PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: July 14, 2021
ACCEPTED: November 2, 2021
PUBLISHED: November 19, 2021

Deformations of JT gravity via topological gravity and
applications

Stefan Forste,” Hans Jockers,” Joshua Kames-King®‘ and Alexandros Kanargias®
@Bethe Center for Theoretical Physics and Physikalisches Institut der Universitdt Bonn,
Nussallee 12, 53115 Bonn, Germany

bPRISMA+ Cluster of Excellence and Institute for Physics,
Johannes Guttenberg- Universitdat, Staudinger Weg 7, 55128 Mainz, Germany

¢ Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, CA93106, U.S.A.
E-mail: forste@th.physik.uni-bonn.de, jockers@uni-mainz.de,

jvakk@yahoo.com, kanargias@physik.uni-bonn.de

ABSTRACT: We study the duality between JT gravity and the double-scaled matrix model
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partition function to the generating function of topological gravity correlators that are
determined as solutions to the KdV hierarchy. We specialise to those deformations of JT
gravity coupled to a gas of defects, which conforms with known results in the literature. We
express the (asymptotic) thermal partition functions in a low temperature limit, in which
non-perturbative corrections are suppressed and the thermal partition function becomes
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perature affected by the presence of defects. Furthermore, the calculated spectral form
factors show the qualitative behaviour expected for a Hawking-Page phase transition. The
considered deformations cause the ramp to be shifted along the real time axis. Finally,
we comment on recent results related to conical Weil-Petersson volumes and the analytic
continuation to two-dimensional de Sitter space.
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1 Introduction

Jackiw-Teitelboim (JT) gravity is a simple model of two-dimensional quantum gravity on
backgrounds of constant curvature such as anti-de Sitter spaces AdSy [1-6]. It consists of
a real scalar field ¢ coupled to gravity with the Euclidean action on a Riemann surface
> being

Iy = —?(;/Ede\/ﬁR+/azdzx\/ﬁK)
—;/Ed2x\/§¢(R+2)+/azdx\/ﬁ¢(K—1), (1.1)

where R is the Ricci scalar, g,,, the metric, K is the trace of the extrinsic curvature at the
boundary 93, and hy, is the boundary metric induced from g,,,. The sum of the first two
terms is proportional to the Euler characteristic of the surface ¥, which in a black hole
context represents the ground-state entropy and for the full gravitational path integral
weighs the contribution of geometries in terms of the coupling Sp. The third term sets the
constraint of only considering hyperbolic Riemann surfaces

R(z)+2=0, (1.2)



and the last term contains a Gibbons-Hawking-York boundary term together with a coun-
terterm that ensures a finite result when removing the regularisation of the position of
the AdSs boundary. This term captures the Schwarzian dynamics of reparametrisations
at the boundary. JT gravity has been used as a gravitational model in the AdSy/CFT;
correspondence and in a broader context it encapsulates the low-energy dynamics of near-
extremal black holes [7, 8]. It can also be linked to the Sachdev-Ye-Kitaev model [9, 10]
because its low-energy sector is described by the Schwarzian theory and in a certain limit
the thermal partition functions agree [10, 11].

In the remarkable work [12] Saad, Shenker and Stanford demonstrate that extending
the gravitational sector to include geometries consisting of arbitrary number of boundaries
and also arbitrary genera furnishes a partition function equivalent to a specific double-
scaled Hermitian matrix theory. This duality can be stated as

Z(B1s...,Bn) = (Tre A Tre Prtlyy (1.3)

Here the left hand side is the connected thermal partition function Z(f1, ..., 8,) of JT grav-
ity for geometries with n asymptotic boundary components characterised by their inverse
temperatures §;, ¢ = 1,...,n. The right hand side is the corresponding correlator of the
dual Hermitian matrix integral. Interestingly, these correlators enjoy an interpretation as
observables in an ensemble of quantum mechanical systems whose random Hamiltonians H
are given by Hermitian matrices H of the matrix model [12].} This duality is generalised
in ref. [14], where extensions of JT gravity are associated to other matrix models [15-17].

The arguments for the proposed duality in ref. [12] rely on two crucial facts: firstly, as
can be seen for the disk, the path integral of the Schwarzian theory localises [18]. Secondly,
the contributions of Riemann surfaces of higher genera to the JT gravity path integral re-
duce to a Schwarzian theory at each boundary component together with an integration
over suitable moduli spaces of hyperbolic Riemann surfaces. The latter contributions give
rise to Weil-Peterson volumes on the associated moduli spaces of stable curves that —
as proven in ref. [19] — obey the same recursion relations as appear in the context of
the specific double-scaled Hermitian matrix integral, which in turn suggests the proposed
correspondence (1.3). The duality (1.3) as spelt out above is a priori established pertur-
batively, i.e. on the level of an asymptotic genus expansion. In addition, there are also
non-perturbative contributions [12], and hence the matrix model can be viewed as a (non-
unique) non-perturbative completion of the genus expansion of JT gravity. A proposal to
deal with potential non-perturbative instabilities is developed in refs. [20-22].

In this work we focus on the structure of deformations to JT gravity and the resulting
modifications to the thermal partition functions appearing on the left hand side of the
duality (1.3). A particular deformation to JT gravity can be incorporated by adding a
scalar potential U(¢) to the Lagrangian of the action (1.1) of the form [23, 24]

U(p) =2ce P g<a<m. (1.4)

! According to ref. [13], the intriguing appearance of an ensemble of quantum mechanical systems can
also be argued for via the relationship of JT gravity to the Sachdev-Ye-Kitaev model.



This potential does not affect the asymptotic boundary conditions and the gravitational
path integral can be evaluated perturbatively in the coupling € [24]. Carrying out the path
integral over the scalar field ¢ at the perturbative order e* changes the constraint (1.2)
to [23, 25]

R(xz)+2=2

J

k
21 — a) 6@ (z — xj), (1.5)
=1
with a remaining integral of the positions z1, ...,z over the Riemann surface . Thus the
constraint (1.5) at the given perturbative order €* with the two-dimensional é-distributions
introduces on the hyperbolic surfaces k conical singularities at the points x1,...,x; with
identification angle a. As a result, perturbatively the path integral of JT gravity with the
potential (1.4) can be interpreted as a sum over all possible hyperbolic Riemann surfaces 3
with any number of conical singularities with identification angles « at arbitrary positions
on ¥. Furthermore, we can interpret the deformation (1.4) as coupling JT gravity to a gas
of defects characterized by the coupling constant e and the idenfication angle « [23, 24].
The structure can readily be generalised to an arbitrary finite number (possibly even to
an infinite number or to a continuous family) of defect species with individual couplings
¢; and identification angles o [23, 24], such that a more general class of deformations to
JT gravity can be realised.

Instead of directly studying deformations to JT gravity via scalar potentials of the
type (1.4), we use the connection to two-dimensional topological gravity [26] and the related
formulation in terms of moduli spaces of stable curves [27, 28]. Previously, this approach
has been prominently employed in this context, for instance, in refs. [12, 24, 29-31]. Upon
identifying deformations to JT gravity with solutions to the KdV hierarchy (which play a
central role in topological gravity, see e.g. ref. [32]) and using well-established matrix model
techniques [33-36], we can study a rather general class of deformations to JT gravity.
From this perspective topological gravity and hence JT gravity with deformations can
be identified with certain minimal string theories and deformations thereof [35, 37, 38].
Already in ref. [12] it is observed that JT gravity can be viewed as the large p — +oo limit
of the (2,2p — 1) minimal string theory with the associated couplings ¢ given by [20, 29]

(1)
(k—1)!

These values for the couplings t; relate to a specific solution to the above mentioned

to=t1 =0, tx=r with -~ = for k=2,3,.... (1.6)

KdV hierarchy. In this work we study deformations to JT gravity by considering more
general solutions to the KdV hierarchy, which on the level of the couplings ¢; amounts to
deforming them as

ty = +0 for k=0,1,2,... . (1.7)

For particular choices of J; — as established in refs. [23, 24] and as discussed in detail
in the main text — this description realises JT gravity interacting with a gas of defects
as described by the scalar potential (1.4) and generalisations thereof discussed in ref. [24].
Inspired by the work of Okuyama and Sakai we thoroughly investigate the relationship



between general deformations &z and the specific deformations that are attributed to the
interaction of JT gravity with a gas of defects.

Moreover, we turn to some applications of our general results. First of all, we analyse
the low temperature behaviour of the calculated thermal partition functions using tech-
niques developed in refs. [29, 30]. At low temperatures the (asymptotic) genus expansion of
the thermal partition function can be given an exact analytic expression [30, 39], because
non-perturbative corrections are suppressed in the performed low temperature double scal-
ing limit. This allows us to study in this low temperature regime Hawking-Page phase
transitions and the features of spectral form factors as functions of the deformation pa-
rameters with the help of numerical methods. As a second application, we comment on
a further instance of JT gravity, which requires the inclusion of Riemann surfaces with
conical singularities, namely the wavefunction of the universe for JT gravity in de Sitter
space [40, 41]. This striking connection relies on subtleties of the analytic continuation
from sharp to blunt defects or equivalently from small identification angles to large identi-
fication angles.

The structure of the paper is as follows: in section 2 we first set the stage for the
forthcoming analysis and introduce well-established physical and mathematical tools to
study correlation functions in topological gravity. Then, applying techniques developed in
ref. [29], as a genus expansion we calculate for deformed theories of JT gravity (asymptotic)
thermal partition functions (with one or several asymptotic boundary components). The
studied class of deformations is suitable to describe interactions of JT gravity with defects.
In section 3 we turn to the low temperature expansion of the thermal partition function,
which can be computed exactly at leading order in temperature [29-31]. For certain phys-
ical applications this analysis is more natural than the previously discussed asymptotic
genus expansion because the expansion in temperature naturally sets an energy scale for
the accessible states in the computed thermal partition functions. Using the computed low
energy limit of the partition functions for JT gravity coupled to a gas of defects, we show
in section 4 that there is a Hawking-Page phase transition. We numerically compute the
associated critical temperature as a function of the deficit coupling constant, and we also
analyse the spectral form factor. We find that in the given low temperature approximation
the time scale for the onset of the plateau exhibits a simple behaviour in terms of the deficit
coupling, which conforms with the observed Hawking-Page phase transition. In section 5
we make some basic comments on the connection between the wavefunction of the universe
for JT gravity on de Sitter space dS; and the Weil-Petersson volumes of the associated
Riemann surfaces with conical singularities in the light of the recent work [42]. Finally,
in section 6 we present our conclusions, where we discuss our results and present some
outlook for further investigations.

While completing this work, ref. [43] appeared, which has certain overlap with some
of our discussions in section 2.

2 JT gravity, deformed JT gravity and topological gravity

In this section we aim to describe JT gravity together with deformations in terms of two-
dimensional topological gravity. The works [29, 30] by Okuyama and Sakai establish a



direct link between the partition functions of JT gravity and correlation functions in topo-
logical gravity. Deforming JT gravity from interactions with defects (as established in
refs. [23, 24]) yields another instance of two-dimensional topological gravity with modified
coupling parameters. While we are indeed interested in JT gravity coupled to a gas of de-
fects, we study deformations to JT gravity in a more general setting. By using the results
of ref. [32] we construct thermal partition functions for deformed theories of JT gravity,
which at any intermediate stage of their derivation can be specialised to particular de-
formed JT gravity theories (such as JT gravity interacting with defects). Our approach
could offer a starting point towards a dictionary between specific values for the couplings
in two-dimensional topological gravity and deformations attributed to scalar potentials
added to the JT gravity action, such as the potential (1.4) for deformations arising from
defect interactions.?

