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Abstract 

The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. 
For most patients, chemotherapeutic combination therapies remain the standard of care. The development and 
successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also 
for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are 
needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we 
update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and 
point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the 
development of concepts for precision oncology in PDAC.
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Pancreatic Ductal Adenocarcinoma (PDAC)
Current estimates show that PDAC will be the second 
leading cause of cancer-related death reason by 2040 [1]. 
Together with a dismal prognosis reflected by a 5-year 
survival rate of 10% [2], these data imply the urgent 
need to intensify research into the disease. Approxi-
mately 85% of patients with PDAC are diagnosed with a 
locally advanced or disseminated disease that prevents 
surgical resection. For the small group of patients with 
a resectable tumor, adjuvant chemotherapy according 
to a modified regimen with folinic acid, 5‐fluorouracil 
(5‐FU), irinotecan, and oxaliplatin (mFOLFIRINOX) 
has been established and has improved overall survival 
[3]. Furthermore, neoadjuvant therapeutic regimens are 
in clinical development [3]. For the majority of patients 
with locally advanced or disseminated disease, systemic 

chemotherapy with FOLFIRINOX or the combination 
of nab-paclitaxcel and gemcitabine is used [4]. Although 
these therapies remain standard of care, overall response 
rates of only 20–30% and significant toxicities must be 
considered [4]. Therefore, the development of improved 
therapies is urgently required.

In contrast with the current “one-size-fits-all” clinical 
trials, precision oncology based on markers to guide ther-
apy selections has the promises to improve outcomes. 
Precision oncology is also emerging in gastrointestinal 
(GI) cancers, and molecular profiling was recently high-
lighted by the American Society of Clinical Oncology 
(ASCO) as the advance of the year 2021 for GI cancers 
[5]. Examples include clinical trials in HER2 positive gas-
tric cancer [6], the Viktory umbrella trial in gastric cancer 
[7], the approval of targeted therapies for cholangiocarci-
nomas with FGFR2 fusions or rearrangements [8], or the 
use of a triple targeted therapy in BRAF mutated colon 
cancer [9]. Precise therapies have also been shown to 
affect PDAC patient survival [10]. Thus, further mark-
ers that characterize relevant PDAC subtypes, which are 
associated with specific drug responses, are needed. We 
propose the concept that the myelocytomatosis oncogene 
(MYC) is a relevant biomarker for PDAC. This is based 
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on the strong biology and specific phenotypes associated 
with MYC, the differential drug sensitivity of cancers 
with deregulated MYC, and the emerging ability to image 
MYC non-invasively.

An update of MYC‑driven biology in PDAC
KRAS mutations occur in over 90% of PDACs [11] and 
MYC, a basic-helix-loop–helix/leucine zipper transcrip-
tion factor (TF), has an important function as an integra-
tor of signaling pathways triggered by oncogenic KRAS 
[12]. MYC heterodimers (e.g., MYC/MAX) bind to cis-
regulatory E-box sequences of numerous genes involved 
in the regulation of growth, proliferation, or metabolism, 
thereby serving all hallmark demands of cancer cells [13, 
14]. MYC marks an aggressive PDAC subtype, which is 
supported by the fact that amplifications of MYC have 
been associated with a worse survival of PDAC patients 
[15]. Pre-clinical experimental evidence underscores that 
MYC is an essential and non-redundant node of onco-
genic signaling and therefore should be an exceptional 
therapeutic target [16–18]. We have recently summarized 
PDAC-specific functions of MYC [19–21] and therefore 
focus here on recent developments. The MYC network is 
activated in the so-called basal-like subtype, which is the 
most aggressive subtype and refractory to current thera-
pies [22–26]. MYC amplifications occur more frequently 
in PDAC liver metastases, implicating a role of MYC in 
this process [27]. Interestingly, metastatic PDAC can 
be grouped into a low frequency metastasis group (< 10 
metastases) and high frequency metastasis (> 10 metas-
tases) group, with the high metastasis frequency group 
having lower overall survival [28]. Genomic and tran-
scriptomic analyses linked MYC to the high metastasis 
group [28]. Furthermore, adenosquamous cancers of the 
pancreas showed a high MYC amplification frequency 
[29].

