∣ +

∣
∣sin z4(s) – sin z̃4(s)

∣
∣
)
,

∣
∣S2

(
s, z1(s), z2(s), z3(s), z4(s)

)
– S2

(
s, z̃1(s), z̃2(s), z̃3(s), z̃4(s)

)∣
∣

≤ 7es

1000
(∣
∣sin z1(s) – sin z̃1(s)

∣
∣ +

∣
∣sin z2(s) – sin z̃2(s)

∣
∣

+
∣
∣arctan z3(s) – arctan z̃3(s)

∣
∣ +

∣
∣arcsin z4(s) – arcsin z̃4(s)

∣
∣
)
,

∣
∣S3

(
s, z1(s), z2(s), z3(s), z4(s)

)
– S3

(
s, z̃1(s), z̃2(s), z̃3(s), z̃4(s)

)∣
∣

≤ 11s
1000

(∣
∣arctan z1(s) – arctan z̃1(s)

∣
∣ +

∣
∣z2(s) – z̃2(s)

∣
∣

+
∣
∣arcsin z3(s) – arcsin z̃3(s)

∣
∣ +

∣
∣sin z4(s) – sin z̃4(s)

∣
∣
)
.
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Here G1(s) = 4s
1000 ,G2(s) = 7es

1000 ,G3(s) = 11s
1000 , where ‖G1‖ = 4

1000 ,‖G2‖ = 7
1000 ,‖G3‖ = 11

1000 . Let
L1,L2,L3 : [0,∞) →R be the identity functions. Then we obtain

∣
∣S1

(
s, z(s),D0.2z(s), z′(s), z′′(s)

)∣
∣ ≤ 4s

1000
(| arcsin z| + |Dz| +

∣
∣sin z′∣∣ +

∣
∣sin z′′∣∣)

≤ 4s
1000

(|z| + |Dz| +
∣
∣z′∣∣ +

∣
∣z′′∣∣).

Also,

∣
∣S2

(
s, z(s),D0.2z(s), z′(s), z′′(s)

)∣
∣ ≤ 7es

1000
(| sin z| +

∣
∣sin(Dz)

∣
∣ +

∣
∣arctan z′∣∣ +

∣
∣arcsin z′′∣∣)

≤ 7es

1000
(|z| + |Dz| +

∣
∣z′∣∣ +

∣
∣z′′∣∣)

and

∣
∣S3

(
s, z(s),D0.2z(s), z′(s), z′′(s)

)∣
∣ ≤ 11s

1000
(| arctan z| + |Dz| +

∣
∣arcsin z′∣∣ +

∣
∣sin z′′∣∣)

≤ 11s
1000

(|z| + |Dz| +
∣
∣z′∣∣ +

∣
∣z′′∣∣),

where the continuous functions Z1,Z2,Z3 : [0, 1] →R are defined by

Z1(s) =
4s

1000
, Z2(s) =

7es

1000
, Z3(s) =

11s
1000

.

Also,

I∗
4 � 0.9227, I∗

5 � 1.2360 and I∗
6 � 1.1512,

and so

� :=
(
I∗

4 + I∗
5 + I∗

6
)(‖G1‖ + ‖G2‖ + ‖G3‖

) � 0.0728 < 1.

Hence by Theorem 3.2 problem (3.15)–(3.16) has a solution.

4 Conclusion
Chemical graph theory is a broad area of research, which uses theoretical and practical
techniques to analyze the molecular structure of a chemical substance on graphs while
considering particular mathematical challenges. As a result of the fast growth of this area
over the last few decades, many new concepts and techniques for conducting such re-
search have emerged. In this paper, we used the graph of a hexasilinane compound and
defined the Caputo fractional boundary value problem on each of its edges. We utilized
the fixed point theorems of Krasnoselskii and Schaefer to prove the existence of solutions
to the proposed boundary value problem. Our approach is easy to implement and can
be used in a wide range of graphs, particularly digraphs, which are often used in medical
technology for protein networks.
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