In part this section uses and reviews some well-established mathematical tools from
the intersection theory on the moduli spaces of stable curves to derive the thermal partition
functions of deformed JT gravity. The reader not interested in these derivations should
skip these technical details and instead view this section as a collocation of expressions
for thermal partition functions and related quantities, which are used in later sections of
this work.

2.1 Weil-Petersson volumes of hyperbolic Riemann surfaces

To set the stage and to introduce the used notation, we first collect some mathematical
preliminaries on the Weil-Petersson volumes of hyperbolic Riemann surfaces with geodesic
boundary components and conical singularities from the perspective of intersection theory
on the moduli spaces of stable curves.

Let Mg, be the moduli space of smooth curves of genus g with n distinct marked
points. By construction the moduli space M, , is not compact, as it contains neither the
limiting curve with a handle degenerating to a nodal point nor the limit as two marked
points collide. The Deligne-Mumford compactification M, ,, includes the above mentioned
limits in terms of stable curves with nodal singularities. The resulting moduli space of
stable curves is well-defined to parametrise curves with marked points that do not admit
any continuous automorphisms. That is to say M, , is defined for genus g > 2 and any
number of marked points, for genus one with at least one marked point, and for genus zero
with at least three marked points. The complex dimensions of these moduli spaces are
given by

dime My, =39 —3+n. (2.1)

The moduli space of stable curves M, , comes equipped with several natural coho-
mology classes. To each marked point p;, @ = 1,...,n, on the curve C; one associates at
the point p; the complex cotangent line Tp. Cy, which patches together to a line bundle £;
on My ,. The first Chern class of this line bundle realises a cohomology class on My,

?Results in a similar vein of thought are reported in ref. [42] as well. See also ref. [44] for a discussion
along these lines from the minimal string theory perspective.



denoted by
Vi =c1(L;) € H*(Mgp,Q) . (2.2)

The other for us relevant cohomology class is the first Miller-Morita-Mumford class k1,
which arises in a similar fashion. Consider the forgetful map = : ﬂg7n+1 — ﬂg,n that
omits the (n + 1)-th marked point. Then the cohomology class k; is given by [45, 46]

K1 = Ty(c1 (L) +sz € H2 ng) (2.3)

where the push-forward 7, can heuristically be thought of as integrating over the fiber of
the map 7. The class k1 is proportional to the Weil-Petersson Kéhler form wywp [47]

WWP — 271’2&1 . (2.4)

Upon integrating such cohomology classes over M, ,, we obtain (rational) intersection
numbers that are collected in correlators. The correlators of particular interest to us are
given by

<I€{le...7‘dn> :/7 pipf i ldy, . dy € T, (2.5)
gn Mg.n
where the classes 74, are the conventional abbreviations for wfi arising from the ¢-th marked

point. The defined correlators are only non-vanishing if the integrated class represents a
(non-zero) top class of M, ,,, which together with eq. (2.1) amounts to the selection rule

<I{€Td1"‘7—dn>gn#0 = £+d1++dn:39_3+n (26)

For these correlators we introduce the generating functions [26]

F({ty}) = Zg2g<22‘;otm> Zg Z(ntdd> (rgort L), (27)
d

|
=0 (g} ng'
and
400 oo 400 400 g $hd
G ) =Yg (¢ Sty =52 5% 050 5 (T ) g,
g=0 g=0m=0 ! {nq4} \d= d

(2.8)
in terms of the genus expansion parameter gs and the couplings {t4}. Due to the re-
lation (2.3) the two generating functions are not independent but instead are related
as [46, 48, 49]

_1\k
Gls, {ti}) = F({te + %)), 0= =0, fyk:(,i_”l)!skl. (2.9)

As the first Miller-Morita-Mumford class «1 is proportional to the Weil-Petersson Kéh-
ler form wwp (cf. eq. (2.4)), the function G (272, {t;, = 0}) evaluated at t; = 0 readily



becomes the generating function of the Weil-Petersson volumes V; of the moduli space of
genus g curves (for g > 2) without any marked points, i.e.

+oo +oo +oo
G(2r? {t, =0}) = Zgzg /7 WP = Zggg /7 volwp = Zgggvg . (2.10)
g=2 Mag,0 g=2 Mag,o g=2

Here volwp is the Weil-Petersson volume form of the (3g — 3)-dimensional moduli
space M o.

As shown in the seminal work [50] by Mirzakhani, the Weil-Petersson volume of a
hyperbolic Riemann surfaces of genus g with n geodesic boundary components of length

b= (b1,...,by) reads in terms of the previously defined cohomology classes on M, ,,
V.= / WPt Dy bje _ <@2W2”1+% Py b?¢e> (2.11)
g7b AA ’ ’
Mg,n ag,n

For hyperbolic Riemann surfaces with geodesic boundary components of uniform length b,
using eq. (2.5) it is straightforward to verify that the volumes V4 (b,...p) are generated by

400 ¢4
2k )
G {ty= 2500 =D g% Voo b)) (2.12)

i times

or upon rescaling all cohomology classes with a non-zero factor A\ we obtain with eq. (2.1)
the generating function

2g +o0 i

2 AFp2k g (Ad)" 5

G2m\ Aty = S o)) = ﬁ il (b, ...,b) - (2.13)

i times

For this generating function of Weil-Petersson volumes (and similarly for all other gen-
erating functions of Weil-Petersson volumes to be defined in the following), the volumes

V4. (b,...p) that are not in accord with the selection rule (2.6) are set to zero.> Furthermore,
for boundary components with p distinct geodesic length b1, ..., by, this generating function

readily generalises to

P 2g +oo P is
G<2W2A’ {tk B A;b’j'k&]}) =20 X (H (Afv)> AV (b, byl by) -
i=1 g i150yip=0 \s=1 s m ‘:fm—’
(2.14)
Finally, a hyperbolic Riemann surface with a conical singularity with identification angle «
can simply be obtained by replacing the argument b of a boundary component by i« (for the

identification angles in the range 0 < a; < 7).* Thus, the Weil-Petersson volume Vg pzofa

3This in particular implies that the Weil-Petersson volumes are only non-vanishing for stable curves,
with the only exception being the Weil-Petersson volume Vi for g = 1 and n = 0, which is either set to zero
or to a constant, see for instance the discussion in ref. [26]. In this work, however, the volume Vi is not
relevant as we only consider Riemann surfaces with at least one boundary component.

4The identification angle a of a conical singularity corresponds to the deficit angle 27 — a of the
singularity.



hyperbolic Riemann surface with boundary components of geodesic lengths b= (bi,...,bp)

and together with conical singularities & = (a1, ..., ) is given by
V56 = Vo, bpricr,iag) - (2.15)

Moreover, the generating function for hyperbolic Riemann surfaces with boundary com-

ponents of geodesic lengths b1, ..., b, and conical singularities of with identification angles
ai,...,0q becomes in terms of the non-zero parameter A
2 TR o A (o)
G 2w\, Stk =D S b + Y~ € (2.16)
i—1 j=1

2g 400 p is 4 e
N Ys (Ads) (Aer)
=255 2 (H 11—
g i1yeip=0 \s=1 : :
J1y-50q=0
3
XA gvg,(bl,...,bl,...,bp,...,bp),(al,...,al,...,aq,...,aq)'
——— e N —

i1 times ip times J1 times Jq times
2.2 Deformations of JT gravity from minimal strings

Before delving into the technical computation of the thermal partition functions of JT grav-
ity with deformations, in this subsection we briefly spell out the connections among topo-
logical gravity, minimal string theories, and JT gravity. This puts the forthcoming analysis
into a broader context.

Saad, Shenker and Stanford already point out that standard JT gravity relates to the
large p limit of the (2,2p — 1) minimal string theory [12]. Such minimal string theories in
turn enjoy a dual matrix model formulation [35, 51, 52|, which for finite p comes with a finite
number of coupling parameters. In the large p limit, however, an infinite (but countable)
number of couplings occur, which for standard JT gravity are set to specific non-zero values.
Furthermore, this infinite number of couplings relate to observables and their correlators
in two-dimensional topological gravity, as introduced in the previous subsection.

In the following, as in ref. [29], using the connection to topological gravity we want
to compute thermal partition functions as a function of this infinite number of couplings
in order to describe JT gravity and deformations thereof. In other words, instead of
solely focussing on particular deformation backgrounds — such as JT gravity without
deformations or JT gravity interacting with a gas of defects — we parametrise generic
deformations to JT gravity in terms of deformations of the (2,2p — 1) minimal string
theories in the large p limit, using the results of ref. [32].

Starting from a JT gravity action formulation the values of the deformation parameters
are ultimately determined from the constraints obtained from integrating out the scalar
dilaton field. For instance, JT gravity coupled to a gas of defects yields the constraint (1.4),
which is dual to specific values of the topological gravity coupling parameters. For a given
JT gravity action functional — such as JT gravity interacting with defects — we refer to
coupling values that fulfill these constraints as on-shell couplings and couplings that deviate
from this critical condition as off-shell couplings (adapting to a terminology introduced in
ref. [29]).



Turning this argument around, we can now ask whether specific values for these cou-
plings correspond to a legitimate action functional of a deformed theory of JT gravity.
Intriguingly, as discussed in the following both JT gravity and JT gravity coupled to de-
fects give rise to on-shell couplings that are governed by Bessel functions [20, 23, 24, 29].
The problem of establishing a dictionary between these deformation spaces raises the ques-
tion to what extend other transcendental functions for on-shell couplings are linked to
action functionals of deformed JT gravity theories (see, e.g. ref. [53] for the realisation
of JT supergravity). For finite p the (2,2p — 1) minimal string theories possess a finite
dimensional deformation space resulting from finitely many couplings t;. In the considered
limit p — oo, the deformations d; in eq. (1.7) can be characterized by their asymptotic
behaviour for large k. The values for the couplings t; for undeformed JT gravity are sup-
pressed factorially (cf. eq. (1.6)). For deformations arising from a gas of defects (at least
for only finitely many types of defect species) the asymptotic behaviour of the couplings ¢
for large k remains the same. On the level of the action functional of JT gravity such
deformations give rise to a scalar potential (1.4) that is exponentially suppressed for large
positive values of the dilaton ¢. In general, we expect that the asymptotic behaviour of the
scalar potential U(¢) for large ¢ relates to the asymptotic behaviour of the deformations
oy, for large k.5 Describing this duality beyond the discussed asymptotic growth behaviours
seems a challenging task, which is beyond the scope of this work. Nevertheless, we hope
that the description of generic deformations in the context of (2,2p — 1) minimal string
theories in the large p limit presented here proves useful from the JT gravity perspective
as well.