In addition to its multiple implications in controlling 
cancer cell biology, MYC`s important role in remode-
ling the tumor microenvironment (TME) is emerging. 
The TME is a unique feature of PDAC, evidenced by a 
prominent desmoplastic reaction that accounts for up 
to 90% of the tumor mass/volume [30]. Inducing Myc 
together with the Kras oncogene in murine in  vivo 
PDAC models has an immediate and profound effect on 
the TME. This MYC-mediated TME-reprogramming 
is characterized by the attraction of immune cells such 
as macrophages, neutrophils, granulocytic myeloid-
derived suppressor cells and B-cells, while CD3+ T-cells 
are depleted [31], collectively shaping an immunosup-
pressive phenotype. Consistently, MYC and BRAF 
synergistically drive immune-evasion downstream of 
KRAS [32], supporting a prominent role of MYC in 

this process. In addition to the immune compartment, 
MYC instructs the proliferation of fibroblasts and stel-
late cells, leading to the characteristic tumor desmopla-
sia [31].

Mechanistically, a link of MYC to immune eva-
sion in PDAC at different levels is described. Double-
stranded RNA (dsRNA), derived from intronic inverted 
repetitive elements, activates the pattern recognition 
receptor TLR3 and its downstream effector, the serine-
threonine kinase TANK-binding kinase 1 (TBK1) [33]. 
Here, MYC/MIZ1-mediated repression of vesicular 
transport genes result in decreased dsRNA secretion 
and consequently decreased activation of TLR3-TBK1-
NFκB signaling pathway, which is required for acti-
vation of the immune response by controlling the 
expression of MHC class I antigens [33]. Furthermore, 
paracrine signals, such as the GAS6–AXL pathway [31] 
or MYC-dependent repression of the type I interferon 
pathway [34], account for the TME remodeling. In 
addition, the folate cycle enzyme methylenetetrahydro-
folate dehydrogenase 2 (MTHFD2) was recently dem-
onstrated to facilitate immune escape of PDAC cells. 
Mechanistically, MTHFD2 promotes the production 
of uridine diphosphate  N-acetylglucosamine (UDP-
GlcNAc), leading to O-GlcNAcylation of MYC, a post-
translational modification (PTM), that results in its 
stabilization, and the subsequent increased expression 
of programmed cell death 1 ligand 1 (PD-L1), thereby 
blocking anti-tumor immune responses [35]. The 
effects of MYC on the TME have also been connected 
to the metastatic cascade. It was suggested that a panel 
of chemokines and cytokines upregulated in MYC 
overexpressing cells, including MIF, IL24, CCL4, CCL3, 
CXCL2, or CXCL3, contributes to the recruitment of 
pro-metastatic tumor-associated macrophages [28].

Importantly, a reciprocal stroma-to-tumor cell sign-
aling is relevant. Here, a pathway is described in which 
the fibroblast growth factor receptor 1 (FGFR1) acti-
vated by FGF1-derived from cancer-associated fibro-
blasts (CAFs) is augmenting the tumor cell intrinsic 
MYC signal [36]. Furthermore, JAK1-STAT6-MYC-
mediated increase in expression of enolase 1 and 
hexokinase (HK2)—enzymes involved in glycolysis—
is promoted by IL4 and IL13 cytokines present in the 
TME, revealing the complex modalities of signals 
integrated by MYC [37]. In sum, MYC not only inte-
grates KRAS-driven cellular signaling, but reciprocally 
controls communication with the TME to orchestrate 
the overall tumor biology. Taken together, this novel 
knowledge of how MYC shapes the TME additionally 
underscores its value as a therapeutic target and will 
open opportunities to implement immunotherapies in 
combination with concepts to block MYC.
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MYC stratifies for therapies
Across all TF and cross-tumor entities, MYC exhibits 
the most frequent drug interactions [38]. This finding 
is based on several molecular features. The oncogenic 
addiction of cancer cells on MYC explains the increased 
sensitivity of cancer cells to drugs targeting MYC directly 
or indirectly. Furthermore, MYC-mediated oncogenic 
stress demands the activation of genes or pathways allow-
ing the cancer cells to cope with. This renders cancer cells 
with deregulated MYC particularly sensitive to inhibitors 
of such pathways. The existence of MYC-associated syn-
thetic dosage lethality is well documented by unbiased 
genetic and pharmacological screening experiments [39] 
and is relevant in the context of PDAC [21]. Genes allow-
ing to tolerate MYC-induced oncogenic stress may be 
involved in feedforward regulatory circuits and blocking 
of such a gene also impacts on MYC expression. Impor-
tantly, MYC also marks resistance phenotypes that are 
currently emerging. Here, we summarize selected con-
nections between MYC and drug sensitivity in PDAC 
cells.