2.3 JT gravity interacting with a gas of defects

We now study JT gravity interacting with a gas of defects, which is geometrically described
in terms of Riemann surfaces with conical singularities [23, 24]. That is to say, we consider
the partition function of JT gravity with contributions from hyperbolic Riemann surfaces
with asymptotic boundary conditions together with an arbitrary number of conical singu-
larities and at arbitrary genus. The relevant path integrals localise on the Weil-Petersson
volumes of hyperbolic Riemann surfaces with geodesic boundary components and coni-
cal defects, folded with the path integral of the Schwarzian theory describing the one-
dimensional action at the asymptotic boundaries [12]. For a single asymptotic boundary
component the resulting partition function reads [23, 24]

Z(ﬂ) — GSOZdiSk(ﬁ) + 650 iejzdiSk(ﬁ7aj)

J=1
s r € €: o0
1-29)S J1° " " En t t
+ ) sy G /0 dbb ZM PN BBV, 0 o (207)
g,n=0 Jiseenjn=1
Here the parameters €, j = 1,...,r, are the coupling constants to the r distinct defect types

that are characterised by the identification angles «;; of their associated conical singularities

Ref. [44] makes an interesting proposal for a correspondence between a certain limit of Liouville theory
coupled to matter and JT gravity with a sinh(¢)-dilaton potential with a different asymptotic behaviour
for ¢ — +oo (see also ref. [54]).



on the hyperbolic Riemann surfaces. Furthermore, § is the inverse temperature attributed
to the configurations of wiggles at the asymptotic boundary of the hyperbolic Riemann
surfaces. The distinct topologies of Riemann surfaces are weighted by the action Sy that
relates to the gravitational coupling Gy as Gy ~ 1/Sy. Hence, the partition function is a
non-perturbative expansion in the gravitational coupling G of JT gravity [12]. The first
two terms in this expansion capture the contributions of disks with no conical singularities
and a single conical singularity, respectively. The remaining topologies appear in the second
line.% The individual terms in this expansion are computed as [12, 18, 25]

2

[

2 Yo b

3 277y 1 _J 1 _2

i fyie p i ’756 28 rum 756 28
Zd Sk(,@) =, Zd Sk(ﬁ,a]’) — T Zt u pet(ﬁ’b) =, (2.18)

(2m)z 32 (2mB3)2 (2mB)2

where v is the coupling constant to the one-dimensional Schwarzian action.
First we observe that the summation over defects in eq. (2.17) can be rewritten as

o T e e +0o0 T
J1 In _ Vi
Z Z n' ngb7(aj17"'7ajn) - Z H nl ngbv(alvn'vah”-7O‘T7~~'7a’r) :
n:()]lv’]ﬂ::l ’ n17"'7n7‘:0 ]:1 J: s .
nq times ny times
(2.19)

Summed over all genera g we readily express the volumes V, a;,) in terms of the

’ba(ajly'“:
generating function (2.16) as

T

= € €
29 J1 - SIn y3g
Z 9s Z | A ‘/g7b7(aj17“'7ajn)

g>n:0 jl?"'vj’nzl s
0 kp2k "\ AR=1(—a2)k
- )\285G<2ﬂ-2/\7 {tk - %5 t Z R €
=1 §=0

p2NE+2 9 5 r Ne=1(—q2)k

j=1
We insert this expression into eq. (2.17) with the relation
e=% = \2g, (2.21)
and carry out the integration over the geodesic boundary lengths in eq. (2.17) using
o0 _w? ol 2B\
/ dbpPrtle 3 =1 <6> . (2.22)
0 2 \ vy

Then we arrive for the partition function Z(3) at

27r2'y

[SII9Y

2

B r ve +0oo ()\B>€+2 o) )

—i——ge‘e?f’—i—g — — G2\ {ty, =9 ,
7= ! =0 7 Ot ( th )

(2.23)

®Due to the selection rules (2.6) for non-vanishing Weil-Petersson volumes V; 5z, the second line of
eq. (2.17) does not contain a contribution from disks without any or with a single conical singularity.

~10 -



with
)\kfl(_QZ)k

Sk= Okj, Ok =~ € - (2.24)
j

Note that only the last term of the partition function Z (/) given in eq. (2.23) is mapped to
the topological correlators (2.5), whereas the first two terms associated to disk topologies
capture the semi-classical contributions to the partition function in the presence of a gas
of defects.

It is straightforward to generalise the partition function Z () to geometries with mul-
tiple asymptotic boundaries [23, 24]. For m boundaries we define the partition function
of connected hyperbolic Riemann surfaces by Z(/1,...,m), where the inverse tempera-
tures fB1, ..., Bm describe the thermodynamics of the wiggles at the m distinct asymptotic
boundary components.

Similarly as for the partition function Z (/) of a single asymptotic boundary, the par-
tition function Z(f1, 82) with two asymptotic boundaries splits into two pieces

Z(B1,B2) = Z(Bu, B2)"""P + Z(B1, Ba2) " . (2.25)

The first term does not relate to topological correlators (2.5), while the second term arises
from an integral transformation of the Weil-Petersson volumes of hyperbolic Riemann sur-
faces with two geodesic boundary components that are computable in terms of topological
correlators, cf. eqs. (2.11) and (2.15). The non-topological piece Z(f1, 32)"°" P receives
only a contribution at genus zero from the topology of a cylinder (without any conical sin-
gularities). Using eqs. (2.18) and (2.22), this cylindrical contribution is obtained by gluing
two trumpets along their geodesic boundary components, as computed in ref. [12]

V8152
27 + 27

The selection rule (2.6) implies that the partition functions Z(fi,..., ) with m > 2
receive only contributions of the topological type, i.e.

Z(B1,-Bm) = Z(B1,. .., Pm)P for m>2. (2.27)

For any m > 1 the topological part of the partition function Z(81, ..., By) reads

Z(/Bla ﬂ2)non—t0p. — /O dbb Ztrumpet (617 b) Ztrumpet (527 b) — (226)

LB )™ = 35 2mSe 3 GG
g.n=0 J1se-sn=1 n'
X H/ db; b; ZtruInpet(Bza z) G (b150050m )5 (i ey ) (2-28)

Analogously to the formula (2.20) for a single boundary component, we express the volumes
V(b bm) (e, . aiy,,) 11 terms of the generating function (2.16) as

2 3g €51 " En
> g Z N9 BTV by b (s, i)

g,n J1seesJn=1
m +00 120\ /¢ T _
by A 8 Ae—1(_q2)k
3—m | I 2 : 2 2 :

J=1
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Inserting this expression into eq. (2.28) and carrying out the integrals (2.22), we obtain
1
Z(B1y- -y )P = ?B(,Bl) < B(Bn) G212\, {ty = 6}) for m>1, (2.30)
S

with 0y as defined in eq. (2.24) and in terms of the differential operator

B(B) = 27w Z ( - ) o, - (2.31)

It is shown in ref. [30] that the differential operator B(3) creates an asymptotic boundary
component at temperature . It is universal in the sense that without any modifications
it also creates asymptotic boundary components in the presence of defects. The operator
B(p) as a function of /3 relates to the operator in ref. [55], which in the context of two-
dimensional topological gravity creates in a surface a hole of specified boundary length.
Therefore, we refer to B(f) as the boundary creation operator.

The obtained simple forms (2.23) and (2.30) of the partition function Z(f) and its
multi-boundary generalisations Z(31, ..., Bn) in the presence of a gas of defects have a nice
interpretation from the topological gravity perspective. The Weil-Petersson volumes (2.11)
are computed with the Kéhler class 2721 on the moduli spaces M, ,, [50]. The generating
function G(2m2\, {t;.}) now expresses these volumes (as functions of the scaling and genus
expansion parameters A and gs) in terms of the shifted generating function F'({tx + vr})
of topological gravity according to eq. (2.9). As explained in refs. [12, 29], JT gravity
can be interpreted as topological gravity with non-vanishing background parameters {7 }.
Including now a gas of defects (characterised by their couplings €; and identification angles
a;) further deforms the background couplings {vx}. The leading order contribution arises
from single-defect interactions while the higher order corrections are due to multi-defect
interactions. These order-by-order contributions can be viewed as a Taylor expansion about
the JT gravity background parameters {v;}, which altogether sum up to the deformation
{ + 0k }. Thus, JT gravity interacting with a gas of defects yields yet other expansion
points of the generating function F({tx}). It would be interesting to see if there are special
expansion points that are singled out from the topological gravity point of view.

As in ref. [29], in the following we set the coupling v and the scaling parameter A to

the convenient values 1

272

Then the boundary creation operator B(f) and the background parameters &y simplify to

k
_ B +ZOO ¢ 0 -y (- af \ " 2x’;

and the partition functions become

A=r= (2.32)

Z(B) = el +2m 526 64“2‘3> 2 —B(B)G(1,{tk = dk}),

1
\/277.9362 ( j=1 s
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W% 5 B(3B(R)GA {t = ). (230

Z(ﬁla"wﬂm) = gﬁB(ﬁl)B(ﬁm)G(l’{tkzék}) for mZB)

Z(P1, f2) =

where the first two partition functions receive both non-topological and topological
contributions.

2.4 KdV hierarchy and off-shell partition functions

As conjectured by Witten [26] and proven by Kontsevich [27] the generating function
F({tx}) of correlators in topological gravity defined in eq. (2.7) arises as a solution to the
KdV hierarchy as follows. Let us define

) = Pt} (2:35)

The function u({tx}) is a tau function to the KdV hierarchy, i.e. it solves the system of
graded partial differential equations

Ot = Do Rpy1(u, dou, B, ...) with 9 = k=0,1,2,3,... . (2.36)

oty
Here Ry, k = 1,2,3,..., are the Gelfand-Dikii polynomials [56], which are polynomials
in the derivatives d§u({ty}), £ = 0,1,2,... of u({tx}), and depend on the parameter gs.
Together with the condition Ry,({9§u = 0}) = 0 they are defined with the initial polynomial
R1 = u recursively as [56]

2
OoRik11 = <2u (80Rk) + (80u) Ry + %iang) . (2.37)

b
2k+1
The first three Gelfand-Dikii polynomials read

ud

_ gs u-Y9s
Ri=u, Ro= 2 1280u Rz = 3] —|— <2u80u + (o) ) 240 (2.38)
The leading order term of the Gelfand-Dikii polynomials is given by
k
U
Rilg—0 = 77> (2.39)

independent of any derivatives dou({tx}), au({tr}), Ou({tr}), - ...

As the KdV hierarchy (2.36) depends only implicitly on the couplings ¢, the function
v({tp}) = O2F ({ty, + At}) is a tau function for any set of constants {At;}. In particular,
a tau function arises from the generating function G(s, {tx}) of Weil-Petersson volumes (cf.
eq. (2.9)) and from the generating function H({t;}) of correlators on hyperbolic Riemann
surfaces with conical singularities given by

H({tx}) = G(1, {tx + 0r}) = F({tx + & + 0x}), (2.40)

in terms of the constants Aty = v + g, cf. egs. (2.9) and (2.33).
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The particular tau function u({tx}) of topological gravity and hence the tau function
v({tx}) with the shifted couplings obey the string equation [57]
+oo +o00
Oou =1+ Z tLOku Ogv =1+ Z(tk + Atk) oLV . (2.41)
k=1 k=1
The string equation together with the KdV hierarchy determine unambiguously the tau
functions u({t;}) and v({tx}) [26]. The string equation can be viewed as the initial condi-
tion specifying a unique solution to the KdV hierarchy.

The partition functions Z(fi,...,Sn) defined in eq. (2.34) do not depend on the
coupling parameters {f;} appearing in the definition of H({t;}). Instead the gener-
ating function H({t;}) is evaluated at the specific values ¢, = 0 (corresponding to
tr = Yk + 0 in terms of the generating functions F'({tx})). We can define partition
functions ZF ({tx};B1,...,Bm) based on F({t;}) or alternatively the partition functions
ZH({tx}; B1,- .., Bm) based on H({t;}) depending on {t;} by generalising the topological
part in egs. (2.34) to

28 ({ta}: Brv- s o) P = glzzswn BB F({ti}) .