Drug resistance and MYC
With regard to resistance phenotypes, MYC has been 
associated with modulation of the sensitivity of inhibi-
tors of the serine/threonine protein kinase mammalian 
target of rapamycin (MTOR). MTOR is an important 
therapeutic target in PDAC, and combination therapies 
based on MTOR inhibitors (MTORi) are currently under 
development [40–44]. Genetic gain- and loss-of-function 
experiments demonstrated that MYC confers resistance 
to the MTORi INK128 (Sapanisertib) [45], a highly selec-
tive ATP-competitive inhibitor of the kinase under clini-
cal development (e.g., NCT02197572, NCT02893930, 
NCT03430882). The MYC protein has a high turno-
ver regulated by oncogenic signaling that cumulates in 
post-translational-modifications (PTMs) of the protein. 
KRAS induces stabilization of MYC through ERK-medi-
ated phosphorylation of serine 62 (S62) [46]. The MYC-
phospho-S62 counteracting protein phosphatase 2A 
(PP2A) de-phosphorylates S62, thereby initiating ubiq-
uitin-dependent degradation of MYC. PP2A is a well-
described regulator of MYC protein expression in PDAC 
[47]. Consequently, small-molecules activators of PP2A, 
like DT1154 [48], synergize with the MTORi INK128 in 
PDAC in vitro and in vivo models [45].

Additionally, also secondary resistance phenotypes to 
targeted therapies may also be mediated by MYC. Inter-
ference with the canonical KRAS-MEK-ERK signaling 
induced downregulation of MYC protein expression. 
Therefore, MEKi perturbs MYC-directed and pentose 
phosphate pathway (PPP)-mediated nucleotide synthesis 
with a subsequent growth arrest. Interestingly, in PDAC 

cells generated as MEKi resistant, MYC escaped regula-
tion and maintained nucleotide synthesis contributing to 
the resistance phenotype [49].

MYC-induced resistance occurs not only to targeted 
therapies, but also with conventional chemotherapeutic 
agents. MYC has been shown to promote epithelial-neu-
roendocrine lineage plasticity, a state characterized by 
the increased expression of neuroendocrine markers, like 
synaptophysin, and resistance to gemcitabine [50]. Low-
ering MYC expression by an RNA interference approach 
increased the sensitivity of PDAC cells to gemcitabine 
[50]. In addition to primary chemotherapy resistance, 
MYC has been shown to be involved in secondary resist-
ance to paclitaxel [51]. Low-passaged primary PDAC 
cultures and a ramp-up protocol to induce paclitaxel 
resistance were used to generate secondary resistant 
models. Analysis of the models illustrated increased 
expression of MYC mRNA and protein expression. Fur-
thermore, reduction in MYC expression increased pacli-
taxel-induced cell death in the resistant lines, whereas 
overexpression reduced paclitaxel-induced cell death in 
the parental PDAC cells [51]. Interestingly, gemcitabine 
was found to trigger a MYC-associated vulnerability in 
unbiased screening experiments [38, 52, 53] and dereg-
ulated MYC sensitizes to mitotic perturbants, includ-
ing paclitaxel [54, 55]. Such data highlight the need for 
further research on MYC-associated vulnerabilities and 
point to a specific context, exemplified here by lineage 
or secondary versus primary resistance, that needs to be 
understood.