: (2.42)
ZT({te}; Br, - Bn) P = ?B(Bl) -+ B(Bm)H ({tr})

Following ref. [29] we refer to Z¥({t1};B1,...,8m) and Z2({t;};B1,...,Bm) as the off-
shell partition functions, and upon specialising to suitable values for the couplings {tx}
— denoted as on-shell values — we get back the result Z(fy, ..., 5y) referred to as the
on-shell partition function, i.e.

Z(/Bh76m):ZF({tk:7k+5k}MB17aﬁm):
Z(Bis-. -\ Bm) = ZH({tk, = 0}; 81, -+, Bm) -

These two classes of off-shell partition functions enjoy distinct interpretations. Whereas
the off-shell partition function Z¥({tx}; 1, ..., Bm) is defined in the setting of topological
gravity in the context of intersection theory on the moduli spaces of stable curves [26, 27],

(2.43)

the partition functions ZH ({t;};31,...,m) directly relate to correlators on hyperbolic
Riemann surfaces (possibly coupled to a gas of defects as described by the constants {dx})
in the context of JT gravity [12, 29]. These two classes of off-shell partition functions are
related as ZF ({ve + 6 +tr}; B - -5 Bn) = ZH({te}; B1s - -+, Bm)-

Let us now determine the introduced off-shell partition functions explicitly. The tau
function (2.35) and the generating function F'({tx}) enjoy the genus expansion

u({tr}) = Zg u({te}),  F({tx}) = ZQ?FK ({tr}), (2.44)

such that F, = 93u,. The KdV hierarchy (2.36) with eq. (2.39) and the string equa-
tion (2.41) imply for the genus zero contribution the partial differential equations

g — 200 Bouo = 1+ iot Oy (2.45)
kU0 = ) oo = k VEWO - .
(k+1)! Z
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Defining the series
Ly (ug, {tx}) = Ztlm X for n=0,1,2,..., (2.46)

and using the partial differential equations (2.45), Itzykson and Zuber show for the genus
zero part uo({tx}) of the tau function u({¢;}) the remarkable functional relation [32]

ug — Io(uo, {tx}) =0 . (2.47)

1-N+Y "k
With the ansatz ug({tx}) = Zznk N U0, {ng} o 2k (t7't5? -+ ) summed over
non-negative integral sets {nk} one readily determines order-by-order the formal expansion

in the coupling parameters {tj}
2 Lo 3, 3,2 s
uo({tx}) = to + tot1 + | tot7 + §t0t2 + { oty + §t0t1t2 + 6t0t3 +.... (2.48)

Imposing the correct boundary conditions, the function ug integrates to [32]

3 k’+2 1 +o0 /i‘+1 k t tk n
t t 2.49
Foluo, ti}) = 5, Zkk+2k' Zk+1  nl(k (249)
Furthermore, observing that the functions (2.46) obey the differential identities
1 I
Olo=——,  Oply=—"TL for k>1 (2.50)

1-5 1-54

Itzykson and Zuber establish that the KAV hierarchy implies at higher genus the finite

non-trivial expansions [32]
I & I tag
_ -1 2 3g
29 (k—1)t,=3g—1

Inserting this ansatz into the KAV hierarchy (2.36) (recursively in the genus) determines
unambiguously the numerical cofficients ug (4, 1, for instance up to genus g = 2 we arrive at

1 I 21 I3
_1 2 2.52
D) ((1—11)2> Ty (2:52)
4913 111313 71413 109131,
uz = (1 - 1) 0T 9 8 8
288(1 — I))10 " 36(1—1,)° ' 96(1 —I;)® ' 1152(1 — 1))
IsIy 17131, Is )
2.53
T 90 =) T 960(1 = 1) T 1152(1 — 1)° (2:53)
At genus one uj({tx}) integrates to
Fi = — 2 log(1— 1) (2.54)
1= ~5 0g 1) - .
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The generating functions Fy for g > 1 enjoy yet again an expansion of the form [32]

T Ly T l3g—2
R DD VR Al (s T I (e v M

3g9—2
o (k—1)t,=3g—3

in terms of the finitely many coefficients f; s, (with the subscript {¢;} = {¢2,43,...}). In
particular, with eq. (2.53) we find for g = 2 the numerical coefficients

7 29 1
faq3 = 1440 foiy = 5760 J2.000,1) = 1153 (2.56)

and we arrive at

7 I3 20 I3 1 I,
_|_
1440 (1 — I,)® * 5760 (1—-1L)*  1152(1— )3

Fy = (2.57)
Thus, the method of Ttzykson and Zuber — expressing the tau function u({¢;}) and hence
the generating function F({tx}) in terms of the functions I, (ug,{tx}) — offers a very
powerful method to compute the generating function F'({tx}) order-by-order as a genus
expansion [32]. Upon inserting the expression (2.48) to the desired order, one can readily
read off the correlators of topological gravity explicitly.

Solving the KdV hierarchy in terms of the functions I,, allows us to derive a universal
expression for the off-shell partition functions (2.42) with arbitrary shifts {Atx} in the
coupling parameters {t;}. The defined off-shell partition functions (2.42) are derived from
the generating function F(Fy,{I,}) = Fo + ZgofgggF ({I.}), which — if expressed in
terms of Fy(uo({tr}), {tx}) and L (uo({tx}), {tx}), n = 1,2,3,... — only implicitly depend
on the couplings {t;}. Computing the action of the boundary creation operators (2.33) on
the functions Fy yields

Js ﬁ[ +o0 Ik-‘rf-‘rl ﬁk+2 t@
BB)Fy = —2 | eflo(1—BIy) — 1+ :
(8)Fo 5271'5& ( 0 k;Ok—i_E_‘_l koo (2.58)

95 V5152 (6(51+52)10 _ 1) 7

BBIB(B)F = 55— s

whereas for I,, we find

Blo
B(B)1y = gs\/zle_ I B(B)I = gs\/zemo (/3’“ + (1Ik—+}1)) for k>1. (2.59)

As a consequence of these derivative rules — except for the leading genus zero contribu-

tion to the partition function with one asympototic boundary — the off-shell partition
functions (2.42) are universally expressible in terms of the functions I,,, i.e.

Z({B(B)Fo, In}: B)*" = 91 BAF({te}) = B8 B)Fo + 29O ({L,}; 8)",

s s (2.60)
Z({TLo}; B, ..., Bn) 1P = 975(51) B(Bn)F({ty)) for m>1.
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In particular, the partition function with a single asymptotic boundary component enjoys
the genus expansion

;B(ﬂ)FoJr\/» %Zg?gl ~ 1) Z,({1a).5). (2.61)

S

Z({B(B)Fo, In}; B)"P =

h
o Z—l( p L P2 ) (2.62)
YUog\1-n "Ta-0n)2)’ ‘
and for g > 0
;o Z f 392:2€< 1+2s (64— I )+ . +,Bs)
(A 9-{x} ) 1-5)  La-1) 1,
L (k—1),=3g-3

in terms of the constants fy (4} defined in eq. (2.55). With eq. (2.62) and inserting (2.56)
into Z» we find explicitly up to genus two

) o gs | B BIo I5} I
g>0 ({[}ﬁ)tp 24\/76 <1—11+(1—11)2>

g |8 6510< 560, 296°L + 29515 + 1581 + 515
(

5760 1— L) (1—1)°
+8Mﬂ@+1wﬁkb+4ﬂuj+w@ 2012(7B15 + 1013)
(1—1p)8 (1-1)7
14014
S I 2.64
Jr(1—11)8> " (2.64)

Similar formulas can be worked out for the universal partition functions with several asymp-
totic boundary components, namely

Z({In}; B, .., Bn) P = ﬁ (eﬁﬂo\/> ) g1 = 1) Zy({Tn}s Brs s Bm) s

=1
(2.65)

where

gsVP1 - Bm e(B1t +5m)10(1

B(B1) - B(Bm)F, = — 1) Z,({1.}, Bry - Bm) - (2.66)

(2m)%

In particular for two asymptotic boundary components the leading order contributions are

given by
Z({L,}; B1, B2) = _ VBB (s, 95VPIP2 m (BrtB)lo (WM
) 271‘,8 +27T62 (1_11)
2(81 + B2) 2 + I3 2[2 >
: 2.67
(1_11)3 * (1—[1)4 ’ ( )
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including the semi-classical contribution, cf. eq. (2.34). Thus, any of the off-shell or on-shell
partition functions defined in eqgs. (2.42) and (2.43) can be obtained from the universal
partition functions (2.60) upon inserting I,({tx},uo({tx})) with suitable values for the
couplings {t;}. For instance, inserting I, ({tx + vk + O}, uo({tx + Y& + 9k })) we obtain the
off-shell partition functions ZH ({tx}; B1, ..., Bm), whereas for I,({vx + d&}, uo({7& + 6% }))
we arrive at the on-shell partition functions Z(f1,...,8m,). In the next section, we focus
on the partition functions Z(to,t1;01,..., Sm) studied in refs. [29, 30|, where we assign
on-shell values to the couplings t;, k = 2, 3,4, ..., while keeping the first two couplings tg
and ¢; off-shell [58].

While the presented genus expansion in the coupling gs ~ e~ 1/EN

is non-perturbative
in the gravitational coupling G of JT gravity, it is perturbative in the dual matrix model
formulation, where the expansion parameter gs; describes quantum fluctuations about
the classical energy density of states [12, 20]. In fact the discussed partition functions
Z({I,}; 51, .., Pm) are divergent series in g5 due to the factorial growth (2¢)! of the con-
tributions at order g29 [12, 58]. Therefore, the partition functions Z({I,}; 81, .., Bm) are
asymptotic series that require a non-perturbative completion arising from non-perturbative
effects of the order e1/9s. For further details on this issue and the possible emergence of
non-perturbative instabilities, we refer the reader to refs. [12, 20] and the solutions proposed
in refs. [20-22].

2.5 Partition functions with leading order off-shell couplings

In the spirit of refs. [29, 30] let us now consider the partition functions Z(to,t1;f1, .- ., Bm)
with only the couplings #y and t; taken to be off-shell. Then the partition functions for
JT gravity coupled to a gas of defects are defined as

Z(to,t1; 615+ Bm) = Z({to, ti, tk>2 = Ve + 0k} 81, - -5 Bm) (2.68)

where setting tg = dp and t; = &1 yields the on-shell partition functions in all couplings.
Analogously, we can define the function wu(tg,t;) and the generating function F'(tg,t;)
obtained by evaluating the couplings t;>2 of the tau function u({tx}) and of the generating
function F'({tx}) at their on-shell values, i.e.

u(to, t1) = u({to, t1, tk>2 = Y& + 0k }), F(to,t1) = F({to,t1,tk>2 = v + 0k}), (2.69)

with

u(to,tl) = 0§F(t0,t1) . (2.70)
All these functions can respectively be obtained from their universal expres-
sions (2.60), (2.51), and (2.55) by inserting the on-shell values of the couplings t;>2 into

the functions I,,. The function u(to,t;) fulfils the first partial differential equation of the
KdV hierarchy (2.36), which is just the non-linear partial differential KdV equation, i.e.,

2
O1u = uOyu + % AR . (2.71)
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With ¢y and £ off-shell we observe that the function I; depends only on t; and ug = I,
while I, for n > 2 are series in ug without an explicit dependence on tg and t1. Therefore,
it is convenient to introduce new (formal) variables (y,t) given by [29, 58]

Y =ug, t=1-1; . (2.72)

Since I, for n > 2 is only a function of y, we obtain from the universal tau function (2.51)
and the universal generating function (2.55) the asymptotic series

00 5g—1
wy,t) =y+ > gPug(y.t),  ug(y.t)= > ugry)t ", (2.73)
g=1 k=2g+1
and
59—5
F(y,t) = Fy(y,t) — logt—i— ng y,t), Fyly,t) = > Fyuly,t)t™" . (2.74)
k=2g—1

The coefficient functions ug4(y, t) (for g > 1) and F,(y, t) (for g > 2) are Laurent polynomials
in the variable ¢, where the range for the powers of ¢ is a consequence of the restricted
sums in egs. (2.51) and (2.55). The degrees of these Laurent polynomials conform with
the structure derived by Zograf for the specific on-shell couplings t; = v for k > 2 [58].
Furthermore, at genus one the logarithmic contribution to F'(y,t) arises from eq. (2.54),
whereas with eq. (2.49) the genus zero contribution becomes

XYk +0r) 1 (IR k(o + o) ’
k+2)k+Dk—2)! " 6 Zﬁ

1
Fy(y,t y3t? 7275 =
0(y:1) =Gvt" + Z T\ -2

it o
+Z ST k+2.2<ii§><><k2 )mwn)wk_ﬁak_n).

(2.75)

Let us now turn to the partition function Z(to, t1; ) with a single asymptotic boundary.
Since the couplings t;>2 are taken on-shell we cannot obtain Z(to,t1; 5) by acting with the
boundary creation operator () on the generating function F'(tg, 1) because the boundary
operator B(f) contains derivatives with respect to those parameters that have been fixed
to their on-shell values. Thus, either we compute Z(to,¢1; /) from the universal partition
function (2.60) or we determine a differential equation with Z(to,¢1;3) as its solution. For
the latter approach we follow the authors of ref. [29]. Note that the partial derivatives J
for k > 2 appearing in the boundary operator B(3) can be rewritten in terms of derivatives
with respect to dy due to the KdV hierarchy (2.36), namely

02 (to, 11: B) = ;B< Vo F ({ti})

S

1
= ———=—=+Wi(to,t1;8),  (2.76)
{te>2=7%+0k} 9gsV2m3

with the definition N
1 o0
W (to,t1;8) = —— Y B'Ry, 2.77
( ) gsvV 2775 ;) ( )
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in terms of the Gelfand-Dikii polynomials (2.38) and Ry = 1. The key observation of
ref. [29] is now that the Gelfand-Dikii polynomials obey the non-trivial relation”

2
"R =udyRy + %ang , (2.78)

which immediately implies the differential equation

2
W (to, 13 8) = u W (to, 13 ) + L5 0RW (to, 113 8) - (2.79)

The partition function Z(tg, t1; 8) can now be determined from this differential equation for
W (to, t1; 8). The function W (to,t1;3) is an interesting quantity by itself, see for instance
the discussion in ref. [29].

Upon expressing the couplings (tp,t1) in terms of the variables (y,t) defined in
eq. (2.72), the function W (y,t; ) enjoys the asymptotic genus expansion

W(y,t; B) = 20 Wy (y, 5 8), (2.80)

where — due to the definition Ry = 1 and due to the leading order behaviour (2.39) of the
Gelfand-Dikii polynomials — the genus zero contribution reads

Wo(y,t;8) =1 . (2.81)

By inserting the variables (2.72) into the to-derivative of the universal expressions (2.63), we
find that the higher genus contributions Wy(y, t; 3) are polynomials in t~1 with coefficient
functions in terms of y and 3 of the form

59—1

Wy(y,t; 8) = Z W i(y; B 7% for g>1. (2.82)

k=2g
Inserting the asymptotic expansion (2.80) into the partial differential equation yields the
recursion differential equation [29]

— 1
== > ug-nV(BWi — V(5 Wy, (2.83)
with the linear differential operators
1
V(B) =8+ g = (=10 +Dy),  Dy=09,+8. (2.84)

Furthermore, inserting the expansion (2.82) into the differential recursion relation and car-
rying out a few steps of algebra yields recursion relations for the Laurent modes Wy 1.(y; 5).
With the initial genus zero contribution (2.81) we arrive for genus g = 1 at®

3

Wik = %ul,k + B 5k2 + (3]2,32 + Igﬁ)ékg + I86[22(5k,4 for k=2,3,4, (2.85)

"This relation can directly be proven by induction with respect to the index k of the Gelfand-Dikii

polynomials Ry. The induction step is performed by applying the recursion relation (2.37) of the Gelfand-
Dikii polynomials.

8Note that the polynomial structure (2.82) of W,(y,t; 3) fixes the constant of integration in the differ-
ential recursion relation (2.83) with respect to ¢t unambiguously.
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which explicitly becomes with eq. (2.52)

e B

B8
242 T 24

2
ol - (2.86)

Wiy, t; 8) = (281 + I3) +

Furthermore, for ¢ > 2 and k =2¢g+1,...,5g9 — 1 we arrive at the lengthy but straightfor-
wardly applicable recursion relation

g—15h—1

1
Z Z IQUg hk—n—1Whn + ~Ug—h k—nDyWhn +éug,k:
k k
h=1n=2h
1
+ ﬁ[ Wyt ks + (3(k = 2) D2 + (3k — 8)I3Dy + (k — 3)14) Wy 15

+ (3(K* = Bk + 5) 13Dy + (k — 4)(3k — 5)Ia I ) W1 4
+ (k= 5)(k = 3)(k = DIEW, 1 5] , (2.87)

where we set Wy, , =0 for n & {2h,...,5h — 1} and up,, =0 for n & {2h+1,...,5h — 1}.
In particular, for genus two we readily compute

Wa(y,t; B) = (2.88)

5760 t5
N 2008313 + 40082515 + 145813 + 22081514 + 1021314 + 641515
16
L b (1128213 + 24081315 + 841415 + 10913)
t7
2013 (49815 + 8813) ~ 98013
* t8 T '

B (555 N 44545 + 583315 + 44321, + 20815 + 516

With the help of these recursion formulas we are now in a position to deduce the

partition function Z(y, t; §) with one asymptotic boundary component as well. The general

structure (2.63) implies for the partition function the asymptotic series’

Z(y,t; B) = 2929 "Zg(y, ;) - (2.89)

The genus zero part splits into the semi-classical and topological contributions

ZO(ya t; /8) = ZO(ya t; B)semi. + ZO(yv t; B)top. ) (290)

where — using eqs. (2.33) and (2.34)— the semi-classical part is given by

7 semi t(l + yﬁ 1 = yk k + 5k
Zo(y,t; = § j
O(ya 7/6) mBQ \/F

1 X yk_l(% + 5k X o + %

+ Venp: = (k—=1)! \/27‘(‘ Z ’

9Note that the newly introduced contributions Zg to the partition function differ from the definition of

(2.91)

Zg4 given in eq. (2.61) by a normalisation.
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and where — according to eq. (2.58) — the topological part reads

. t e Xk (yp, + o)
. top. _ _ By 1 . Y \Vk k
Zo<y7t, 6) \/%IB% (6 ( +y5)) \/meQ k!
Jioyk 'Yk+5k: 63y_1+°° y* 1 (v + Ok)
\/277 «/27rﬁ2 = (k=1

1 Iorx yk+z+15k+2 .y
+ﬁ7ﬁ,§;m et o) (2.92)

Therefore, the total genus zero contribution becomes
By +00 k( k=1
. " ( k + Ok) Y ( + 5k)
P T Z
1 +00 400 yk+é+lﬁk+2 (k‘ 4/ 6k + Ve

1
ot 2 G ) JWW A - e

For the higher genus contributions we arrive with eq. (2.63) at the polynomials in ¢+

~ eﬁy 592—:3 N
Zg(y, t:8) = —— Zgk(y; B)t" for g=>1. (2.94)
V2rB2 250
Thus, employing the derived recursion relations for W, j(y; 8) we can determine Zy(y, t; /3)
recursively upon integrating eq. (2.76). Note that the constants of integration at each order
in g5 are unambiguously determined by the general structure (2.94). Explicitly, we find for
genus one — in agreement with eq. (2.62) — the result

By 2
20.8) = 3775 (5 +512> , (2.95)

whereas for genus two — in agreement with eq. (2.64) — we obtain

VB Py (554 296315 + 295%13 4+ 1581, + 515

(yv 75) 5760\/7 A

845212 + 11681315 + 441415 + 2913 N 2013(7B12 + 1013) 140513)
t5 6 t7

(2.96)

Let us give an alternative perspective on the partition function Z(y,t; ) in terms of
the associated Schrodinger problem [33, 35, 36]

HIﬂE(to,tl) = EwE(to,tl) with H = h28(2) + u(t(),t1) , (297)

with & = \9} Hamilton operator ‘H, and the wavefunctions 1 g(to, 1), which are eigenfunc-
tions with energy eigenvalue E. Here the partially on-shell tau function u(tg,t;) becomes
the potential of the Schrodinger equation, and the partition function can be written as

Z(y,t; B) = /dE e PEp(E;y.t), (2.98)
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in terms of the spectral density p(E;y,t) of the energy eigenvalues of the Hamilton operator
H. This formulation offers a framework for a non-perturbative description in the genus
expansion gs. However, since in our context the tau function u(tg, ¢1) itself is only given as
an asymptotic series in gs, setting up the appropriate non-perturbatively exact Schrodinger
problem is nevertheless a difficult task. This question has been discussed and analysed with
numerical methods in refs. [20-22]. Here we only focus on the leading order contribution
at genus zero, which predicts the integral representation

Zo(y, t;8) = /dE e Epo(B;y,t), (2.99)

in terms of the genus zero spectral density po(F;y,t). To verify this prediction explicitly,
we first express the genus zero partition function (2.93) as

e (t+J(y)) — e J( )+\/?/y dv e’ J(v) (2.100)
T varB Y T\ am ) ’ ‘

in terms of the function

(2.101)

Here we assume that the function J(v) is continuously differentiable in the interval (—oo, y),
and that the stated integral (for 8 > 0) is finite. Performing an integration by parts and
using the integral identities

—BE +oo
/ B — / ¢ f B — / dEe PEVE ¥ z, (2.102)
E + Z ZBZ —z

we arrive at the expression

- +o0
Zo(y.t:8) = | dEeEpo(Eiyt), (2.103)

-y

in terms of the (genus zero) spectral density

ﬁ / 1 E J ,(_U)

po(Bsy,t) = =B +y (t+7'() —\/gﬂ/_ydvm. (2.104)

The obtained result agrees with the expected structure of the partition function ob-
tained from the associated Schrodinger problem. Note that the obtained function po(E;y, t)
enjoys only the interpretation as a spectral density, if it is non-negative over the energy
range (—y, +00). The conditions J'(y) > —t and J'(v) > 0 for v € (—y, +00) are sufficient
to ensure a non-negative spectral density function (in the genus zero approximation). For
some energy ranges E in the interval (—y,400) we seemingly arrive at a negative func-
tion po(E;y,t). However, as on the classical level a Hawking-Page like first order phase
transition can be observed when varying the potential (1.4) [59], it might be expected
that here too, a phase transition occurs preventing the aforementioned negativity of the
spectral density function. In ref. [60] this was only observed to be true for a specific class
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of models for which U(0) = 0 with U(¢) (again referring to eq. (1.4)), while a larger
class of models, namely those for which U(0) # 0, are declared both perturbatively and
non-perturbatively unstable.