Targeting MYC in PDAC
Direct targeting of MYC remains a challenge and no 
small molecule inhibitor has made it to the clinic so far 
[13, 56]. Due to recent developments, we will only shortly 
describe OMOMYC, a dominant negative MYC dimeri-
zation inhibitor. OMOMYC, a 91 amino acids mutant 
version of the MYC dimerization domain, prevents MYC 
from binding to its target genes. In several cancer mouse 
models, conditional expression of OMOMYC dramati-
cally impacts on tumor growth [17, 57, 58]. In  vitro, an 
inducible OMOMYC reduced the clonogenic growth of 
murine PDAC cell lines [59]. The concept was recently 
advanced by the development of an OMOMYC mini-
protein. The in vivo efficacy of the mini-protein was dem-
onstrated in non-small cell lung cancer (NSCLC) models 
[18]. The mini-protein penetrates many organs, including 
the pancreas [18]. Importantly, a phase I/II clinical trial 
of the OMOMYC mini-protein (OMO-103) was started 
in 2021 (NCT04808362), bringing direct MYC inhibition 
to the clinic. In addition to OMOMYC mini-proteins, it 
is foreseeable that advanced drug development meth-
ods, such as the proteolysis targeting chimera (PROTAC) 



Page 4 of 10Schneider et al. EJNMMI Research          (2021) 11:104 

technology, will lead to the development of clinical candi-
dates that directly and specifically targeting MYC (Fig. 1) 
[60].

Several approaches to indirectly target MYC expression 
exist, and we will summarize some with documented 
relevance in PDAC (Fig. 1). Members of the bromo- and 
extra-terminal domain (BET) motif protein family, BRD2, 
BRD3, BRD4, and BRDT, are involved in the regulation 
of many cancer-relevant pathways, and BET inhibi-
tors (BETi) are in clinical development [61]. Expression 
of cancer driver genes is often regulated by so-called 
super-enhancers (SE), specialized cis-acting regulatory 
elements characterized by an enriched acetylation of 
histone H3 lysine 27 (H3K27ac), which stimulate high-
level expression of associated genes. These enhancers 
are particularly sensitive to BETi [62] so that oncogenic 
drivers, including MYC, can be inhibited. Inhibition of 
MYC expression by BETi has also been documented in 
PDAC [63]. In primary patient-derived xenografts, a less 
differentiated PDAC subtype, with a high proliferation 
index and shorter survival, was characterized [64]. This 
subtype was characterized by a MYC-driven transcrip-
tional program and sensitivity to BETi [64]. The study 
was recapitulated in human PDAC organoids, a model 
with a potential predictive power for the clinical behavior 
of solid cancers [65]. Again, the defined MYC-signature 
co-segregates with higher sensitivity to the BETi JQ1 and 
NHWD-870 [66].

In addition to BETi, inhibitors of histone deacetylases 
(HDAC) target MYC expression and the MYC-driven 
transcriptional program in PDAC [67]. Furthermore, 
HDAC were shown to tune the MYC program and 
repress a gene program linked to epithelial differentiation 

[68]. Blocking HDAC function by inhibitors induces 
these genes in a BRD4-dependent fashion [68], further-
more underlining the close interplay between HDAC 
and BET proteins. Such connections might contribute to 
the described synergism of BETi and HDACi in patient-
derived xenograft models and are underpinned by the 
profound effect of the combined inhibition of HDACs 
and BET on MYC protein expression [63]. Recently dual 
BET/HDAC inhibitors were developed and tested in 
PDAC models. Notably, after prolonged treatment, TW9, 
a dual BET/HDACi, distinctly reduced MYC expres-
sion [69]. However, other SE-controlled cancer drivers, 
including the AP1-TF family member FOSL1, also appear 
to be targeted by TW9 [69].

The ATP-dependent DNA helicase excision repair 
cross-complementation protein 3 (ERCC3) is a compo-
nent of the general transcription factor TFIIH, which is 
part of the transcriptional preinitiation complex (Fig. 1). 
ERCC3 can be targeted by the natural diterpenoid 
epoxide triptolide [70]. In an unbiased pharmacologi-
cal screening experiment, high activity of triptolide for 
PDAC was found. Mechanistically, triptolide reduced 
MYC mRNA and protein expression [71] by disrupting 
the activity of SE and causing downregulation of asso-
ciated genes, including MYC [72]. The high efficacy of 
triptolide has been demonstrated in in vitro and in vivo 
models of PDAC with deregulated MYC expression [71], 
allowing to tackle this particular subtype.