For energies F close to the negative coupling —y the calculated energy density
po(E;y,t) behaves as

V2t 3
po(Esy,t) = ~=VE Ty +O(E - Ey|?) . (2.105)

Therefore, we can interpret the negative coupling —y as the (semi-classical) ground state
energy of the Schrodinger problem. In particular, for JT gravity in the absence of defects
the on-shell value of y becomes zero, and hence the ground state energy vanishes. Coupling
JT gravity to a gas of defect, however, yields a non-vanishing on-shell value for y according
to egs. (2.33) and (2.72), which therefore results in a non-trivial shift of the ground state
energy. This observation is in agreement with the results obtained in refs. [23, 24], and we
get back to this point in the explicit example below and in section 3.

Finally, let us illustrate the structure of the partially off-shell partition function
Z(y,t; B) for JT gravity interacting with a single defect type specified by the coupling € and
identification angle . Then — according to egs. (2.9) and (2.33) — the on-shell couplings
t;, for k > 2 become

-1 k 2 k ) 2
ty = (=1) + (—4@2> % for k>2, (2.106)
. I8 .

whereas the remaining unfixed couplings ¢y and ¢; acquire their on-shell values upon setting

o2
(t0: t1)|on-shens = 27€ (17 el (2.107)

The on-shell values of the variables (y, t) defined in terms of (tg, t1) in eq. (2.72) are governed
by the functional relations

0= VI T1(2vY)|onshen + (27°€) T <O‘\/37>

s

27:1[/3771 (af>

M
on-shell

(2.108)

t’on—shell = ‘70(2\/§>|0n-she]l + (27T26)

?

on-shell

in terms of the Bessel functions 7, (x) of the first kind

N 1)k 22 k _
Jy<x>=(2) kzzowj k)+1> . <4>  Ton(®) = (—1)" 7 (x) for integer n
(2.109)

In the limit of vanishing defect interaction ¢ — 0 the functional relations (2.108) have the

on-shell solution (y,t)|,, en = (0,1) in accord with ref. [29]. Solving for (y,t)|,, qpey i
the vicinity of (0,1) for small e with the implicit function theorem, we obtain for (y,t) the
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on-shell expansion in the first few orders

72 (150 — 727202 4 807) 4

2 2 (o, 2 2\ 2
Ylonshe] = 2T €+ (271' —a)e + 51 e€+...,
o? — 4rx? at — 8r2a? + 87t
tlon-shen =1 + 5 €T 3 ¢ (2.110)
21a8 — 216720 + 5767 a? — 44870 4
+ 983 € +....

According to eq. (2.105) these on-shell values give rise to a non-vanishing ground state
energy, which to leading order in e reads

Ey = —2m%c + O(€%) . (2.111)

Furthermore, inserting the on-shell couplings (2.106) into the functions I,, for n > 2 yields
in terms of the Bessel function (2.109) the expressions

In(y)z(\(/_y%%l@\/g)ﬂ%ze) (27:?/@) Tn (04;/@> for n>2. (2.112)

Similarly, the function J'(y) defined via eq. (2.101) becomes

J'(y) =1+ 27T2ea—2 — Jo(2y/y) — (27%) Woz N/l (Oéwy) . (2.113)

472

Thus — according to eq. (2.104) — the genus zero contribution of the spectral density
is given in terms of the Bessel functions Jy and J; and the modified Bessel functions Zy
and Z; by

1 B To(2v0) + (210 525 T (QT\/?)
:m/—yd” VE v

with the modified Bessel functions defined as Z,,(z) = i7" 7, (iz). This result is in agreement

po(E3y,t) (2.114)

with refs. [23, 24]. Finally, upon inserting the expressions (2.112) into the general genus
one and genus two results (2.95) and (2.96), we arrive at Zi(y,t;3) and Zs(y,t;5) in
terms of Bessel functions. Expanding these results to leading order in the coupling € we
respectively obtain

VA .
! (y7 G 5) ’y:27r26+(9(62),t:1+%(a2—47r2)5+0(e2)
6362”265 1 o’ 72
T Vi s 12
ﬁ%e%%ﬂ ( 1 ate a’e 2e

+ = \2a " 3302 21 + ) + O(e?), (2.115)

m
8
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and

%2 (y’ £ B) ‘y=27r26+(9(€2),t=1+%(a2 472)e+0O(e?)
5262”26’6 1 a’e  mle 52 e2r’ed [ 29 29ate 2902¢ . 20372¢
V2 1152 768 ' 192 V2 5760 9216072 2880 5760

5562” [ 139 29a5¢ N Tate 181a2€+16977r26
11520  11059207* '~ 384072 5760 17280

% 449 aBe 2905¢ N 461late  TT7ae N 526972¢
11520 1179648776 27648074 4608072 576 13824

5262” p ( alVe N 1108 19a5¢ 289ate
9216 7077888078 | 442368076 12288074 13824072

1267a e 3239712%¢

o 2
27648 23040 ) +0(e) - (2.116)

We observe that at every order in the inverse temperature (3, there are contributions from
the interaction with the defects already at the linear order in the defect coupling €. There-
fore, it is obvious that the dynamics of JT gravity are strongly influenced by the interaction
with defects.

Finally, let us remark that the generalisation to multiple species of defects (with defect
couplings €; and identification angles o) is straightforward. Namely, the on-shell values
of the couplings (y,t) of eq. (2.110) generalise to

1 1
on shell — = 2n? ij + Z (277' *71'2042 — 277'20(%) €j€p + ...,

2.11

ak—i—a?—&r (ak+a)+167r ( 7

onshell 1+Z Z 16 6]6k+... .

gk
Furthermore, the functions (2.112) and (2.113) now become
(=" 2 " VY
L(y) = —=—5JIn-1(2yy) + 27 € | — In () for n>2,
(\/’)n 1 \[ Z J 27Tf T

(2.118)

Ty )_1+2w2zej4 — Jo(2) —271'226]2 (O‘jﬂ) .

™

With these expressions at hand one can again readily compute order-by-order in the genus
expansion parameter gs the partition function of JT gravity coupled to several species of
defects.

3 Low temperature expansion

So far the partition function has been organised as a genus expansion. That is to say,
for any given genus different powers of the temperature 7' contribute in combination with
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different powers of the defect couplings €;. The contribution to the thermal partition func-
tions at each genus are multiplied by polynomials in the inverse temperature § = 1/T.
Hence the magnitude of these polynomials are bounded for high temperatures, and the
genus expansion in gg is sensible in the high temperature regime. However, this expansion
breaks down in the low temperature limit 8 — 400 unless we keep gs3°/2 fixed. Then the
perturbative genus expansion remains finite and can be summed exactly [29-31]. This dou-
ble scaling limit implies for the genus expansion parameter g, — 07, and as a consequence
the non-perturbative corrections of the type ~ e~1/9 vanish in this limit.

To study in the following in the described low temperature limit the interaction of
JT gravity with a gas of defects, the couplings €; — which are the characteristic energy
scales of the defect, see, e.g., eq. (2.111) — must be comparable to the low temperature
scale T'. Therefore, we additionally require that for 8 — 400 the products fe; remain
constant as well. This limit also implies that non-perturbative corrections of the type
~ e 1/lél are exponentially suppressed.

3.1 Low temperature limit

Let us consider the low temperature expansion of JT gravity coupled to a gas of defects of
a single species type characterised by the defect coupling ¢ and the identification angle .
To this end, we want to compute the partition functions Z(f1, ..., Bn) defined in eq. (2.34)
in the double scaling limit

Bi = +oo  with gsﬁf’m = const., €8; =const. forall i=1,...,m, (3.1)

with distinct inverse temperatures S3; for the individual boundary components.'® The
inverse temperatures of the boundary components are conveniently described in terms of

the universal inverse temperature scale § and the dimensionless constants
G

g
Then the above limit becomes 5 — 400 for constant positive values b; while keeping gsﬁ3/ 2

and €S fixed.
In the limit (3.1) (the topological part of) the partition function of eq. (2.34) becomes

Z(ﬁlv v aﬁm)top'
_ 9125(51) - B(B)G (L, {ts = 8,))

s

S (9582)%~ ™ (eB)"

b; (3.2)

g,n=0 (277)7

S it lm—men—3g+3 (O bt

Yo Attt g T 20y, - O, Gy men ({t1)) ,
01, =0 =0} /¢

(3.3)

1011 the absence of defects the low temperature limit of the partition function Z(B:, 82) was previously
derived in ref. [30]. For the uniform limit 3 — 400 with 8 = 81 = ... = B, the low temperature limit of
the partition functions together with defects has been first reported in ref. [31].
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with the generating function G(1, {tx}) = 3°,,, 939Gy n({tx}) decomposed into the contri-
butions G, indexed by their genus g and their number of marked points 7. Imposing now
the selection rule (2.6) and inserting dp = 272, we arrive at

+ZOO (9sB2)%9 2™ (2% 3)"

Z(Bry- s Bn)" P =

ot (27)2 nl
R
Z b, - bm <7'0 Tty Ton) g + OB b, (3.4)
01, fm=0

in terms of the non-vanishing correlators (2.5) on the moduli space of stable curves Mg . 4n
of genus g with m+n marked points.!! The string equation of topological correlators implies
(expect for the genus zero correlator (19o7970), = 1) [26]

n!
(7070, Te) g = Z PR (7o, —py "‘Tfm—pm>g ) (3.5)
p1++pm:n p]. pm
where (7q, -+ Ta,,), = 0 if any a;, i = 1,...,m, is negative.

Following ref. [30], we express the low temperature limit by applying the results of
ref. [39]. Namely, let us define the generating function F of topological correlators with m
marked points as

400 +00
— T Z Z T Tg
=0 g=1
L+ Y +ZOO b
-7:($17332) = $11x22 <Tf17_42> )
:Bl + $2 Zl 32—0 g—l g
+o00
F(T1y..yTy) = Z Z:c cegbm (g, ©T,), for o m>3. (3.6)
£1,e.cfm=0g=0
Using these expressions with the string equation (3.5) and formula (74, -+ 7o, )y = %
we arrive from eq. (3.4) (for any m > 1) at
g B 72¢8; _
Z(B1,- -, Bm) = H S PGB, g2 ) + OB, (3.7)

because Z(B1,- .., Bm)°P = Z(B1,. .., Bm) for m > 2 while the semi-classical terms of the
partition functions Z (1) and Z(51, f2) are included in the leading non-polynomial terms
in F(z) and F(z1,x2), respectively.
For this generating functions Okounkov has developed a remarkable formula spelt out
in ref. [39], namely
m/2
F(x1y.. ) = %9(2_1/%1, 27 By (3.8)

1 ... " Tm

"The correction terms (’)(571) depend on the genus expansion parameter gs and the coupling € in such
a way that in the double scaling limit (3.1) they approach zero at least with the rate ~ 1/3.

~ 98 —



where

(_1)Z(a)+1
Glar, - im)= Y e Y Elo(ra) (3.9)
(o)
CMGHm UES@(Q)
Here the first sum is taken over the partitions II,, of the set {1,...,m} with m elements

where the individual partitions « characterised by their length ¢(«). Furthermore, to each
partition « of length ¢(«) is assigned a vector z, of length ¢(«), where the individual
entries of z, are in turn given by sums of the variables x; indexed by the subsets in «.
For example the partition o« = {{1,3,6},{2},{4,5}} € Ils of length ¢(cr) = 3 yields the
vector x,, = (1 + 3 + 6, T2, 24 + T5). The second sum runs over the permutations o in
the symmetric group Sy, of size £(a), where o(x,) permutes the entries of the vector z,,
of length ¢(«). Finally, the function £(x1,...,xy) is defined as

1 i @ ¢ imvig)? e vitvi
El@r. @) = 23715/2 .e/m . .1- z¢ Jy;>0 dyr---dyee Zim Tk T )
(3.10)
with yg11 = y1. For further details on the function G(x1, ..., x,,) see the original definitions
in refs. [39].