In addition to transcriptional or post-translational 
interference with MYC, the translation of MYC can also 
be pharmacologically disrupted (Fig.  1). The mRNA of 
MYC harbors a structured 5′UTR, which is characteristic 
for translation controlled by the RNA helicase eukaryotic 

Fig. 1  Targeting of MYC. Illustrated are options of direct or indirect MYC inhibition by pharmacological inhibitors or activators, respectively. 
Indirect inhibition is achieved by interfering with transcription, translation. The concept to target MYC by synthetic lethality in PDAC is shown. 
Direct inhibition by a synthetic OMOMYC peptide or possibly by PROTACs renders the MYC protein itself nonfunctional. SE Super enhancer, BRD 
Bromodomain proteins
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initiation factor 4A (eIF4A) [73]. Therefore, the use of 
eIF4A inhibitors to impair MYC expression in PDAC is 
an attractive option. The eIF4A inhibitor CR-1-31B dem-
onstrated high efficacy both in vivo and in vitro [73, 74]. 
This class of inhibitors (e.g., zotatifine) is currently being 
tested in a phase 1–2 clinical trial in PDAC patients 
(NCT04092673). Consistent with the complex cross-talk 
of MYC with the TME, the natural eIF4A inhibitor sil-
vestrol augmented the activity of an anti-PD1 antibody 
therapy [75].

The peptidyl-prolyl cis–trans isomerase NIMA-inter-
acting 1 (PIN1), which induces conformational changes 
in certain phosphorylated proteins, is overexpressed in 
many cancers [76]. Proline-guided serine or threonine 
phosphorylation is a typical PTM, conducted by kinases 
like ERK or cyclin-dependent kinases (CDKs). PIN1 
complexes with serine 62-phosphorylated MYC leading 
to trans > cis isomerization of proline 63 [77], which pre-
vents phosphatase activity and an increased DNA bind-
ing capacity of MYC. Genetic gain- and loss-of-function 
experiments have demonstrated that the transcriptional 
output of MYC is controlled by PIN1 [78]. Recently the 
covalent, highly selective PIN1 inhibitor sulfopin was 
shown to downregulate the MYC transcriptional network 
[79]. Interestingly, sulfopin reduced PDAC growth and 
prolonged survival in an immune-proficient orthotopic 
transplantation model in vivo [79].

Targeting MYC‑associated vulnerabilities
MYC renders cancer cells dependent on a properly func-
tioning transcriptional machinery [80]. Initiation, paus-
ing, and elongation of the RNA polymerase II (Pol II) are 
tightly controlled. One control mechanism is integrated 
by phosphorylation of the carboxy-terminal domain 
(CTD) of the largest subunit of Pol II, with the CTD 
integrating the activity of the transcriptional CDKs, like 
CDK7 or CDK9 [81]. CDK7 acts at multiple sites in the 
transcriptional cycle and is involved in Pol II-dependent 
transcriptional entry as well as in the activation of CDK9, 
involved in transcriptional pause release [81]. A pharma-
cological screening of epigenetic drugs in human PDAC 
cell lines revealed the CDK7i THZ1 as a prominent hit. 
The sensitivity of THZ1 strongly correlated with MYC 
expression and the activity of the associated network [82]. 
Selective CDK7 inhibitors, such as the orally available 
CDK7i CT7001 or SY-5609, are currently tested in clini-
cal trials in patients with solid cancers (NCT03363893, 
NCT04247126), demonstrating the clinical potential. In 
addition to CDK7, higher activity of CDK9i in cancers 
with deregulated MYC is already known [83]. In PDAC, 
the connection of CDK9i (UNC10112785) to MYC was 
recently found in a screen using a MYC degradation 
reporter system. In addition to the decrease in MYC 

mRNA, CDK9 was shown to induce phosphorylation of 
serine 62 and thus MYC stability, arguing for a feed for-
ward loop [84].

A drug screening of FDA approved anti-cancer drugs 
and analysis of several public repositories revealed an 
increased sensitivity toward perturbations of the protein 
homeostasis in MYChigh PDAC cells [52]. MYC orches-
trates a variety of biological processes by regulating and 
tuning the transcriptional and translational output [85]. 
Due to the high amount of protein load in cancer cells 
and a protein biosynthesis machinery acting at the upper 
limit, cells with high MYC expression are associated 
with an increased unfolded protein response (UPR). The 
strong connection of MYC activity and the UPR is also 
documented across species [86] and cancer entities [87, 
88], explaining increased sensitivity to perturbations in 
protein homeostasis.

A recent study connected MYC to PDAC with 
increased expression of the small ubiquitin-like modi-
fier (SUMO)-ylation machinery [89]. The enzymatic 
cascade of SUMOylation is analogous to ubiquitination, 
which consists of a single heterodimeric SUMO activat-
ing enzyme (E1), a single SUMO conjugating enzyme 
(E2), and less well-defined SUMO ligases (E3) [21, 88]. 
Recently, pharmacological SUMO inhibition was shown 
to be particularly potent in PDAC cells, which are char-
acterized by high MYC activity [89]. This synthetic 
lethality has already been demonstrated in other enti-
ties [90–92] and demonstrated a MYC-dependent and 
entity-independent vulnerability. SUMO inhibitors such 
as Subasumstat (TAK-981) are currently under clinical 
development in advanced solid cancers (NCT04381650).

Imaging MYC in PDAC
Considering the strong association of MYC with drug 
responsive states, non-invasive imaging-based biomark-
ers indicative for activity of MYC will help to stratify 
PDAC patients for specific therapies. Nearly three dec-
ades ago, Indium-111-labeled antisense-oligonucle-
otides were used to measure MYC mRNA in breast 
cancer mouse models [93]. However, this imaging 
method revealed hurdles, such as limited tracer delivery 
due to physical barriers, target sequence selection, or low 
stability [94]. In 2012, the radiotracer 89Zirconium (Zr)-
desferrioxamine transferrin (89Zr-Tf) was developed and 
89Zr-Tf PET imaging was shown to annotate the MYC 
status [95]. The transferrin receptor (TfR1, TFRC, CD71; 
TFRC afterwards) is a transmembrane glycoprotein, 
which acts as a disulfide bond-linked dimer. Transferrin, 
bound by two iron atoms, shows the highest affinity for 
the TFRC, and upon binding, transferrin and the recep-
tor are internalized by endocytosis and iron replenish the 
intracellular pools [96]. Iron is needed for many cellular 
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processes serving the demands of cancer cells, including 
mitochondrial respiration to generate energy, building of 
ribonucleotides for DNA synthesis, or DNA repair [96]. 
MYC directly activates the TFRC gene (Fig.  2) to serve 
the iron demands of aggressive cancers [97], allowing to 
indirectly image its activity. Initially 89Zr-Tf PET imag-
ing was developed to annotate MYC in prostate cancer 
models [95]. Meanwhile, this imaging modality was dem-
onstrated to define the MYC status in other tumor enti-
ties, like triple negative breast cancer models [98] and 
allows monitoring of treatment induced changes of MYC 
expression (Fig.  2) [99]. 89Zr-Tf PET imaging was also 
evaluated in PDAC models and determines the extent of 
the KRAS signaling output and the downstream integra-
tor MYC [100]. Furthermore, the imaging modality was 
shown to be useful to monitor pharmacological interfer-
ence with pathways integrated by MYC or drugs which 
target MYC [100].

Alternatives to the 89Zr-Tf PET imaging were also 
developed. A human anti-transferrin receptor mono-
clonal antibody labeled with 89Zr as a PET probe was 
investigated in PDAC and shown to allow measurement 
of the TFRC in xenograft models [101]. In addition, 
68Ga-citrate, which binds to transferrin, can be used to 
image the TFRC (Fig. 2) [102]. In prostate cancer models, 
PET imaging with the tracer 68Ga-citrate was shown to 

substitute the 89Zr-Tf PET imaging and some hints of the 
association of the signal with MYC deregulated cancers 
were provided [103], increasing the number of imaging 
modalities to annotate MYC. However, a combination of 
different imaging and genetic approaches may allow more 
precise stratification and further prospective studies are 
needed to validate MYC centric imaging modalities.