Using the integral formulation of the generating functions F, in the low temperature
limit the partition function Z(3) is calculated to be

Z(B) o2 o) (3.11)
=3+ ) .
V2T gs 32

while the partition function Z(f1, 82) becomes

erf(2‘3/2gsm) +O(BY, (312

e%(ﬁ1+ﬂ2)3+2w25(,81+52)
3
mgs(ﬁl + 52) 2

in terms of the error function

2 [* 2 2 T T
erf(x):ﬁ/o due —ﬁ<x—3+m—...>. (3.13)

3.2 Low temperature expansion schemes

2(517/82) -

The corrections O(571) to the low temperature limit in eq. (3.7) are perturbatively included
order-by-order by evaluating the subleading terms of eq. (3.3). For explicitness we focus on
the partition function Z(T') with a single boundary component with temperature T = 371,
and we want to study its low temperature corrections

2
9s + 27(26

3
T2 e24ar37 T RESS
———2.(T) where Z/(T)= Z T 24(gs3%/%, ¢f) . (3.14)
V2T gs =0

The coefficient functions z; do not depend on the temperature 1" in the applied double

Z(eT) =

scaling limit (3.1). By including these perturbative temperature corrections to all orders,
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the partition function becomes an asymptotic series in T, i.e., the series does not contain
any non-perturbative corrections that vanish in the limit 7" — 0.

Compared to the (asymptotic) genus expansion studied in detail in section 2, the low
temperature expansion (3.14) is more natural from a physics point of view, as for many
physical problems one is interested in the result up to a certain energy scale. In particular,
we see that by only taking the leading order contribution (3.11) we can immediately read
off the threshold energy (2.111). Note, however, that since the coupling e approaches zero
in the low energy limit T' — 0, the ground state energy and the subleading temperature
corrections in the expansion (3.14) depend on the details of the chosen double scaling
limit. The limit (3.7) is naturally adapted to the defect coupling € and the genus expansion
parameter gs. However, alternatively we can study other low temperature limits, where
other ratios between physical parameters and the temperature T" are kept constant. In the
following, we refer to such different choices for the double scaling limits as distinct low
temperature expansion schemes.

In addition to the scheme discussed in the previous subsection, we introduce the low
temperature expansion scheme of ref. [29], which is naturally adapted to the variables (y, t)
defined in eq. (2.72) by the double scaling limit

3
gs?2

8 — 400 with = const., y = const. . (3.15)

Solving eq. (2.72) for small deformations dx, k = 1,2,3,..., away from pure JT gravity
yields for the coupling parameters (y,t) appearing in the above limit the expansion

1
y:50+§<250(51—5§)+...,
t=1— (80 +61) + (63 — 001 — dgd2) + ... ,

(3.16)

which at leading order for a single defect become y = 27%¢ + O(e?) and t = 1 + O(e) (cf.
eq. (2.110)). This low temperature expansion scheme agrees at leading order in e with the
scheme (3.1), and in particular, upon inserting the on-shell values for (y,¢) in the absence
of defects, i.e., setting € = 0 such that (y,t) = (0,1), the two low temperature expansion
schemes become the same.

In the latter scheme the (asymptotic) low temperature expansion of the partition
function reads [29]

2
3 L_;'_l
T2 e24t213 7 T

Z(?JJ;T)ZTQ
S

+oo
Z,(T) where Z,,(T) = T'%(y,t), (3.17)
=0

where the coefficient functions z,(y, t) now differ from the coefficient functions z(gs5%/2, ¢3)
in eq. (3.14) (even after inserting the functional relations among their respective
arguments).'?

12There is actually a subtlety here. While the coefficient functions ze(gsﬂ?’/ 2 €B) are temperature in-
dependent in the double scaling limit (3.1), the functions z¢(y,t) are still temperature dependent in the
limit (3.15). One can obviously define temperature independent coefficients in the latter case as well.
However, as discussed in the following the coefficient functions z.(y,t) are conveniently computable and
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For completeness, let us briefly review the strategy of ref. [29] to compute the coeffi-
cients zy(y, t). First of all, the coefficients z¢(y, t) are conveniently determined from the low
temperature expansion of the function W (y,t; 3) defined in eq. (2.80). Using the ansatz

| T P4y >
Wy, t;T) = e e24f2T3+%Wy,t(T) where W, (T') = ZTng(y,t) , (3.18)
=0
together with equation (2.83) yields the differential equation
gs o~ 2 gs 3
OWyt = 15,575 Vot — > 92 ugV(T) Wy + 1o VI Wy, (3.19)
g=1

in terms of the differential operator

9: I
1244737 Y
which then recursively determines the coefficient functions wy(y,t).!*> Finally, the rela-
tion (2.76) translates to

V(T)=0+ —= + =

1 9> I 1
tT 12?&4 T3t (=10:+ Dy) +

1
= = 2
ay+T, (3.20)

Wyt =TV (T)Zy,, (3.21)

leading for the coefficient functions zy(y,t) to the recursion formula [29]

zp =1t (Z! wy — £ <V(T) — t;) z£_1> ) (3.22)

The first few coeflicient functions z, are calculated to be

g4
—t = (149 )1
0=h = ( +2401t4T6> 2

795 gs g5 2
- I
& (240t5T6 T 5r6T " 57600077 )

g gs g
g : e 3.23
" ( T 12ers T 120070 © 3360t6T9> 3 (3.23)

Let us point out some physical implications of the low temperature expansion scheme
in the variables (y, t). For the on-shell values (2.110) of (y, t) for JT gravity coupled to a gas
of defect and compared to the expansion scheme (3.14), the low temperature expansion of
the partition function depends on the identification angle « already at leading orders in the
temperature 7. Namely compared to the result (3.11) one finds upon inserting eq. (2.110)
into the expansion (3.17)

(1 a2 4x2? )Ts 9§3+9§(4ﬂ2ga2)6+ﬁ6+

=+ — €+ ... 2 @24T¢ 24T T

Z(T) = 2 +O(T), (3.24)
V2T gs

where the dots ‘...” indicate subleading terms in € at order O(e?).

comparable with ref. [29]. Truncating the infinite sum in Z,; at some finite value £ = N yields unam-
biguously the low temperature corrections up to order TV in the discussed expansion scheme (because the
temperature dependence only gives rise to corrections at order O(TN Jrl)).

13The first few coefficient functions w; are calculated and spelled out explicitly in ref. [29].
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The above analysis of the low temperature limit is general in the sense that we can
consider other on-shell values for the couplings (y, t) (and also for the couplings ¢ = i+ Jx
appearing implicitly in the expansion (3.17)). In particular, if we consider small deviations
from the on-shell values (y,t) = (1,0) (and small perturbations J; for k& > 2) of pure
JT gravity, we can study the low temperature expansions of deformations to pure JT gravity
together with their scheme dependence.

A particularly interesting example in this context is discussed in ref. [24], which cor-
responds to coupling JT gravity to a gas of defects with two types of defect species char-
acterized by their couplings €; = —e2 = €, which are aligned with opposite sign, and their
respective identification angles a1 and as. On the one hand, for the low temperature
double scaling limit (3.1) we arrive at

s 93

T2 e2413

=—+
V27 gs

which results in an expected vanishing threshold energy, cf. eq. (2.111). On the other hand
the double scaling limit (3.15) yields

Z(T) o(T), (3.25)

(14 Chomde g ) pd eativt i er
€ e 2 e24T 24T
Z(T) = 2 NeT +0(T), (3.26)
T gs

where a non-trivial dependence on the identification angles a; and s now enters because

the couplings (y,t) govern the physical quantities that are kept constant in the double
scaling limit (3.15).

3.3 Low temperature expansion schemes for multiple boundaries

Finally, let us remark that the low temperature discussion of the previous subsection can
be repeated with multiple boundary components in the same way. The low temperature
expansion in this case is studied by Okuyama and Sakai in ref. [30].

As a preparation for section 4, we just record here the result of the low temperature
limit for the partition function Z(/31,52) with two boundary components with inverse
temperatures 31 and 33. Then the low temperature expansion scheme (3.15) generalises to
the double scaling limit

[S1[)

gsﬁi
t

B; = +oo  with = const., yfB; = const. for i=1,2, (3.27)

which yields for the low temperature limit of the partition function Z (1, 32) the result [30]

92(B1+82)3
) _te az Ty(B1+p2) s R
Z(y,t; B, B2) = VIrguBr t o) (2\/§t 6152(51+62)))+0(51 ,B37) - (3.28)

4 Phase transition and spectral form factor

Using the low temperature limit of the partition functions Z(y,t; 51, 52) and Z(y,t; 3) of
the previous section and applying numerical methods, we study two well-established and
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Figure 1. The left figure shows a disconnected geometry — here illustrated in terms of two
AdSs disks at genus zero — that dominates the spectral form factor at early times 7, whereas the
right figure depicts a connected geometry with two boundaries — shown is the double trumpet
contribution — that becomes dominant at late times 7.

related phenomena, namely the phase transition [61, 62], which exchanges the dominance
between the connected versus the disconnected geometries in the two boundary partition
function, and the spectral form factor,'* which arises as a certain analytic continuation of
the two-boundary partition function. In particular, we analyse the dependence of these
quantities in the presence of defects.

Phase transition. There are two types of geometries that contribute to the two-point
function. On the one hand there are geometries with two disconnected components, each
with a single boundary component, and on the other hand there are connected geometries
with two boundary components, as illustrated in figure 1 (where only the genus zero contri-
butions are depicted for simplicity). At low temperatures we have according to eqs. (3.17)
and (3.28) (in the chosen low temperatue expansion scheme) the following two quantities

923 9253
e“YPe12¢2 B
Z(y,t;8)* = WtQ +0(87h,
" s ) (4.1)
e?vBe 32 B3/%g, 1
Z(%tﬁ,ﬁ)—mt erf( o +0(B7)

Independent of the specific choices for the on-shell values of the parameters (y,t), we
can make some quite general comments. Taking the ratio of the two-point contributions in
eq. (4.1), the dependence on the shift in energy given by y drops out (at leading order in the
temperature). Hence, the phase transition (and as a consequence also the spectral form
factor introduced later) is determined by the off-shell parameter t. Explicitly analysing
the ratio of the two contributions (4.1) in the low temperature regime yields with the
dimensionless constant ¢ := g,33/2 /t the dimensionless (numerical) critical value cg¢. for
the phase transition according to

Z(y,t; 3, 8)

1 2
W =1 = 5\/7?C€Terf (;) =1 = Cerit. & 4+1.24013 . (42)
Y, 4

Let us now focus on JT gravity with defects. This means that we take (y,t) to their
on-shell values (2.108) and that we work with the quantities in eq. (4.3), where the on-shell

The spectral form factor was first introduced in the AdS/CFT context in ref. [63].
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Figure 2. We plot the connected versus the disconnected geometry contributions of eq. (4.3). The
identification angle « is fixed to a = 7, the defect amplitude is € = 0.001 and g, = 0.0027. In the
range of the plot we have a maximum of ~ 4.2% relative error, which measures the ratio of the
terms ignored (order T2) over the terms kept in the low temperature expansion.

values of (y,t) are found numerically for a given set of € and «, i.e.