Conclusions
Successful concepts for precision oncology require 
strong drivers of cancer subtypes as biomarkers, that are 
associated with different drug sensitivity phenotypes, like 
MYC. However, multiple layers of such an approach need 
to be advanced, from a better understanding of the MYC-
associated drug response to modalities for mapping MYC 
activity.

Current markers of drug responsiveness only enrich 
for a responding population, and even cancer stratified 
by MYC will only increase the proportion of patients 
who respond to a particular therapy. Therefore, the drug 
response in PDACs with high MYC activity that does not 
respond to therapies and trigger associated vulnerability 
needs to be better characterized and will lead to bi- or 
trivalent selection markers and molecular combination 
therapies. Therefore, the context in which MYC operates 
needs to be better defined experimentally.

Fig. 2  Imaging of MYC. A Scheme for non-invasive annotating the MYC status. The TFRC gene is a MYC target. The Transferrin receptor can be 
imaged with a radiotracer, here 89Zr-labeled transferrin (TF) or 68Ga-citrate, which binds transferrin (TF). Overexpression of MYC leads to increased 
TFRC expression and augmented PET signal. B MYC and control Input ChIP-Seq data of human PDAC cells (MiaPaCa-2) published by Bhattacharyya 
et al. 2020 [36], were analyzed for specific binding of MYC to the TFRC gene. In addition, the exon structure of the TFRC gene is depicted (black 
boxes). C A mRNA expression dataset of human PDAC were retrieved via the publication of Bailey et al. [22] and curated as described [52]. A gene 
set enrichment analysis (GSEA) of Hallmark signatures via the GeneTrial 3.0 platform [110] was conducted comparing PDACs with TFRC mRNA 
expression in the highest quartile (Q4) versus PDACs in the quartiles Q1, Q2, and Q3. Each dot represents a significant hallmark signature. The MYC 
HALLMARK (v1) signature is highlighted in red
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Molecular and functional imaging also needs to 
evolve, and the integration of multimodal imaging can 
increase the precision in terms of biomarkers and tar-
gets. Since MYC is a central regulator of glycolysis and 
regulates the transcription of glycolytic genes, such 
as HK2, ENO1, LDHA, SLC2A1 [104, 105], glycolysis 
might be used as surrogate and an indirect imaging 
approach to determine MYC activity. In a MYC-induc-
ible model of liver cancer, glycolysis could be visualized 
by hyperpolarized 13C magnetic resonance spectros-
copy and its activity could be attributed to the MYC 
oncogene [106]. In breast cancer, 18F-FDG PET can 
image basal-like cancers with deregulated MYC [107]. 
Glycolysis- and MYC-networks enrich in basal-like 
PDAC [11], offering an additional opportunity for 
imaging. As a future example of a multimodal imag-
ing approach, 18F-FDG PET combined with imaging of 
the MYC-TFRC circuit might enable a more accurate 
discrimination of basal-like subtypes with deregulated 
MYC. However, other oncogenic pathways, particularly 
the PI3K-AKT pathway [108] or hypoxia-mediated acti-
vation of the hypoxia-inducible factor 1 (HIF) [109], 
have also been shown to induce glycolysis. Therefore, 
there is a definite need for more pre-clinical evidence 
of such concepts followed by prospective clinical evalu-
ation. In addition, such clinical non-invasive imaging 
modalities demand to be accompanied by longitudinal 
biopsy programs to link imaging with molecular fea-
tures. Finally, more direct non-invasive MYC imag-
ing modalities should be developed. Interestingly, the 
OMOMYC mini-protein labeled with 89Zr (Omo-
myc-deferoxamin-maleimide(DFO)-89Zr) was shown 
to accumulate in mouse lung tumors after intrana-
sal application [18], which will allow further develop-
ment of OMOMYC mini-proteins into imaging probes 
for annotation of MYC status as well as for cancer 
theranostics.
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