243
298,152
g eWerzn? o
Z(B)" = Wt )
y,t on-shell (4 3)
2B, 5t 33/2
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Z(ﬁ?ﬁ)_ 4ﬁ,83/295terf< 2%
y,t on-shell

Keeping the above in mind, we plot the connected and disconnected parts of the two-point
function in figure 2. We can see the general behaviour of JT gravity in the absence of defects
is reproduced: at high temperatures the disconnected geometry dominates, whereas for low
temperatures the connected part constitutes the more dominant contribution [22, 30]. This
is the two-dimensional instantiation of a Hawking-Page phase transition [3, 64]. However,
we should also notice that, as shown in figure 3, for larger €, the phase transition occurs at
a smaller value of 5.

Spectral form factor. Now we come to the analysis of the spectral form factor Z(3 +
iT, 3 —i7), which is a real function of the time 7 defined via an analytic continuation of
the two-point function Z(f1,32). The spectral form factor is essential in the analysis of
quantum chaotic behaviour and plays an increasingly important role in the study of black
hole physics [13]. For the case of JT gravity in the presence of defects the spectral form
factor has not yet been analysed. The task is to understand the role of the parameter e.
For large groups of systems obeying quite common assumptions (such as the eigenstate
thermalisation hypothesis [65, 66]), one expects the spectral form factor to exhibit certain
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Figure 3. The phase transition temperature (the point for which Z(8,8) = Z(8)?) as a function
of the defect amplitude. The identification angle « is fixed to o = § and g5 = 0.0027.
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Figure 4. Shown is the spectral form factor for different values of € with g5 = m, 8 = 180,
a=m/2.
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universal features. Early times are characterised by decay and hence a “slope”, followed
by a rise and hence a “ramp”, and lastly at late times we encounter a “plateau” with fixed
value given by the one-point function Z(23).'> Let us define the normalised spectral form
factor in the following manner

. o 3/2 s /L; 1
G(ﬁ,T) — Z(/8+ZT;/B ZT) _ B 9 B + (44)

erf | ———— |,

Z(28) B 2t

where we are normalising with respect to the contribution Z(2f3) as this sets the height
of the plateau. Due to the low temperature dominance of the connected contribution as
outlined above, we would expect late times to be dominated by connected contributions.
A closer look at eq. (4.1) shows that this is guaranteed by the functional form of both
expressions. We are only considering connected geometries in eq. (4.4) as we are mainly
interested in the ramp and plateau behaviour. We want to reiterate some statements of
refs. [12, 30], which help in understanding the importance of the corrections outlined in
section 3.1. The g = 0 part of the two-boundary correlator only furnishes the “ramp”
behaviour as shown in ref. [61]. We can see that the approximation (3.1) already allows
for the creation of the plateau [30]. Furthermore, if we work in the limit (3.15) both the
phase transition and spectral form factor become sensitive to the presence of defects.

We note that the transition from ramp to plateau now depends on €. More specifically,
for larger values of € we can move it to earlier times, whereas negative values moves it to
later times, which mirrors the behaviour discovered for the phase transition.

We may also consider changes in the identification angle o while keeping € fixed for
both the phase transition and the spectral form factor. While the dependence on « within
the range 0 < a < 7w can be studied straightforwardly with the methods presented here, it
would be even more interesting to consider changes in « over the full range of identification
angles. This could possibly be achieved by implementing the results of ref. [42].

5 Some comments on two-dimensional de Sitter space

In both refs. [40, 41] a proposal is made for the application of the matrix model/JT duality
to two-dimensional de Sitter space. The logic is the following: as Lorentzian de Sitter space
can be analytically continued to Euclidean Anti-de Sitter space [67], in the two-dimensional
setting there should exist a map translating the results for the partition function of ref. [12]
to the wavefunction of the universe ¥ at future infinity Z* and past infinity Z— [40, 41].
For the semi-classical contribution it can be shown that the wavefunction can be mapped
to the disk result via the identification

—if, future
’ 5.1
p= { il, past (5.1)

15The “plateau” cannot be obtained if the perturbative series is truncated at some finite g. To render
an asymptotic series convergent non-perturbative contributions have to be taken into account [61]. In the
zero temperature/zero coupling limit considered in ref. [29] and here the perturbative series converges.
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where £ is the renormalised length of both the future and past circles. For higher genus
contributions an approach was outlined in ref. [41], in which the boundary conditions
inherited from de Sitter space require the analytic continuation of the geodesic length
b — i« such that this instance of JT gravity requires the inclusion of surfaces with conical
singularities. Sticking to the one-point function for the moment, following ref. [41] the
wave function on a single future boundary would be given by

2r2)*? gk, e 1/ ein
w(e) = )T pdisk gy o-1 [ g o)
0 ==, 20 ““zwﬂ S

a2)3/2
_ @gjzdlsk (=if) + ;QB (—il) F({w}) -

which would indeed correspond to Z(—if). In general this approach implies that the mere
analytic continuation (5.1) of the partition function of ref. [12] corresponds to the wave
function W, i.e.

W eonn. (glv- .. ,€n+,€n++1, s 7€n7)

= <tr (eMlH) A § (ei€”+H> tr (e*M"Jr“H) Lotr (e_iK"fH)> ,

However, as clearly stated in ref. [41], for egs. (5.2) and (5.3) to hold in full generality

(5.3)

it is necessary that the conical volumes are obtained from a mere analytic continuation
as in eq. (2.15). This, however, is only established for @ < 7w, whereas the results of
ref. [42] propose for general identification angles o an implicit definition of Weil-Petersson
volumes that goes beyond the analytic continuation prescription of eq. (2.15). Hence,
due to the integration range over « in eq. (5.2), the naive analytic continuation of the
individual volumes V{ ) of the (asymptotic) thermal partition function possibly requires
a further modification to the approach of ref. [41] for the computation of the wavefunction
.16 Moreover, the authors of ref. [41] show that eq. (5.3) may be derived from the
approach of ref. [68], such that the wavefunction ¥ is also equivalent to the no-boundary
wavefunction. Therefore, further investigation is required in order to understand in how
far the correspondence of the Hartle-Hawking construction of ref. [68] and the approach of
ref. [41] via continuation to Euclidean Anti-de Sitter space holds at the non-perturbative
level and in how far the validity of eq. (5.3) is guaranteed beyond the semi-classical level.!”

6 Conclusion and outlook

In this work we compute thermal partition functions of deformed JT gravity theories from
solutions to the KdV hierarchy. These solutions govern the correlation functions of two-
dimensional topological gravity, and — similarly as in ref. [29] — we describe both unde-
formed and a rather general class of deformed theories of JT gravity in terms of solutions

16 Although it is not immediately clear if the path integral may be performed in the same manner as in
ref. [41] for the volumes of ref. [42]. See comments in ref. [42].
1"We would like to thank Joaquin Turiaci for valuable correspondence on these points.
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to the KdV hierarchy. In refs. [23, 24] deformations of JT gravity are described by suitable
scalar potentials that do not alter the asymptotic boundaries of the two-dimensional hy-
perbolic space-time geometries. It would be interesting to relate deformations arising from
scalar potentials to solutions of the KdV hierarchy in the topological gravity description.
While we can identify certain classes of deformations in both formulations — in particular
those that arise from a gas of defects with a finite number of defect species — it would be
interesting to investigate whether these two approaches towards deformations of JT gravity
are actually in one-to-one correspondence. As both descriptions yield infinite dimensional
deformation spaces, a meaningful comparison of the two approaches to the deformation
problem presumably requires a careful treatment using methods of functional analysis.

Interestingly, both standard JT gravity and JT gravity interacting with a finite number
of defect species are governed by spectral densities given in terms of (modified) Bessel func-
tions, whereas for more general deformations other transcendental functions occur. There-
fore, it would be interesting to understand in how far standard JT gravity and JT gravity
interacting with a gas of defects are singled out from other solutions to the KdV hi-
erarchy. For instance, the Witten-Kontsevich tau-function relates to the free energy of
two-dimensional topological gravity [26, 27] and the Brézin-Gross-Witten tau-function de-
scribes JT supergravity [53]. Yet other tau-functions are discussed from the mathematical
perspective in ref. [69]. As the connection between specific solutions to the KdV hierarchy
and two-dimensional gravitational theories does not seem to be arbitrary, a systematic
investigation of tau functions and the associated physical theories is an interesting idea
to pursue.

As already addressed in ref. [12], the discussed solutions to the KdV hierarchy and the
resulting thermal partition functions are asymptotic series in the genus expansion parame-
ter g5, which are only rendered to analytic functions once non-perturbative effects are taken
into account. Therefore, a challenging task is to derive solutions to the KdV hierarchy that
are analytic instead of just being an asymptotic series in the parameter gs. In refs. [70, 71]
a non-perturbative completion of the solutions to the KdV hierarchy is proposed that has
recently been applied to JT gravity in an interesting series of works [20, 22, 60]. Both
the results of ref. [29] and our work furnish an easy and systematic access to higher genus
contributions, such that modern resurgence techniques could come into play to address
non-perturbative effects in this context. Similar considerations in that direction are made
in ref. [72] for JT gravity with a finite cutoff at the asymptotic space-time boundaries,'®
where a Borel resummation can be performed for the asymptotic series with respect to the
cutoff parameter.

Applying the approach developed by Okuyama and Sakai [29, 30], we compute in a
certain low temperature limit the thermal partition functions (with one or more boundary
components) for JT gravity with deformations such as those arising from the presence of a
gas of defects. In this limit the studied thermal partition functions become exact because
non-perturbative corrections are suppressed. We determine the critical temperature of the

8More work on JT gravity restricted to a finite AdSs subregion can be found in refs. [73, 74]. The general
paradigm of finite cutoff AdS/CFT was first explored in ref. [75].
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Hawking-Page phase transition as a function of the defect parameters by analysing the
two-boundary partition function with numerical methods. Depending on the sign of the
defect coupling constant we find that the phase transition either occurs at higher or lower
temperatures. The spectral form factor exhibits a similar behaviour, namely the time scale
for the onset of the plateau is shifted to earlier or later times depending on the sign of
the defect coupling. While we expect that this behaviour of the phase transition and the
spectral form factor as a function of the defect parameters does not change upon including
further subleading temperature corrections, it is nevertheless desirable to include further
terms in the low temperature expansion in order to reliable analyse the Hawking-Page
phase transition and the spectral form factor as a function of the defect parameters at
higher temperature scales. JT gravity in the presence of defects is linked to 3d gravity
in the near-extremal limit, as reported in ref. [23]. It would be nice to understand and
to interpret the changes in both the Hawking-Page phase transition and the spectral form
factor more explicitly in that context.

We briefly comment on a possible matrix model /JT gravity duality for two-dimensional
de Sitter backgrounds. Here we point out an apparent puzzle in light of the recent results
of ref. [42], which suggest that the Weil-Petersson volumes in the presence of conical singu-
larities with large identification angles are in general not obtained via analytic continuation
from surfaces with conical singularities with small identification angles. As a consequence,
computing the wave function of the universe for JT gravity on two-dimensional de Sitter
by use of analytic continuation techniques may only be an approximation. It is, however,
still possible that upon going beyond the study of asymptotic series the validity of this
approach is nevertheless justified. We believe that this issue deserves further study.
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